This dataset provides an initial version of the generalized physical boundaries of New Mexico State Parks, in polygonal form with limited attributes, compiled using available data from a variety of sources. The boundaries have been digitized from AutoCAD drawings and/or from legal descriptions, supplemented by digital orthophotography cross-checking, and adjusted to the GCDB when possible. The dataset will be refined in the future to include other attributes and provide better accuracy.
This map runs this app - http://nmcdc.maps.arcgis.com/home/item.html?id=958544e5eebd4501be8b70f71e2ef925Instructions for Using Premium content on a Public Map:https://www.esri.com/arcgis-blog/products/arcgis-living-atlas/local-government/including-online-demographic-maps-in-your-public-maps-and-apps/
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
Associated documentation on these datasets can be accessed here. In 2023, the New Mexico Legislature passed the Regional Water System Resiliency Act, which allowed the formation of regional water authorities to strengthen the state's aging water infrastructure. The law allows public water systems to organize as recognized political subdivisions, which enables the pooling of resources to hire staff, implement new projects and programs, and access funding for system improvements. The law requires new authorities to file information showing their service area boundary with the Office of the State Engineer (OSE). New service area boundaries provided to the OSE will be incorporated into this dataset as appropriate. The New Mexico Public Water System (PWS) Boundaries is a dataset of non-transient PWS service areas. The data was compiled by the OSE Water Use and Conservation Bureau with contractor assistance. For systems not providing a service area boundary, best approximation polygons were created using municipal boundaries, census data, and aerial imagery.
This data represents the GIS Version of the Public Land Survey System including both rectangular and non-rectangular survey data. The rectangular survey data are a reference system for land tenure based upon meridian, township/range, section, section subdivision and government lots. The non-rectangular survey data represent surveys that were largely performed to protect and/or convey title on specific parcels of land such as mineral surveys and tracts. The data are largely complete in reference to the rectangular survey data at the level of first division. However, the data varies in terms of granularity of its spatial representation as well as its content below the first division. Therefore, depending upon the data source and steward, accurate subdivision of the rectangular data may not be available below the first division and the non-rectangular minerals surveys may not be present. At times, the complexity of surveys rendered the collection of data cost prohibitive such as in areas characterized by numerous, overlapping mineral surveys. In these situations, the data were often not abstracted or were only partially abstracted and incorporated into the data set. These PLSS data were compiled from a broad spectrum or sources including federal, county, and private survey records such as field notes and plats as well as map sources such as USGS 7 ½ minute quadrangles. The metadata in each data set describes the production methods for the data content. This data is optimized for data publication and sharing rather than for specific "production" or operation and maintenance. A complete PLSS data set includes the following: PLSS Townships, First Divisions and Second Divisions (the hierarchical break down of the PLSS Rectangular surveys) PLSS Special surveys (non-rectangular components of the PLSS) Meandered Water, Corners, Metadata at a Glance (which identified last revised date and data steward) and Conflicted Areas (known areas of gaps or overlaps or inconsistencies). The Entity-Attribute section of this metadata describes these components in greater detail. The second division of the PLSS is quarter, quarter-quarter, sixteenth or government lot division of the PLSS. The second and third divisions are combined into this feature class as an intentional de-normalization of the PLSS hierarchical data. The polygons in this feature class represent the smallest division to the sixteenth that has been defined for the first division. For example In some cases sections have only been divided to the quarter. Divisions below the sixteenth are in the Special Survey or Parcel Feature Class. The second division of the PLSS is quarter, quarter-quarter, sixteenth or government lot division of the PLSS. The second and third divisions are combined into this feature class as an intentional de-normalization of the PLSS hierarchical data. The polygons in this feature class represent the smallest division to the sixteenth that has been defined for the first division. For example In some cases sections have only been divided to the quarter. Divisions below the sixteenth are in the Special Survey or Parcel Feature Class.
Open Data Commons Attribution License (ODC-By) v1.0https://www.opendatacommons.org/licenses/by/1.0/
License information was derived automatically
These two shapefiles represent New Mexico NHD High Resolution stream segments and waterbodies, merged and clipped to the state boundary. RAW NHD High Resolution data, including additional layer files, is available from: https://viewer.nationalmap.gov/basic/
This data represents the GIS Version of the Public Land Survey System including both rectangular and non-rectangular survey data. The rectangular survey data are a reference system for land tenure based upon meridian, township/range, section, section subdivision and government lots. The non-rectangular survey data represent surveys that were largely performed to protect and/or convey title on specific parcels of land such as mineral surveys and tracts. The data are largely complete in reference to the rectangular survey data at the level of first division. However, the data varies in terms of granularity of its spatial representation as well as its content below the first division. Therefore, depending upon the data source and steward, accurate subdivision of the rectangular data may not be available below the first division and the non-rectangular minerals surveys may not be present. At times, the complexity of surveys rendered the collection of data cost prohibitive such as in areas characterized by numerous, overlapping mineral surveys. In these situations, the data were often not abstracted or were only partially abstracted and incorporated into the data set. These PLSS data were compiled from a broad spectrum or sources including federal, county, and private survey records such as field notes and plats as well as map sources such as USGS 7 ½ minute quadrangles. The metadata in each data set describes the production methods for the data content. This data is optimized for data publication and sharing rather than for specific "production" or operation and maintenance. A complete PLSS data set includes the following: PLSS Townships, First Divisions and Second Divisions (the hierarchical break down of the PLSS Rectangular surveys) PLSS Special surveys (non-rectangular components of the PLSS) Meandered Water, Corners, Metadata at a Glance (which identified last revised date and data steward) and Conflicted Areas (known areas of gaps or overlaps or inconsistencies). The Entity-Attribute section of this metadata describes these components in greater detail. The second division of the PLSS is quarter, quarter-quarter, sixteenth or government lot division of the PLSS. The second and third divisions are combined into this feature class as an intentional de-normalization of the PLSS hierarchical data. The polygons in this feature class represent the smallest division to the sixteenth that has been defined for the first division. For example In some cases sections have only been divided to the quarter. Divisions below the sixteenth are in the Special Survey or Parcel Feature Class. Special Surveys are non-PLSS survey areas from BLM survey records which represent federal parcels.
MMD uses a Geographic Information System (GIS) to locate and track its mining activities in the state. This is a computer system that can capture, store, analyze and display geographically referenced (location) information. The power of this system is its ability to draw conclusions about relationships between data that have a spatial component. GIS provides a method of displaying accurate mapping and database information to the staff and public.
The Digital Geologic-GIS Map of the Togeye Lake Quadrangle, New Mexico is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) an ESRI file geodatabase (togl_geology.gdb), and a 2.) Open Geospatial Consortium (OGC) geopackage. The file geodatabase format is supported with a 1.) ArcGIS Pro 3.X map file (.mapx) file (togl_geology.mapx) and individual Pro 3.X layer (.lyrx) files (for each GIS data layer). Upon request, the GIS data is also available in ESRI shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) a readme file (elmo_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (elmo_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (togl_geology_metadata_faq.pdf). Please read the elmo_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. QGIS software is available for free at: https://www.qgis.org/en/site/. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri.htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (togl_geology_metadata.txt or togl_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual _location as presented by this dataset. Users of this data should thus not assume the _location of features is exactly where they are portrayed in ArcGIS Pro, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
These boundaries were created by using a combination of hydrographic survey maps, file maps, and legal descriptions. All boundaries are merely representations and may contain errors.
This is for reference only.
Open Data Commons Attribution License (ODC-By) v1.0https://www.opendatacommons.org/licenses/by/1.0/
License information was derived automatically
NMFWRI represents the state’s only dedicated capability for supporting the spatial data analysis needs of external stakeholders in the natural resources sector, as well as the GIS/GPS capacity for Highlands University and for most of northern New Mexico. NMFWRI’s GIS work also provides help with maps and other geographic information to New Mexico groups engaged in forest restoration and land management, but who are too small to maintain their own GIS capability. These groups include soil and water conservation districts, municipalities, private groups and individuals, and tribal organizations.
The geologic map was created in GSMAP at Socorro, New Mexico by Orin Anderson and Glen Jones and published as the Geologic Map of New Mexico 1:500,000 in GSMAP format in 1994. This graphic file was converted to ARC/INFO format by Greb Green and GlenJones and released as the Geologic Map of New Mexico in ARC/INFO format in 1997. This shapefile only shows the volcanic vents for New Mexico, that are used on the Digital Geologic Map for New Mexico.
The geologic map was created in GSMAP at Socorro, New Mexico by Orin Anderson and Glen Jones and published as the Geologic Map of New Mexico 1:500,000 in GSMAP format in 1994. This graphic file was converted to ARC/INFO format by Greb Green and GlenJones and released as the Geologic Map of New Mexico in ARC/INFO format in 1997.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
This dataset has a data dictionary that can be downloaded here. The NM Office of the State Engineer (OSE) "Point of Diversions" (POD) layer includes well locations, surface declarations, or surface permits. These data were extracted from the OSE W.A.T.E.R.S. (Water Administration Technical Engineering Resource System) database and geo-located (mapped). These data have varying degrees of accuracy and have not been validated. This message is to alert users of this data to various changes regarding how this POD data is generated and maintained by the NM Office of the State Engineer. In addition, all attribute fields are fully described in the metadata, including descriptions of field codes. Please read the metadata accompanying this GIS data layer for further information. Any questions regarding this GIS data should be directed NM OSE Information Technology Systems Bureau GIS at the contact information given below. Stephen N. Hayes NMOSE ITSB GIS Data Manager(505) 827-6321 PO Box 25102 Santa Fe, NM 87504 stephen.hayes@ose.nm.gov
These are map packages used to visualize geochemical particle-tracking analysis results in ArcGIS. It includes individual map packages for several regions of New Mexico including: Acoma, Rincon, Gila, Las Cruces, Socorro and Truth or Consequences.
The documentation below is in reference to this items placement in the NM Supply Chain Data Hub. The documentation is of use to understanding the source of this item, and how to reproduce it for updatesTitle: OSE POD Locations Web-MapItem Type: URLSummary: GIS for Administering New Mexico's Water Resources. OSE POD Locations web-map. Source: Office of the State EngineerNotes: Prepared by: Uploaded by EMcRae_NMCDCSource: Office of the State EngineerFeature Service: https://nmcdc.maps.arcgis.com/home/item.html?id=9f5da56ad3734f90b8395cf4a41b07b4UID: 68,44Data Requested: water, water rights for agriculture, availability of waterMethod of Acquisition: Public map created and maintained by the Office of the State EngineerDate Acquired: May 2022Priority rank as Identified in 2022 (scale of 1 being the highest priority, to 11 being the lowest priority): 3Tags: PENDING
The Digital Geologic-GIS Map of the Crystal Quadrangle, New Mexico is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (crys_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (crys_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (crys_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) A GIS readme file (cach_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (cach_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (crys_geology_metadata_faq.pdf). Please read the cach_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (crys_geology_metadata.txt or crys_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
The Digital Geologic-GIS Map of the Goat Hill Quadrangle, New Mexico is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) an ESRI file geodatabase (gohi_geology.gdb), and a 2.) Open Geospatial Consortium (OGC) geopackage. The file geodatabase format is supported with a 1.) ArcGIS Pro 3.X map file (.mapx) file (gohi_geology.mapx) and individual Pro 3.X layer (.lyrx) files (for each GIS data layer). Upon request, the GIS data is also available in ESRI shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) a readme file (elmo_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (elmo_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (gohi_geology_metadata_faq.pdf). Please read the elmo_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. QGIS software is available for free at: https://www.qgis.org/en/site/. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri.htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (gohi_geology_metadata.txt or gohi_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in ArcGIS Pro, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
Open Data Commons Attribution License (ODC-By) v1.0https://www.opendatacommons.org/licenses/by/1.0/
License information was derived automatically
The TIGER/Line shapefiles and related database files (.dbf) are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line shapefile is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. The primary legal divisions of most states are termed counties. In Louisiana, these divisions are known as parishes. In Alaska, which has no counties, the equivalent entities are the organized boroughs, city and boroughs, municipalities, and for the unorganized area, census areas. The latter are delineated cooperatively for statistical purposes by the State of Alaska and the Census Bureau. In four states (Maryland, Missouri, Nevada, and Virginia), there are one or more incorporated places that are independent of any county organization and thus constitute primary divisions of their states. These incorporated places are known as independent cities and are treated as equivalent entities for purposes of data presentation. The District of Columbia and Guam have no primary divisions, and each area is considered an equivalent entity for purposes of data presentation. The Census Bureau treats the following entities as equivalents of counties for purposes of data presentation: Municipios in Puerto Rico, Districts and Islands in American Samoa, Municipalities in the Commonwealth of the Northern Mariana Islands, and Islands in the U.S. Virgin Islands. The entire area of the United States, Puerto Rico, and the Island Areas is covered by counties or equivalent entities. The boundaries for counties and equivalent entities are as of January 1, 2018, primarily as reported through the Census Bureau's Boundary and Annexation Survey (BAS).
This is a polygon feature data layer of United States National Grid (1000m x 1000m polygons ) constructed by the Center for Interdisciplinary Geospatial Information Technologies at Delta State University with support from the US Geological Survey under the Cooperative Agreement 07ERAG0083. For correct display, please set the base coordinate system and projection such that it matches the UTM zone for which these data were constructed using the NAD 83 datum. Further information about the US National Grid is available from http://www.fgdc.gov/usng and a viewing of these layers as applied to local geography may be seen at the National Map, http://www.nationalmap.gov. The name of each dataset has the following format - StateAbbv_USNG_UTMXX. For example, for the UTM zone 15 of Mississippi, the dataset is named MS_USNG_UTM15.
The Digital Geologic-GIS Map of the Sonsela Butte 4 SE Quadrangle, Arizona and New Mexico is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (sobt_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (sobt_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (sobt_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) A GIS readme file (cach_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (cach_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (sobt_geology_metadata_faq.pdf). Please read the cach_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (sobt_geology_metadata.txt or sobt_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual _location as presented by this dataset. Users of this data should thus not assume the _location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
This dataset provides an initial version of the generalized physical boundaries of New Mexico State Parks, in polygonal form with limited attributes, compiled using available data from a variety of sources. The boundaries have been digitized from AutoCAD drawings and/or from legal descriptions, supplemented by digital orthophotography cross-checking, and adjusted to the GCDB when possible. The dataset will be refined in the future to include other attributes and provide better accuracy.