Vector polygon map data of city limits from Las Vegas, Nevada containing 87 features.
City limits GIS (Geographic Information System) data provides valuable information about the boundaries of a city, which is crucial for various planning and decision-making processes. Urban planners and government officials use this data to understand the extent of their jurisdiction and to make informed decisions regarding zoning, land use, and infrastructure development within the city limits.
By overlaying city limits GIS data with other layers such as population density, land parcels, and environmental features, planners can analyze spatial patterns and identify areas for growth, conservation, or redevelopment. This data also aids in emergency management by defining the areas of responsibility for different emergency services, helping to streamline response efforts during crises..
This city limits data is available for viewing and sharing as a map in a Koordinates map viewer. This data is also available for export to DWG for CAD, PDF, KML, CSV, and GIS data formats, including Shapefile, MapInfo, and Geodatabase.
The 2015 cartographic boundary shapefiles are simplified representations of selected geographic areas from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). These boundary files are specifically designed for small-scale thematic mapping. When possible, generalization is performed with the intent to maintain the hierarchical relationships among geographies and to maintain the alignment of geographies within a file set for a given year. Geographic areas may not align with the same areas from another year. Some geographies are available as nation-based files while others are available only as state-based files. The records in this file allow users to map the parts of Urban Areas that overlap a particular county. After each decennial census, the Census Bureau delineates urban areas that represent densely developed territory, encompassing residential, commercial, and other nonresidential urban land uses. In general, this territory consists of areas of high population density and urban land use resulting in a representation of the "urban footprint." There are two types of urban areas: urbanized areas (UAs) that contain 50,000 or more people and urban clusters (UCs) that contain at least 2,500 people, but fewer than 50,000 people (except in the U.S. Virgin Islands and Guam which each contain urban clusters with populations greater than 50,000). Each urban area is identified by a 5-character numeric census code that may contain leading zeroes. The primary legal divisions of most states are termed counties. In Louisiana, these divisions are known as parishes. In Alaska, which has no counties, the equivalent entities are the organized boroughs, city and boroughs, municipalities, and for the unorganized area, census areas. The latter are delineated cooperatively for statistical purposes by the State of Alaska and the Census Bureau. In four states (Maryland, Missouri, Nevada, and Virginia), there are one or more incorporated places that are independent of any county organization and thus constitute primary divisions of their states. These incorporated places are known as independent cities and are treated as equivalent entities for purposes of data presentation. The District of Columbia and Guam have no primary divisions, and each area is considered an equivalent entity for purposes of data presentation. The Census Bureau treats the following entities as equivalents of counties for purposes of data presentation: Municipios in Puerto Rico, Districts and Islands in American Samoa, Municipalities in the Commonwealth of the Northern Mariana Islands, and Islands in the U.S. Virgin Islands. The entire area of the United States, Puerto Rico, and the Island Areas is covered by counties or equivalent entities. The boundaries for counties and equivalent entities are as of January 1, 2010.
Map containing historical census data from 1900 - 2000 throughout the western United States at the county level. Data includes total population, population density, and percent population change by decade for each county. Population data was obtained from the US Census Bureau and joined to 1:2,000,000 scale National Atlas counties shapefile.
This is a map of populated areas with population density greater than or equal to 1 individual/ ha (i.e., rural/exurban but including suburban and urban as defined by Marzluff et al. 2001) as determined from U.S. Census data corrected for public lands.
Maps depicting the occupied seasonal habitat distributions and movement corridors of Nevada big game species. These delineations were determined by Nevada Department of Wildlife field biologists, supervisors, and wildlife staff specialists. Species include mule deer, black bear, elk, bighorn sheep, pronghorn, and mountain goat.
Abundance measures are almost non-existent for several bird species threatened with extinction, particularly range-restricted Neotropical taxa, for which estimating population sizes can be challenging. Here we use data collected over nine years to explore the abundance of 11 endemic birds from the Sierra Nevada de Santa Marta (SNSM), one of Earth’s most irreplaceable ecosystems. We established 99 transects in the “Cuchilla de San Lorenzo†Important Bird Area within native forest, early successional vegetation, and areas of transformed vegetation by human activities. A total of 763 bird counts were carried out covering the entire elevation range in the study area (~175–2650 m). We applied hierarchical distance-sampling models to assess elevation- and habitat-related variation in local abundance and obtain values of population density and total and effective population size. Most species were more abundant in the montane elevational range (1800–2650 m). Habitat-related differences in abun..., , , # Data from: Abundance models of endemic birds of the Sierra Nevada de Santa Marta, northern South America, suggest small population sizes and dependence on montane elevations
MS Reference Number: ORNITH-APP-23-061R2 Dataset name: Abundance_models_priority_endemics_SNSM.xlsx
The whole dataset contains data for fitting hierarchical distance-sampling models for priority, endemic bird species from the Sierra Nevada de Santa Marta, northern Colombia. Models were used to assess elevation- and habitat-related variation in local abundance and obtain values of population density and total and effective population size for the study species. Details on other methods used for estimating extent of presence (EOP) and area of occupancy (AOO), and for generating abundance maps are provided in the manuscript and the supplementary material file that accompanies it. Abundance maps will be uploaded as distribution hypothesis for each species to the BioModelos online platform (Velásquez-Tibatá et al. ...
Chukar distribution in Nevada was delineated from USGS 1:250K topographic orthoquads based upon field biologist expert knowledge and known chukar occurrences extracted from the NDOW 240 Sight Record and Scientific Collection databases. These data are intended to represent the total known range of chukar throught Nevada.
The 2019 cartographic boundary KMLs are simplified representations of selected geographic areas from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). These boundary files are specifically designed for small-scale thematic mapping. When possible, generalization is performed with the intent to maintain the hierarchical relationships among geographies and to maintain the alignment of geographies within a file set for a given year. Geographic areas may not align with the same areas from another year. Some geographies are available as nation-based files while others are available only as state-based files. The records in this file allow users to map the parts of Urban Areas that overlap a particular county. After each decennial census, the Census Bureau delineates urban areas that represent densely developed territory, encompassing residential, commercial, and other nonresidential urban land uses. In general, this territory consists of areas of high population density and urban land use resulting in a representation of the ""urban footprint."" There are two types of urban areas: urbanized areas (UAs) that contain 50,000 or more people and urban clusters (UCs) that contain at least 2,500 people, but fewer than 50,000 people (except in the U.S. Virgin Islands and Guam which each contain urban clusters with populations greater than 50,000). Each urban area is identified by a 5-character numeric census code that may contain leading zeroes. The primary legal divisions of most states are termed counties. In Louisiana, these divisions are known as parishes. In Alaska, which has no counties, the equivalent entities are the organized boroughs, city and boroughs, municipalities, and for the unorganized area, census areas. The latter are delineated cooperatively for statistical purposes by the State of Alaska and the Census Bureau. In four states (Maryland, Missouri, Nevada, and Virginia), there are one or more incorporated places that are independent of any county organization and thus constitute primary divisions of their states. These incorporated places are known as independent cities and are treated as equivalent entities for purposes of data presentation. The District of Columbia and Guam have no primary divisions, and each area is considered an equivalent entity for purposes of data presentation. The Census Bureau treats the following entities as equivalents of counties for purposes of data presentation: Municipios in Puerto Rico, Districts and Islands in American Samoa, Municipalities in the Commonwealth of the Northern Mariana Islands, and Islands in the U.S. Virgin Islands. The entire area of the United States, Puerto Rico, and the Island Areas is covered by counties or equivalent entities. The generalized boundaries for counties and equivalent entities are as of January 1, 2010.
This shapefile represents proposed management categories (Core, Priority, General, and Non-Habitat) derived from the intersection of habitat suitability categories and lek space use. Habitat suitability categories were derived from a composite, continuous surface of sage-grouse habitat suitability index (HSI) values for Nevada and northeastern California formed from the multiplicative product of the spring, summer, and winter HSI surfaces. Summary of steps to create Management Categories: HABITAT SUITABILITY INDEX: The HSI was derived from a generalized linear mixed model (specified by binomial distribution and created using ArcGIS 10.2.2) that contrasted data from multiple environmental factors at used sites (telemetry locations) and available sites (random locations). Predictor variables for the model represented vegetation communities at multiple spatial scales, water resources, habitat configuration, urbanization, roads, elevation, ruggedness, and slope. Vegetation data was derived from various mapping products, which included NV SynthMap (Petersen 2008, SageStitch (Comer et al. 2002, LANDFIRE (Landfire 2010), and the CA Fire and Resource Assessment Program (CFRAP 2006). The analysis was updated to include high resolution percent cover within 30 x 30 m pixels for Sagebrush, non-sagebrush, herbaceous vegetation, and bare ground (C. Homer, unpublished; based on the methods of Homer et al. 2014, Xian et al. 2015 ) and conifer (primarily pinyon-juniper, P. Coates, unpublished). The pool of telemetry data included the same data from 1998 - 2013 used by Coates et al. (2014) as well as additional telemetry location data from field sites in 2014. The dataset was then split according to calendar date into three seasons. Spring included telemetry locations (n = 14,058) from mid-March to June; summer included locations (n = 11,743) from July to mid-October; winter included locations (n = 4862) from November to March. All age and sex classes of marked grouse were used in the analysis. Sufficient data (i.e., a minimum of 100 locations from at least 20 marked Sage-grouse) for modeling existed in 10 subregions for spring and summer, and seven subregions in winter, using all age and sex classes of marked grouse. It is important to note that although this map is composed of HSI values derived from the seasonal data, it does not explicitly represent habitat suitability for reproductive females (i.e., nesting and with broods). Insufficient data were available to allow for estimation of this habitat type for all seasons throughout the study area extent. A Resource Selection Function (RSF) was calculated for each subregion using R software (v 3.13) and season using generalized linear models to derive model-averaged parameter estimates for each covariate across a set of additive models. For each season, subregional RSFs were transformed into Habitat Suitability Indices, and averaged together to produce an overall statewide HSI whereby a relative probability of occurrence was calculated for each raster cell. The three seasonal HSI rasters were then multiplied to create a composite annual HSI. In order to account for discrepancies in HSI values caused by varying ecoregions within Nevada, the HSI was divided into north and south extents using a slightly modified flood region boundary (Mason 1999) that was designed to represent respective mesic and xeric regions of the state. North and south HSI rasters were each relativized according to their maximum value to rescale between zero and one, then mosaicked once more into a state-wide extent. HABITAT CATEGORIZATION: Using the same ecoregion boundaries described above, the habitat classification dataset (an independent data set comprising 10% of the total telemetry location sample) was split into locations falling within respective north and south regions. HSI values from the composite and relativized statewide HSI surface were then extracted to each classification dataset location within the north and south region. The distribution of these values were used to identify class break values corresponding to 0.5 (high), 1.0 (moderate), and 1.5 (low) standard deviations (SD) from the mean HSI. These class breaks were used to classify the HSI surface into four discrete categories of habitat suitability: High, Moderate, Low, and Non-Habitat. In terms of percentiles, High habitat comprised greater than 30.9 % of the HSI values, Moderate comprised 15 – 30.9%, Low comprised 6.7 – 15%, and Non-Habitat comprised less than 6.7%.The classified north and south regions were then clipped by the boundary layer and mosaicked to create a statewide categorical surface for habitat selection. Each habitat suitability category was converted to a vector output where gaps within polygons less than 1.2 million square meters were eliminated, polygons within 500 meters of each other were connected to create corridors and polygons less than 1.2 million square meters in one category were incorporated to the adjacent category. The final step was to mask major roads that were buffered by 50m (Census, 2014), lakes (Peterson, 2008) and urban areas, and place those masked areas into the non-habitat category. The existing urban layer (Census 2010) was not sufficient for our needs because it excluded towns with a population lower than 1,500. Hence, we masked smaller towns (populations of 100 to 1500) and development with Census Block polygons (Census 2015) that had at least 50% urban development within their boundaries when viewed with reference imagery (ArcGIS World Imagery Service Layer). SPACE USE INDEX CALCULATION: Updated lek coordinates and associated trend count data were obtained from the 2015 Nevada Sage-grouse Lek Database compiled by the Nevada Department of Wildlife (NDOW, S. Espinosa, 9/20/2015). Leks count data from the California side of the Buffalo-Skedaddle and Modoc PMU's that contributed to the overall space-use model were obtained from the Western Association of Fish and Wildlife Agencies (WAFWA), and included count data up to 2014. We used NDOW data for border leks (n = 12), and WAFWA data for those fully in California and not consistently surveyed by NDOW. We queried the database for leks with a ‘LEKSTATUS’ field classified as ‘Active’ or ‘Pending’. Active leks comprised leks with breeding males observed within the last 5 years (through the 2014 breeding season). Pending leks comprised leks without consistent breeding activity during the prior 3 - 5 surveys or had not been surveyed during the past 5 years; these leks typically trended towards ‘inactive’, or newly discovered leks with at least 2 males. A sage-grouse management area (SGMA) was calculated by buffering Population Management Units developed by NDOW by 10km. This included leks from the Buffalo-Skedaddle PMU that straddles the northeastern California – Nevada border, but excluded leks for the Bi-State Distinct Population Segment. The 5-year average (2011 - 2015) for the number of male grouse (or NDOW classified 'pseudo-males' if males were not clearly identified but likely) attending each lek was calculated. Compared to the 2014 input lek dataset, 36 leks switched from pending to inactive, and 74 new leks were added for 2015 (which included pending ‘new’ leks with one year of counts. A total of 917 leks were used for space use index calculation in 2015 compared to 878 leks in 2014. Utilization distributions describing the probability of lek occurrence were calculated using fixed kernel density estimators (Silverman 1986) with bandwidths estimated from likelihood based cross-validation (CVh) (Horne and Garton 2006). UDs were weighted by the 5-year average (2011 - 2015) for the number of males grouse (or unknown gender if males were not identified) attending leks. UDs and bandwidths were calculated using Geospatial Modelling Environment (Beyer 2012) and the ‘ks’ package (Duong 2012) in Program R. Grid cell size was 30m. The resulting raster was re-scaled between zero and one by dividing by the maximum pixel value. The non-linear effect of distance to lek on the probability of grouse spatial use was estimated using the inverse of the utilization distribution curves described by Coates et al. (2013), where essentially the highest probability of grouse spatial use occurs near leks and then declines precipitously as a non-linear function. Euclidean distance was first calculated in ArcGIS, reclassified into 30-m distance bins (ranging from 0 - 30,000m), and bins reclassified according to the non-linear curve in Coates et al. (2013). The resulting raster was re-scaled between zero and one by dividing by the maximum cell value. A Spatial Use Index (SUI) was calculated by taking the average of the lek utilization distribution and non-linear distance-to-lek rasters in ArcGIS, and re-scaled between zero and one by dividing by the maximum cell value. The volume of the SUI at cumulative at specific isopleths was extracted in Geospatial Modelling Environment (Beyer 2012) with the command ‘isopleth’. Interior polygons (i.e., donuts’ > 1.2 km2) representing no probability of use within a larger polygon of use were erased from each isopleth. The 85% isopleth, which provided greater spatial connectivity and consistency with previously used agency standards (e.g., Doherty et al. 2010), was ultimately recommended by the Sagebrush Ecosystem Technical Team. The 85% SUI isopleth was clipped by the Nevada state boundary. MANAGEMENT CATEGORIES: The process for category determination was directed by the Nevada Sagebrush Ecosystem Technical team. Sage-grouse habitat was categorized into 4 classes: High, Moderate, Low, and Non-Habitat as described above, and intersected with the space use index to form the following management categories . 1) Core habitat: Defined as the intersection between all suitable habitat (High, Moderate, and Low) and the 85% Space Use Index (SUI). 2) Priority habitat: Defined as all high quality habitat
Occupied habitat distributions of Nevada small game species. These delineations were deteremined by Nevada Department of Wildlife field biologists and wildlife staff specialists. Species include California quail, chukar, dusky grouse, Gambel's quail, Himalayan snowcock, mountain quail, ruffed grouse, sooty grouse, white-tailed jackrabbit, and wild turkey.
The 2019 cartographic boundary shapefiles are simplified representations of selected geographic areas from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). These boundary files are specifically designed for small-scale thematic mapping. When possible, generalization is performed with the intent to maintain the hierarchical relationships among geographies and to maintain the alignment of geographies within a file set for a given year. Geographic areas may not align with the same areas from another year. Some geographies are available as nation-based files while others are available only as state-based files. The records in this file allow users to map the parts of Urban Areas that overlap a particular county. After each decennial census, the Census Bureau delineates urban areas that represent densely developed territory, encompassing residential, commercial, and other nonresidential urban land uses. In general, this territory consists of areas of high population density and urban land use resulting in a representation of the ""urban footprint."" There are two types of urban areas: urbanized areas (UAs) that contain 50,000 or more people and urban clusters (UCs) that contain at least 2,500 people, but fewer than 50,000 people (except in the U.S. Virgin Islands and Guam which each contain urban clusters with populations greater than 50,000). Each urban area is identified by a 5-character numeric census code that may contain leading zeroes. The primary legal divisions of most states are termed counties. In Louisiana, these divisions are known as parishes. In Alaska, which has no counties, the equivalent entities are the organized boroughs, city and boroughs, municipalities, and for the unorganized area, census areas. The latter are delineated cooperatively for statistical purposes by the State of Alaska and the Census Bureau. In four states (Maryland, Missouri, Nevada, and Virginia), there are one or more incorporated places that are independent of any county organization and thus constitute primary divisions of their states. These incorporated places are known as independent cities and are treated as equivalent entities for purposes of data presentation. The District of Columbia and Guam have no primary divisions, and each area is considered an equivalent entity for purposes of data presentation. The Census Bureau treats the following entities as equivalents of counties for purposes of data presentation: Municipios in Puerto Rico, Districts and Islands in American Samoa, Municipalities in the Commonwealth of the Northern Mariana Islands, and Islands in the U.S. Virgin Islands. The entire area of the United States, Puerto Rico, and the Island Areas is covered by counties or equivalent entities. The generalized boundaries for counties and equivalent entities are as of January 1, 2010.
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Vector polygon map data of city limits from Las Vegas, Nevada containing 87 features.
City limits GIS (Geographic Information System) data provides valuable information about the boundaries of a city, which is crucial for various planning and decision-making processes. Urban planners and government officials use this data to understand the extent of their jurisdiction and to make informed decisions regarding zoning, land use, and infrastructure development within the city limits.
By overlaying city limits GIS data with other layers such as population density, land parcels, and environmental features, planners can analyze spatial patterns and identify areas for growth, conservation, or redevelopment. This data also aids in emergency management by defining the areas of responsibility for different emergency services, helping to streamline response efforts during crises..
This city limits data is available for viewing and sharing as a map in a Koordinates map viewer. This data is also available for export to DWG for CAD, PDF, KML, CSV, and GIS data formats, including Shapefile, MapInfo, and Geodatabase.