U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
A list of Connecticut municipalities with the 3-digit tax code and the 2010 10-digit FIPS code for county subdivisions, assigned by the U.S. Census Bureau
This resource is a member of a series. The TIGER/Line shapefiles and related database files (.dbf) are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) System (MTS). The MTS represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line shapefile is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. Block groups are clusters of blocks within the same census tract. Each census tract contains at least one block group, and are uniquely numbered within census tracts. Block groups have a valid code range of 0 through 9. They also have the same first digit of their 4-digit census block number from the same decennial census. For example, tabulation blocks numbered 3001, 3002, 3003,.., 3999 within census tract 1210.02 are also within block group 3 within that census tract. Block groups coded 0 are intended to only include water area, no land area, and they are generally in territorial seas, coastal water, and Great Lakes water areas. Block groups generally contain between 600 and 3,000 people. A block group usually covers a contiguous area but never crosses county or census tract boundaries. They may, however, cross the boundaries of other geographic entities like county subdivisions, places, urban areas, voting districts, congressional districts, and American Indian / Alaska Native / Native Hawaiian areas. The block group boundaries in this release are those that were delineated as part of the Census Bureau's Participant Statistical Areas Program (PSAP) for the 2020 Census.
This CT Planning Regions layer consists of individual polygons representing each of the 169 municipalities that make up the state of Connecticut. This feature layer is directly derived from the CTDOT Municipalities feature layer geometry, created by CT Department of Transportation. The municipalities are dissolved into their associated regional Councils of Governments.This feature layer includes US Census Federal Information Processing Standards (FIPS) codes that are associated with each municipality. This was included based on information from Connecticut County to County Subdivision Crosswalk from the US Census. Field name Field description Municipality Name of the municipality. CouncilsOfGovernments Name of the Councils of Governments region that the municipality is in. County Name of the county that the municipality is in. PlanningRegion Name of the Planning Region that the municipality is in. StateFIPS <td st
The TIGER/Line shapefiles and related database files (.dbf) are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line shapefile is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. Census tracts are small, relatively permanent statistical subdivisions of a county or equivalent entity, and were defined by local participants as part of the 2020 Census Participant Statistical Areas Program. The Census Bureau delineated the census tracts in situations where no local participant existed or where all the potential participants declined to participate. The primary purpose of census tracts is to provide a stable set of geographic units for the presentation of census data and comparison back to previous decennial censuses. Census tracts generally have a population size between 1,200 and 8,000 people, with an optimum size of 4,000 people. When first delineated, census tracts were designed to be homogeneous with respect to population characteristics, economic status, and living conditions. The spatial size of census tracts varies widely depending on the density of settlement. Physical changes in street patterns caused by highway construction, new development, and so forth, may require boundary revisions. In addition, census tracts occasionally are split due to population growth, or combined as a result of substantial population decline. Census tract boundaries generally follow visible and identifiable features. They may follow legal boundaries such as minor civil division (MCD) or incorporated place boundaries in some States and situations to allow for census tract-to-governmental unit relationships where the governmental boundaries tend to remain unchanged between censuses. State and county boundaries always are census tract boundaries in the standard census geographic hierarchy. In a few rare instances, a census tract may consist of noncontiguous areas. These noncontiguous areas may occur where the census tracts are coextensive with all or parts of legal entities that are themselves noncontiguous. For the 2010 Census, the census tract code range of 9400 through 9499 was enforced for census tracts that include a majority American Indian population according to Census 2000 data and/or their area was primarily covered by federally recognized American Indian reservations and/or off-reservation trust lands; the code range 9800 through 9899 was enforced for those census tracts that contained little or no population and represented a relatively large special land use area such as a National Park, military installation, or a business/industrial park; and the code range 9900 through 9998 was enforced for those census tracts that contained only water area, no land area.
The 2023 cartographic boundary shapefiles are simplified representations of selected geographic areas from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). These boundary files are specifically designed for small-scale thematic mapping. When possible, generalization is performed with the intent to maintain the hierarchical relationships among geographies and to maintain the alignment of geographies within a file set for a given year. Geographic areas may not align with the same areas from another year. Some geographies are available as nation-based files while others are available only as state-based files. Census tracts are small, relatively permanent statistical subdivisions of a county or equivalent entity, and were defined by local participants as part of the 2020 Census Participant Statistical Areas Program. The Census Bureau delineated the census tracts in situations where no local participant existed or where all the potential participants declined to participate. The primary purpose of census tracts is to provide a stable set of geographic units for the presentation of census data and comparison back to previous decennial censuses. Census tracts generally have a population size between 1,200 and 8,000 people, with an optimum size of 4,000 people. When first delineated, census tracts were designed to be homogeneous with respect to population characteristics, economic status, and living conditions. The spatial size of census tracts varies widely depending on the density of settlement. Physical changes in street patterns caused by highway construction, new development, and so forth, may require boundary revisions. In addition, census tracts occasionally are split due to population growth, or combined as a result of substantial population decline. Census tract boundaries generally follow visible and identifiable features. They may follow legal boundaries such as minor civil division (MCD) or incorporated place boundaries in some states and situations to allow for census tract-to-governmental unit relationships where the governmental boundaries tend to remain unchanged between censuses. State and county boundaries always are census tract boundaries in the standard census geographic hierarchy. In a few rare instances, a census tract may consist of noncontiguous areas. These noncontiguous areas may occur where the census tracts are coextensive with all or parts of legal entities that are themselves noncontiguous. For the 2010 Census and beyond, the census tract code range of 9400 through 9499 was enforced for census tracts that include a majority American Indian population according to Census 2000 data and/or their area was primarily covered by federally recognized American Indian reservations and/or off-reservation trust lands; the code range 9800 through 9899 was enforced for those census tracts that contained little or no population and represented a relatively large special land use area such as a National Park, military installation, or a business/industrial park; and the code range 9900 through 9998 was enforced for those census tracts that contained only water area, no land area.
This CT Counties layer consists of individual polygons representing each of the 8 counties that make up the state of Connecticut. This feature layer is directly derived from the CTDOT Municipalities feature layer geometry, created by CT Department of Transportation. The municipalities are dissolved into their associated counties. This feature layer includes US Census Federal Information Processing Standards (FIPS) codes that are associated with each municipality. This was included based on information from Connecticut County to County Subdivision Crosswalk from the US Census. The 9 Planning Regions in Connecticut have replaced the counties for statistical and administrative functions, so these 8 counties are used only in legacy geography. Connecticut’s 9 planning regions provide a geographic framework within which municipalities can jointly address common interests and coordinate such interests with state plans and programs. CGS Section 16a-4a authorizes the Secretary of the Office of Policy and Management (OPM) to designate or redesignate the boundaries of logical planning regions. CGS Section 4-124j authorizes the member municipalities of each planning region to establish a formal regional governance structure known as a council of governments (COG). For more information see: CT Office of Policy and Management, Regional Councils of Governments in Connecticut Final Change to County Equivalents in Connecticut [PDF] Final Federal Register Notice CT Office of the Secretary of the State, Regional Councils of Governments Field name Field description County Name of the county. CountyFIPS <td style='width:283.6pt; border-top:none; border-left:none; border-bottom:solid windowtext
The TIGER/Line shapefiles and related database files (.dbf) are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line shapefile is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. Census tracts are small, relatively permanent statistical subdivisions of a county or equivalent entity, and were defined by local participants as part of the 2020 Census Participant Statistical Areas Program. The Census Bureau delineated the census tracts in situations where no local participant existed or where all the potential participants declined to participate. The primary purpose of census tracts is to provide a stable set of geographic units for the presentation of census data and comparison back to previous decennial censuses. Census tracts generally have a population size between 1,200 and 8,000 people, with an optimum size of 4,000 people. When first delineated, census tracts were designed to be homogeneous with respect to population characteristics, economic status, and living conditions. The spatial size of census tracts varies widely depending on the density of settlement. Physical changes in street patterns caused by highway construction, new development, and so forth, may require boundary revisions. In addition, census tracts occasionally are split due to population growth, or combined as a result of substantial population decline. Census tract boundaries generally follow visible and identifiable features. They may follow legal boundaries such as minor civil division (MCD) or incorporated place boundaries in some States and situations to allow for census tract-to-governmental unit relationships where the governmental boundaries tend to remain unchanged between censuses. State and county boundaries always are census tract boundaries in the standard census geographic hierarchy. In a few rare instances, a census tract may consist of noncontiguous areas. These noncontiguous areas may occur where the census tracts are coextensive with all or parts of legal entities that are themselves noncontiguous. For the 2010 Census and beyond, the census tract code range of 9400 through 9499 was enforced for census tracts that include a majority American Indian population according to Census 2000 data and/or their area was primarily covered by federally recognized American Indian reservations and/or off-reservation trust lands; the code range 9800 through 9899 was enforced for those census tracts that contained little or no population and represented a relatively large special land use area such as a National Park, military installation, or a business/industrial park; and the code range 9900 through 9998 was enforced for those census tracts that contained only water area, no land area.
This CT Full State layer consists of two individual polygons representing the land and Long Island Sound borders that make up the state of Connecticut. This land portion of this feature layer is directly derived from the CTDOT Municipalities feature layer geometry, created by CT Department of Transportation. The full state is created by dissolving all the municipalities into one polygon. The Long Island Sound portion is derived from points defining the Connecticut state waters boundary line, as described in the CTDEEP Marine Fisheries Information Circular (Table 6). This feature layer includes US Census Federal Information Processing Standards (FIPS) codes that are associated with the state of Connecticut. Field name Field description StateFIPS US Census FIPS code associated with the state. Type Describing if the polygon includes the “land” portion of the state or the “Long Island Sound” portion. ObjectID Unique Object ID.
This CT Councils of Governments layer consists of individual polygons representing each of the 9 regional Councils of Governments (COGs) that make up the state of Connecticut.
This feature layer is directly derived from the CTDOT Municipalities feature layer geometry, created by CT Department of Transportation. The municipalities are dissolved into their associated regional Councils of Governments.
This feature layer includes US Census Federal Information Processing Standards (FIPS) codes that are associated with each municipality. This was included based on information from Connecticut County to County Subdivision Crosswalk from the US Census.
Connecticut’s 9 planning regions provide a geographic framework within which municipalities can jointly address common interests and coordinate such interests with state plans and programs. CGS Section 16a-4a authorizes the Secretary of the Office of Policy and Management (OPM) to designate or redesignate the boundaries of logical planning regions. CGS Section 4-124j authorizes the member municipalities of each planning region to establish a formal regional governance structure known as a council of governments (COG).
These regions have been recognized as county-equivalents and supersede the eight legacy counties in the state.
For more information see:
CT Office of Policy and Management, Regional Councils of Governments in Connecticut Final Change to County Equivalents in Connecticut [PDF] Final Federal Register Notice CT Office of the Secretary of the State, Regional Councils of Governments
Field name
Field description
CouncilsOfGovernments
Name of the Councils of Governments planning region.
CouncilsOfGovernmentsFIPS
US Census FIPS code associated with the Councils of Governments planning region.
StateFIPS
US Census FIPS code associated with the state.
CouncilOfGovernmentsFIPS_GEOID
Full US Census FIPS for the COG.
ObjectID
Unique Object ID.
CT MunicipalitiesCT CountiesCT Councils of GovernmentsCT Planning Regions
The TIGER/Line shapefiles and related database files (.dbf) are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line shapefile is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. Census tracts are small, relatively permanent statistical subdivisions of a county or equivalent entity, and were defined by local participants as part of the 2010 Census Participant Statistical Areas Program. The Census Bureau delineated the census tracts in situations where no local participant existed or where all the potential participants declined to participate. The primary purpose of census tracts is to provide a stable set of geographic units for the presentation of census data and comparison back to previous decennial censuses. Census tracts generally have a population size between 1,200 and 8,000 people, with an optimum size of 4,000 people. When first delineated, census tracts were designed to be homogeneous with respect to population characteristics, economic status, and living conditions. The spatial size of census tracts varies widely depending on the density of settlement. Physical changes in street patterns caused by highway construction, new development, and so forth, may require boundary revisions. In addition, census tracts occasionally are split due to population growth, or combined as a result of substantial population decline. Census tract boundaries generally follow visible and identifiable features. They may follow legal boundaries such as minor civil division (MCD) or incorporated place boundaries in some States and situations to allow for census tract-to-governmental unit relationships where the governmental boundaries tend to remain unchanged between censuses. State and county boundaries always are census tract boundaries in the standard census geographic hierarchy. In a few rare instances, a census tract may consist of noncontiguous areas. These noncontiguous areas may occur where the census tracts are coextensive with all or parts of legal entities that are themselves noncontiguous. For the 2010 Census, the census tract code range of 9400 through 9499 was enforced for census tracts that include a majority American Indian population according to Census 2000 data and/or their area was primarily covered by federally recognized American Indian reservations and/or off-reservation trust lands; the code range 9800 through 9899 was enforced for those census tracts that contained little or no population and represented a relatively large special land use area such as a National Park, military installation, or a business/industrial park; and the code range 9900 through 9998 was enforced for those census tracts that contained only water area, no land area.
This shapefile was developed by the Atlanta Regional Commission Research Division, as part of the Atlanta Region Information System (ARIS). Name: Plan2040_Forecasts_CTSource: U.S. Census Bureau, Atlanta Regional CommissionDate: 2011Extent: 20 CountiesFeature: PolygonScale: 1:100,000 Attributes:FIPSSTCO: Concatanation of FIPS Code State, FIPS Countyct00: Census Tract 2000STFID: Concatanation of FIPS State, FIPS County, Census TractPopulation and employment fields for 2016-2040HH_: HouseholdsTotalPop: Total PopulationEmp_: Total EmpCons_: ConstructionManu_: ManufacturingTCU_: Transportation Communication and UtilitiesWhol_: Wholesale TradeRetail_: Retail TradeFIRE_: Finance, Insurance, and Real EstateServ_: ServicesGovt_: Government
The TIGER/Line shapefiles and related database files (.dbf) are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line shapefile is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. Face refers to the areal (polygon) topological primitives that make up MTDB. A face is bounded by one or more edges; its boundary includes only the edges that separate it from other faces, not any interior edges contained within the area of the face. The Topological Faces Shapefile contains the attributes of each topological primitive face. Each face has a unique topological face identifier (TFID) value. Each face in the shapefile includes the key geographic area codes for all geographic areas for which the Census Bureau tabulates data for both the 2020 Census and the annual estimates and surveys. The geometries of each of these geographic areas can then be built by dissolving the face geometries on the appropriate key geographic area codes in the Topological Faces Shapefile.
The TIGER/Line shapefiles and related database files (.dbf) are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line shapefile is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. Face refers to the areal (polygon) topological primitives that make up MTDB. A face is bounded by one or more edges; its boundary includes only the edges that separate it from other faces, not any interior edges contained within the area of the face. The Topological Faces Shapefile contains the attributes of each topological primitive face. Each face has a unique topological face identifier (TFID) value. Each face in the shapefile includes the key geographic area codes for all geographic areas for which the Census Bureau tabulates data for both the 2020 Census and the annual estimates and surveys. The geometries of each of these geographic areas can then be built by dissolving the face geometries on the appropriate key geographic area codes in the Topological Faces Shapefile.
The TIGER/Line shapefiles and related database files (.dbf) are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national filewith no overlaps or gaps between parts, however, each TIGER/Line shapefile is designed to stand alone as an independentdata set, or they can be combined to cover the entire nation. Linear Water Features includes single-line drainage water features and artificial path features that run through double-line drainage features such as rivers and streams, and serve as a linear representation of these features. The artificial path features may correspond to those in the USGS National Hydrographic Dataset (NHD). However, in many cases the features do not match NHD equivalent feature and will not carry the NHD metadata codes. These features have a MAF/TIGER Feature Classification Code (MTFCC) beginning with an "H" to indicate the super class of Hydrographic Features.
The TIGER/Line shapefiles and related database files (.dbf) are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line shapefile is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. The Other Identifiers Relationship File contains external identifier codes, such as National Hydrographic Dataset (NHD) codes and individual county identifiers. The edge to which an Other Identifiers Relationship File record applies can be determined by linking to the All Lines shapefile on the permanent edge identifier (TLID) attribute. Not every TLID has an external identifier associated with it and some TLIDs may have more than one.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
The TIGER/Line shapefiles and related database files (.dbf) are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line shapefile is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. Face refers to the areal (polygon) topological primitives that make up MTDB. A face is bounded by one or more edges; its boundary includes only the edges that separate it from other faces, not any interior edges contained within the area of the face. The Topological Faces Shapefile contains the attributes of each topological primitive face. Each face has a unique topological face identifier (TFID) value. Each face in the shapefile includes the key geographic area codes for all geographic areas for which the Census Bureau tabulates data for both the 2020 Census and the annual estimates and surveys. The geometries of each of these geographic areas can then be built by dissolving the face geometries on the appropriate key geographic area codes in the Topological Faces Shapefile.
The TIGER/Line shapefiles and related database files (.dbf) are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line shapefile is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. Face refers to the areal (polygon) topological primitives that make up MTDB. A face is bounded by one or more edges; its boundary includes only the edges that separate it from other faces, not any interior edges contained within the area of the face. The Topological Faces Shapefile contains the attributes of each topological primitive face. Each face has a unique topological face identifier (TFID) value. Each face in the shapefile includes the key geographic area codes for all geographic areas for which the Census Bureau tabulates data for both the 2020 Census and the annual estimates and surveys. The geometries of each of these geographic areas can then be built by dissolving the face geometries on the appropriate key geographic area codes in the Topological Faces Shapefile.
The TIGER/Line shapefiles and related database files (.dbf) are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line shapefile is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. Face refers to the areal (polygon) topological primitives that make up MTDB. A face is bounded by one or more edges; its boundary includes only the edges that separate it from other faces, not any interior edges contained within the area of the face. The Topological Faces Shapefile contains the attributes of each topological primitive face. Each face has a unique topological face identifier (TFID) value. Each face in the shapefile includes the key geographic area codes for all geographic areas for which the Census Bureau tabulates data for both the 2020 Census and the annual estimates and surveys. The geometries of each of these geographic areas can then be built by dissolving the face geometries on the appropriate key geographic area codes in the Topological Faces Shapefile.
The TIGER/Line shapefiles and related database files (.dbf) are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line shapefile is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. Face refers to the areal (polygon) topological primitives that make up MTDB. A face is bounded by one or more edges; its boundary includes only the edges that separate it from other faces, not any interior edges contained within the area of the face. The Topological Faces Shapefile contains the attributes of each topological primitive face. Each face has a unique topological face identifier (TFID) value. Each face in the shapefile includes the key geographic area codes for all geographic areas for which the Census Bureau tabulates data for both the 2020 Census and the annual estimates and surveys. The geometries of each of these geographic areas can then be built by dissolving the face geometries on the appropriate key geographic area codes in the Topological Faces Shapefile.
The TIGER/Line shapefiles and related database files (.dbf) are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) System (MTS). The MTS represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line shapefile is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. Face refers to the areal (polygon) topological primitives that make up the MTS. A face is bounded by one or more edges; its boundary includes only the edges that separate it from other faces, not any interior edges contained within the area of the face. The Topological Faces shapefile contains the attributes of each topological primitive face. Each face has a unique topological face identifier (TFID) value. Each face in the shapefile includes the key geographic area codes for all geographic areas for which the Census Bureau tabulates data for both the 2020 Census and the annual estimates and surveys. The geometries of each of these geographic areas can then be built by dissolving the face geometries on the appropriate key geographic area codes in the Topological Faces shapefile.
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
A list of Connecticut municipalities with the 3-digit tax code and the 2010 10-digit FIPS code for county subdivisions, assigned by the U.S. Census Bureau