86 datasets found
  1. ACS Transportation to Work Variables - Boundaries

    • covid-hub.gio.georgia.gov
    • legacy-cities-lincolninstitute.hub.arcgis.com
    • +4more
    Updated Oct 22, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2018). ACS Transportation to Work Variables - Boundaries [Dataset]. https://covid-hub.gio.georgia.gov/maps/222007e8651f4907bf29b9359a2f3252
    Explore at:
    Dataset updated
    Oct 22, 2018
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    This layer shows workers' place of residence by mode of commute. This is shown by tract, county, and state boundaries. This service is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. This layer is symbolized by the percentage of workers who drove alone. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2019-2023ACS Table(s): B08301 (Not all lines of this ACS table are available in this feature layer.)Data downloaded from: Census Bureau's API for American Community Survey Date of API call: December 12, 2024National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. For more information about ACS layers, visit the FAQ. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Click here to learn more about ACS data releases.Boundaries come from the US Census TIGER geodatabases, specifically, the National Sub-State Geography Database (named tlgdb_(year)_a_us_substategeo.gdb). Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For census tracts, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract level boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2023 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters).The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small.

  2. N

    2015 Street Tree Census - Tree Data

    • data.cityofnewyork.us
    • bronx.lehman.cuny.edu
    • +4more
    application/rdfxml +5
    Updated Oct 4, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Parks and Recreation (DPR) (2017). 2015 Street Tree Census - Tree Data [Dataset]. https://data.cityofnewyork.us/Environment/2015-Street-Tree-Census-Tree-Data/uvpi-gqnh
    Explore at:
    tsv, application/rssxml, csv, json, xml, application/rdfxmlAvailable download formats
    Dataset updated
    Oct 4, 2017
    Dataset authored and provided by
    Department of Parks and Recreation (DPR)
    Description

    Street tree data from the TreesCount! 2015 Street Tree Census, conducted by volunteers and staff organized by NYC Parks & Recreation and partner organizations. Tree data collected includes tree species, diameter and perception of health. Accompanying blockface data is available indicating status of data collection and data release citywide.

    The 2015 tree census was the third decadal street tree census and largest citizen science initiative in NYC Parks’ history. Data collection ran from May 2015 to October 2016 and the results of the census show that there are 666,134 trees planted along NYC's streets. The data collected as part of the census represents a snapshot in time of trees under NYC Parks' jurisdiction.

    The census data formed the basis of our operational database, the Forestry Management System (ForMS) which is used daily by our foresters and other staff for inventory and asset management: https://data.cityofnewyork.us/browse?sortBy=most_accessed&utf8=%E2%9C%93&Data-Collection_Data-Collection=Forestry+Management+System+%28ForMS%29

    To learn more about the data collected and managed in ForMS, please refer to this user guide: https://docs.google.com/document/d/1PVPWFi-WExkG3rvnagQDoBbqfsGzxCKNmR6n678nUeU/edit. For information on the city's current tree population, use the ForMS datasets.

  3. ACS Transportation to Work Variables - Centroids

    • covid-hub.gio.georgia.gov
    • legacy-cities-lincolninstitute.hub.arcgis.com
    Updated Oct 22, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2018). ACS Transportation to Work Variables - Centroids [Dataset]. https://covid-hub.gio.georgia.gov/maps/33158d5f17d34d8bb5c83533f2679ebf
    Explore at:
    Dataset updated
    Oct 22, 2018
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    This layer shows workers' place of residence by mode of commute. This is shown by tract, county, and state centroids. This service is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. This layer is symbolized by the count of total workers and the percentage of workers who drove alone. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2019-2023ACS Table(s): B08301 (Not all lines of this ACS table are available in this feature layer.)Data downloaded from: Census Bureau's API for American Community Survey Date of API call: December 12, 2024National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. For more information about ACS layers, visit the FAQ. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Click here to learn more about ACS data releases.Boundaries come from the US Census TIGER geodatabases, specifically, the National Sub-State Geography Database (named tlgdb_(year)_a_us_substategeo.gdb). Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For census tracts, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract level boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2023 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters).The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -555555...) have been set to null. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small. NOTE: any calculated percentages or counts that contain estimates that have null margins of error yield null margins of error for the calculated fields.

  4. H

    Current Population Survey (CPS)

    • dataverse.harvard.edu
    • search.dataone.org
    Updated May 30, 2013
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Anthony Damico (2013). Current Population Survey (CPS) [Dataset]. http://doi.org/10.7910/DVN/AK4FDD
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    May 30, 2013
    Dataset provided by
    Harvard Dataverse
    Authors
    Anthony Damico
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    analyze the current population survey (cps) annual social and economic supplement (asec) with r the annual march cps-asec has been supplying the statistics for the census bureau's report on income, poverty, and health insurance coverage since 1948. wow. the us census bureau and the bureau of labor statistics ( bls) tag-team on this one. until the american community survey (acs) hit the scene in the early aughts (2000s), the current population survey had the largest sample size of all the annual general demographic data sets outside of the decennial census - about two hundred thousand respondents. this provides enough sample to conduct state- and a few large metro area-level analyses. your sample size will vanish if you start investigating subgroups b y state - consider pooling multiple years. county-level is a no-no. despite the american community survey's larger size, the cps-asec contains many more variables related to employment, sources of income, and insurance - and can be trended back to harry truman's presidency. aside from questions specifically asked about an annual experience (like income), many of the questions in this march data set should be t reated as point-in-time statistics. cps-asec generalizes to the united states non-institutional, non-active duty military population. the national bureau of economic research (nber) provides sas, spss, and stata importation scripts to create a rectangular file (rectangular data means only person-level records; household- and family-level information gets attached to each person). to import these files into r, the parse.SAScii function uses nber's sas code to determine how to import the fixed-width file, then RSQLite to put everything into a schnazzy database. you can try reading through the nber march 2012 sas importation code yourself, but it's a bit of a proc freak show. this new github repository contains three scripts: 2005-2012 asec - download all microdata.R down load the fixed-width file containing household, family, and person records import by separating this file into three tables, then merge 'em together at the person-level download the fixed-width file containing the person-level replicate weights merge the rectangular person-level file with the replicate weights, then store it in a sql database create a new variable - one - in the data table 2012 asec - analysis examples.R connect to the sql database created by the 'download all microdata' progr am create the complex sample survey object, using the replicate weights perform a boatload of analysis examples replicate census estimates - 2011.R connect to the sql database created by the 'download all microdata' program create the complex sample survey object, using the replicate weights match the sas output shown in the png file below 2011 asec replicate weight sas output.png statistic and standard error generated from the replicate-weighted example sas script contained in this census-provided person replicate weights usage instructions document. click here to view these three scripts for more detail about the current population survey - annual social and economic supplement (cps-asec), visit: the census bureau's current population survey page the bureau of labor statistics' current population survey page the current population survey's wikipedia article notes: interviews are conducted in march about experiences during the previous year. the file labeled 2012 includes information (income, work experience, health insurance) pertaining to 2011. when you use the current populat ion survey to talk about america, subract a year from the data file name. as of the 2010 file (the interview focusing on america during 2009), the cps-asec contains exciting new medical out-of-pocket spending variables most useful for supplemental (medical spending-adjusted) poverty research. confidential to sas, spss, stata, sudaan users: why are you still rubbing two sticks together after we've invented the butane lighter? time to transition to r. :D

  5. c

    ACS Employment Status Variables - Tract

    • hub.scag.ca.gov
    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    Updated Feb 3, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    rdpgisadmin (2022). ACS Employment Status Variables - Tract [Dataset]. https://hub.scag.ca.gov/items/2699519010fd4d68a04a766527798494
    Explore at:
    Dataset updated
    Feb 3, 2022
    Dataset authored and provided by
    rdpgisadmin
    Area covered
    Description

    This layer shows hours worked, and those unemployed and not in labor force. This is shown by tract, county, and state boundaries. This service is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. This layer is symbolized to show the percentage of unemployed population within the civilian labor force. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2015-2019ACS Table(s): B23020, B23025Data downloaded from: Census Bureau's API for American Community Survey Date of API call: December 10, 2020National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. For more information about ACS layers, visit the FAQ. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Click here to learn more about ACS data releases.Boundaries come from the US Census TIGER geodatabases. Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines clipped for cartographic purposes. For census tracts, the water cutouts are derived from a subset of the 2010 AWATER (Area Water) boundaries offered by TIGER. For state and county boundaries, the water and coastlines are derived from the coastlines of the 500k TIGER Cartographic Boundary Shapefiles. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters). The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small.

  6. Data from: Quarterly Census of Employment and Wages

    • console.cloud.google.com
    Updated Apr 8, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    https://console.cloud.google.com/marketplace/browse?filter=partner:U.S.%20Bureau%20of%20Labor%20Statistics&hl=pl&inv=1&invt=Ab3wOQ (2023). Quarterly Census of Employment and Wages [Dataset]. https://console.cloud.google.com/marketplace/product/bls-public-data/qcew?hl=pl
    Explore at:
    Dataset updated
    Apr 8, 2023
    Dataset provided by
    Googlehttp://google.com/
    Description

    The Quarterly Census of Employment and Wages (QCEW) program publishes a quarterly count of employment and wages reported by employers covering more than 95 percent of U.S. jobs, available at the county, MSA, state and national levels by industry. The dataset, hosted as part of the Cloud Public Datasets Program , gives county-level information on jobs and wages each quarter starting in 1990. The counties are identified by geoid which can easily be joined with both all FIPS codes or US county boundaries to unlock new insights within the data. Both of these datasets are available in BigQuery through the Cloud Public Datasets Cleaning and onboarding support for this dataset is provided by CARTO . This public dataset is hosted in Google BigQuery and is included in BigQuery's 1TB/mo of free tier processing. This means that each user receives 1TB of free BigQuery processing every month, which can be used to run queries on this public dataset. Watch this short video to learn how to get started quickly using BigQuery to access public datasets. What is BigQuery .

  7. h

    adult-census-income

    • huggingface.co
    • opendatalab.com
    Updated Feb 1, 2001
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    scikit-learn (2001). adult-census-income [Dataset]. https://huggingface.co/datasets/scikit-learn/adult-census-income
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Feb 1, 2001
    Dataset authored and provided by
    scikit-learn
    License

    https://choosealicense.com/licenses/cc0-1.0/https://choosealicense.com/licenses/cc0-1.0/

    Description

    Adult Census Income Dataset

    The following was retrieved from UCI machine learning repository. This data was extracted from the 1994 Census bureau database by Ronny Kohavi and Barry Becker (Data Mining and Visualization, Silicon Graphics). A set of reasonably clean records was extracted using the following conditions: ((AAGE>16) && (AGI>100) && (AFNLWGT>1) && (HRSWK>0)). The prediction task is to determine whether a person makes over $50K a year. Description of fnlwgt (final weight)… See the full description on the dataset page: https://huggingface.co/datasets/scikit-learn/adult-census-income.

  8. 2010-2014 ACS Earnings by Occupation Variables - Boundaries

    • hub.arcgis.com
    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    • +1more
    Updated Nov 30, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2020). 2010-2014 ACS Earnings by Occupation Variables - Boundaries [Dataset]. https://hub.arcgis.com/maps/1c70912bc6c8478e838f67d217e01e51
    Explore at:
    Dataset updated
    Nov 30, 2020
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    This layer contains 2010-2014 American Community Survey (ACS) 5-year data, and contains estimates and margins of error. The layer shows median earnings by occupational group. This is shown by tract, county, and state boundaries. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. Only full-time year-round workers included. Median earnings is based on earnings in past 12 months of survey. Occupation Groups based on Bureau of Labor Statistics (BLS)' Standard Occupation Classification (SOC). This layer is symbolized to show median earnings of the full-time, year-round civilian employed population. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Vintage: 2010-2014ACS Table(s): B24021 Data downloaded from: Census Bureau's API for American Community Survey Date of API call: November 28, 2020National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. For more information about ACS layers, visit the FAQ. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:This layer has associated layers containing the most recent ACS data available by the U.S. Census Bureau. Click here to learn more about ACS data releases and click here for the associated boundaries layer. The reason this data is 5+ years different from the most recent vintage is due to the overlapping of survey years. It is recommended by the U.S. Census Bureau to compare non-overlapping datasets.Boundaries come from the US Census TIGER geodatabases. Boundary vintage (2014) appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines clipped for cartographic purposes. For census tracts, the water cutouts are derived from a subset of the 2010 AWATER (Area Water) boundaries offered by TIGER. For state and county boundaries, the water and coastlines are derived from the coastlines of the 500k TIGER Cartographic Boundary Shapefiles. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters). The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small.

  9. d

    Economic Characteristics of Census Tracts 2019-2023 5-Year ACS

    • opendata.dc.gov
    Updated Dec 17, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Washington, DC (2024). Economic Characteristics of Census Tracts 2019-2023 5-Year ACS [Dataset]. https://opendata.dc.gov/datasets/economic-characteristics-of-census-tracts-2019-2023-5-year-acs
    Explore at:
    Dataset updated
    Dec 17, 2024
    Dataset authored and provided by
    City of Washington, DC
    Description

    Employment, Commuting, Occupation, Income, Health Insurance, Poverty, and more. This service is updated annually with American Community Survey (ACS) 5-year data. Contact: District of Columbia, Office of Planning. Email: planning@dc.govGeography: Census TractsCurrent Vintage: 2019-2023ACS Table(s): DP03Data downloaded from: Census Bureau's API for American Community Survey Date of API call: January 2, 2025National Figures: data.census.gov The United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. Please cite the Census and ACS when using this data. Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables. Data Processing Notes:This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Click here to learn more about ACS data releases.Boundaries come from the US Census TIGER geodatabases. Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines clipped for cartographic purposes. For census tracts, the water cutouts are derived from a subset of the 2010 AWATER (Area Water) boundaries offered by TIGER. For state and county boundaries, the water and coastlines are derived from the coastlines of the 500k TIGER Cartographic Boundary Shapefiles. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters). Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Data processed using R statistical package and ArcGIS Pro.Margin of Error was not included in this layer but is available from the Census Bureau. Contact the Office of Planning for more information about obtaining Margin of Error values.

  10. n

    United States Census

    • datacatalog.med.nyu.edu
    Updated Jul 17, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2018). United States Census [Dataset]. https://datacatalog.med.nyu.edu/dataset/10026
    Explore at:
    Dataset updated
    Jul 17, 2018
    Area covered
    United States
    Description

    The Decennial Census provides population estimates and demographic information on residents of the United States.

    The Census Summary Files contain detailed tables on responses to the decennial census. Data tables in Summary File 1 provide information on population and housing characteristics, including cross-tabulations of age, sex, households, families, relationship to householder, housing units, detailed race and Hispanic or Latino origin groups, and group quarters for the total population. Summary File 2 contains data tables on population and housing characteristics as reported by housing unit.

    Researchers at NYU Langone Health can find guidance for the use and analysis of Census Bureau data on the Population Health Data Hub (listed under "Other Resources"), which is accessible only through the intranet portal with a valid Kerberos ID (KID).

  11. c

    Neighborhood Profiles

    • data.clevelandohio.gov
    • opendatacle-clevelandgis.hub.arcgis.com
    Updated Feb 10, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Cleveland | GIS (2025). Neighborhood Profiles [Dataset]. https://data.clevelandohio.gov/datasets/neighborhood-profiles
    Explore at:
    Dataset updated
    Feb 10, 2025
    Dataset authored and provided by
    Cleveland | GIS
    License

    Open Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
    License information was derived automatically

    Area covered
    Description

    This dataset contains American Community Survey (ACS) data aggregated by neighborhood. The current ACS vintage is for 2019-2023. Values are calculated by aggregating all the census tracts that fall within a given neighborhood. If a census tract falls across two or more neighborhood, the neighborhood which contains most of the census tract's blocks is assigned said tract. Click here to learn more about how this process works.Update FrequencyThis dataset is updated annually when the new ACS vintage is released.This dataset is featured on the following app(s):City Census ViewerContactsSamuel Martinez, Urban Analytics and Innovationsmartinez2@clevelandohio.govData GlossaryTo view more information about individual fields, navigate to Data -> Fields.Methodology1. Get all census tracts within Cuyahoga county. 2. Determine which census tracts are within the city of Cleveland. a. If a census tract falls over multiple city boundaries, the city that contains more of that census tract’s blocks is assigned to said census tract. 3. Filter the dataset for census tracts within Cleveland. 4. Determine which census tracts are within which neighborhoods. a. If a census tract falls across two or more neighborhoods, whichever neighborhood contains most of that tract’s blocks is assigned. 5. Aggregate counts for different ACS variables across census tracts within each neighborhood. This results in the final estimates.

  12. c

    ACS Travel Time To Work Variables - Tract

    • hub.scag.ca.gov
    • hub.arcgis.com
    Updated Feb 3, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    rdpgisadmin (2022). ACS Travel Time To Work Variables - Tract [Dataset]. https://hub.scag.ca.gov/items/3341ca03b6044fc6bc474765f6f1eac7
    Explore at:
    Dataset updated
    Feb 3, 2022
    Dataset authored and provided by
    rdpgisadmin
    Area covered
    Description

    This layer shows workers' place of residence by commute length. This is shown by tract, county, and state boundaries. This service is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. This layer is symbolized to show the percentage of commuters whose commute is 90 minutes or more. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2015-2019ACS Table(s): B08303Data downloaded from: Census Bureau's API for American Community Survey Date of API call: December 10, 2020National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. For more information about ACS layers, visit the FAQ. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Click here to learn more about ACS data releases.Boundaries come from the US Census TIGER geodatabases. Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines clipped for cartographic purposes. For census tracts, the water cutouts are derived from a subset of the 2010 AWATER (Area Water) boundaries offered by TIGER. For state and county boundaries, the water and coastlines are derived from the coastlines of the 500k TIGER Cartographic Boundary Shapefiles. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters). The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small.

  13. USEPA Environmental Quality Index (EQI) by Census Tract for the United...

    • catalog.data.gov
    Updated Jul 4, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Environmental Protection Agency, Research Triangle Park (Publisher) (2025). USEPA Environmental Quality Index (EQI) by Census Tract for the United States, 2006-2010 [Dataset]. https://catalog.data.gov/dataset/usepa-environmental-quality-index-eqi-by-census-tract-for-the-united-states-2006-2010
    Explore at:
    Dataset updated
    Jul 4, 2025
    Dataset provided by
    United States Environmental Protection Agencyhttp://www.epa.gov/
    Area covered
    United States
    Description

    The US Environmental Protection Agency's (EPA) Center for Public Health and Environmental Assessment (CPHEA) Public Health & Environmental Systems Division (PHESD) is currently engaged in research aimed at developing a measure that estimates overall environmental quality at the census tract level for the United States. This work is being conducted as an effort to learn more about how various environmental factors simultaneously contribute to health disparities in low-income and minority populations, and to better estimate the total environmental and social context to which humans are exposed. This work contains the finalized Environmental Quality Index (EQI), as a single index combining variables from each of the associated domains for the 2006-2010 census tract level EQI: air, water, land, built environment, and sociodemographic environment as well as EQI for census tract stratified by Rural Urban Continuum Code (RUCA) as determined by a reclassification based off urbancity and commuting flow initially proposed in Urban-Rural Residence and the Occurrence of Cleft Lip and Cleft Palate in Texas, 1999-2003 published in Annals of Epidemiology (Messer, et al, 2010, https://pubmed.ncbi.nlm.nih.gov/20006274/); RUCA initially was 10 classifications made by USDA Economic Research Service composed of: RUCA 1 Metropolitan Core Area, RUCA 2 Metropolitan High Commuting Area, RUCA 3 Metropolitan Low Commuting Area, RUCA 4 Micropolitan Area Core, RUCA 5, Micropolitan High Commuting, RUCA 6 Micropolitan Low Commuting Area, RUCA 7 Small Town Core, RUCA 8 Small Town High Commuting Area, RUCA 9 Small Town Low Commuting, RUCA 10 Rural Areas (https://www.ers.usda.gov/data-products/rural-urban-commuting-area-codes/). RUCA 1 remained it's own class, RUCA 2 remained it's own class, RUCA 3, 4, 5, 6 were combined and conveyed as RUCA 3, RUCA 7, 8, 9 were combined and now conveyed as RUCA 4 and RUCA 10 became RUCA 5 in the new classification. Within the new classification RUCA 1 is Urban Core, RUCA 2 is Suburban Area, RUCA 3 is Micropolitan Area, RUCA 4 is Small Town Area and RUCA 5 is Rural Area (Messer, et al, 2010). This dataset contains the finalized variables chosen to represent the overall environment within in a single Principal Component Analysis (PCA); data sources are: EPA's CMAQ: The Community Multiscale Air Quality Modeling System (http://www.https://www.epa.gov/cmaq/), the National-Scale Air Toxics Assessment (http://www.epa.gov/nata/), the U.S. Geological Survey Estimates of Water Use in the U.S. for 2010 (https://water.usgs.gov/watuse/data/2010/), the U.S. Drought Monitor Data (http://droughtmonitor.unl.edu/), “Estimated Annual Agricultural Pesticide Use for Counties of the Conterminous United States” data for pesticide use (https://www.usgs.gov/data/estimated-annual-agricultural-pesticide-use-counties-conterminous-united-states-2013-17-ver-20), CropScape (https://nassgeodata.gmu.edu/CropScape), EPA Facility Registry Service (https://www.epa.gov/frs/geospatial-data-download-service), Dun and Bradstreet North American Industry Classification System (NAICS) codes(http://www.dnb.com); National Land Cover Database (NCDL) (https://www.mrlc.gov/), United States Census (http://www2.census.gov) and ESRI Crime Report (https://doc.arcgis.com/en/esri-demographics/data/crime-indexes.htm).

  14. American Community Survey (ACS)

    • console.cloud.google.com
    Updated Jul 16, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    https://console.cloud.google.com/marketplace/browse?filter=partner:United%20States%20Census%20Bureau&inv=1&invt=Abyneg (2018). American Community Survey (ACS) [Dataset]. https://console.cloud.google.com/marketplace/product/united-states-census-bureau/acs
    Explore at:
    Dataset updated
    Jul 16, 2018
    Dataset provided by
    Googlehttp://google.com/
    Description

    The American Community Survey (ACS) is an ongoing survey that provides vital information on a yearly basis about our nation and its people by contacting over 3.5 million households across the country. The resulting data provides incredibly detailed demographic information across the US aggregated at various geographic levels which helps determine how more than $675 billion in federal and state funding are distributed each year. Businesses use ACS data to inform strategic decision-making. ACS data can be used as a component of market research, provide information about concentrations of potential employees with a specific education or occupation, and which communities could be good places to build offices or facilities. For example, someone scouting a new location for an assisted-living center might look for an area with a large proportion of seniors and a large proportion of people employed in nursing occupations. Through the ACS, we know more about jobs and occupations, educational attainment, veterans, whether people own or rent their homes, and other topics. Public officials, planners, and entrepreneurs use this information to assess the past and plan the future. For more information, see the Census Bureau's ACS Information Guide . This public dataset is hosted in Google BigQuery as part of the Google Cloud Public Datasets Program , with Carto providing cleaning and onboarding support. It is included in BigQuery's 1TB/mo of free tier processing. This means that each user receives 1TB of free BigQuery processing every month, which can be used to run queries on this public dataset. Watch this short video to learn how to get started quickly using BigQuery to access public datasets. What is BigQuery .

  15. ACS 5YR Socioeconomic Estimate Data by State

    • hudgis-hud.opendata.arcgis.com
    • opendata.atlantaregional.com
    • +2more
    Updated Aug 21, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Housing and Urban Development (2023). ACS 5YR Socioeconomic Estimate Data by State [Dataset]. https://hudgis-hud.opendata.arcgis.com/datasets/acs-5yr-socioeconomic-estimate-data-by-state
    Explore at:
    Dataset updated
    Aug 21, 2023
    Dataset provided by
    United States Department of Housing and Urban Developmenthttp://www.hud.gov/
    Authors
    Department of Housing and Urban Development
    Area covered
    Description

    The American Community Survey (ACS) 5 Year 2016-2020 socioeconomic estimate data is a subset of information derived from the following census tables:B08013 - Aggregate Travel Time To Work Of Workers By Sex;B08303 - Travel Time To Work;B17019 - Poverty Status In The Past 12 Months Of Families By Household Type By Tenure;B17021 - Poverty Status Of Individuals In The Past 12 Months By Living Arrangement;B19001 - Household Income In The Past 12 Months;B19013 - Median Household Income In The Past 12 Months;B19025 - Aggregate Household Income In The Past 12 Months;B19113 - Median Family Income In The Past 12 Months;B19202 - Median Non-family Household Income In The Past 12 Months;B23001 - Sex By Age By Employment Status For The Population 16 Years And Over;B25014 - Tenure By Occupants Per Room;B25026 - Total Population in Occupied Housing Units by Tenure by year Householder Moved into Unit;B25106 - Tenure By Housing Costs As A Percentage Of Household Income In The Past 12 Months;C24010 - Sex By Occupation For The Civilian Employed Population 16 Years And Over;B20004 - Median Earnings In the Past 12 Months (In 2015 Inflation-Adjusted Dollars) by Sex by Educational Attainment for the Population 25 Years and Over;B23006 - Educational Attainment by Employment Status for the Population 25 to 64 Years, and;B24021 - Occupation By Median Earnings In The Past 12 Months (In 2015 Inflation-Adjusted Dollars) For The Full-Time, Year-Round Civilian Employed Population 16 Years And Over.

    To learn more about the American Community Survey (ACS), and associated datasets visit: https://www.census.gov/programs-surveys/acs, for questions about the spatial attribution of this dataset, please reach out to us at GISHelpdesk@hud.gov. Data Dictionary: DD_ACS 5-Year Socioeconomic Estimate Data by StateDate of Coverage: 2016-2020

  16. a

    Justice40 Disadvantaged or Partially Disadvantaged Tracts by Race/Ethnicity...

    • regionaldatahub-brag.hub.arcgis.com
    • atlas-connecteddmv.hub.arcgis.com
    Updated Jun 10, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ArcGIS Living Atlas Team (2022). Justice40 Disadvantaged or Partially Disadvantaged Tracts by Race/Ethnicity (Archive) [Dataset]. https://regionaldatahub-brag.hub.arcgis.com/items/945b3f2e39a64569ab2d0700a527361b
    Explore at:
    Dataset updated
    Jun 10, 2022
    Dataset authored and provided by
    ArcGIS Living Atlas Team
    Area covered
    Description

    This map uses an archive of Version 1.0 of the CEJST data as a fully functional GIS layer. See an archive of the latest version of the CEJST tool using Version 2.0 of the data released in December 2024 here.This map shows Census tracts throughout the US based on if they are considered disadvantaged or partially disadvantaged according to Justice40 Initiative criteria. This is overlaid with the most recent American Community Survey (ACS) figures from the U.S. Census Bureau to communicate the predominant race that lives within these disadvantaged or partially disadvantaged tracts. Predominance helps us understand the group of population which has the largest count within an area. Colors are more transparent if the predominant race has a similar count to another race/ethnicity group. The colors on the map help us better understand the predominant race or ethnicity:Hispanic or LatinoWhite Alone, not HispanicBlack or African American Alone, not HispanicAsian Alone, not HispanicAmerican Indian and Alaska Native Alone, not HispanicTwo or more races, not HispanicNative Hawaiian and Other Pacific Islander, not HispanicSome other race, not HispanicSearch for any region, city, or neighborhood throughout the US, DC, and Puerto Rico to learn more about the population in the disadvantaged tracts. Click on any tract to learn more. Zoom to your area, filter to your county or state, and save this web map focused on your area to share the pattern with others. You can also use this web map within an ArcGIS app such as a dashboard, instant app, or story. This map uses these hosted feature layers containing the most recent American Community Survey data. These layers are part of the ArcGIS Living Atlas, and are updated every year when the American Community Survey releases new estimates, so values in the map always reflect the newest data available.Note: Justice40 tracts use 2010-based boundaries, while the most recent ACS figures are offered on 2020-based boundaries. When you click on an area, there will be multiple pop-ups returned due to the differences in these boundaries. From Justice40 data source:"Census tract geographical boundaries are determined by the U.S. Census Bureau once every ten years. This tool utilizes the census tract boundaries from 2010 because they match the datasets used in the tool. The U.S. Census Bureau will update these tract boundaries in 2020.Under the current formula, a census tract will be identified as disadvantaged in one or more categories of criteria:IF the tract is above the threshold for one or more environmental or climate indicators AND the tract is above the threshold for the socioeconomic indicatorsCommunities are identified as disadvantaged by the current version of the tool for the purposes of the Justice40 Initiative if they are located in census tracts that are at or above the combined thresholds in one or more of eight categories of criteria.The goal of the Justice40 Initiative is to provide 40 percent of the overall benefits of certain Federal investments in [eight] key areas to disadvantaged communities. These [eight] key areas are: climate change, clean energy and energy efficiency, clean transit, affordable and sustainable housing, training and workforce development, the remediation and reduction of legacy pollution, [health burdens] and the development of critical clean water infrastructure." Source: Climate and Economic Justice Screening toolPurpose"Sec. 219. Policy. To secure an equitable economic future, the United States must ensure that environmental and economic justice are key considerations in how we govern. That means investing and building a clean energy economy that creates well‑paying union jobs, turning disadvantaged communities — historically marginalized and overburdened — into healthy, thriving communities, and undertaking robust actions to mitigate climate change while preparing for the impacts of climate change across rural, urban, and Tribal areas. Agencies shall make achieving environmental justice part of their missions by developing programs, policies, and activities to address the disproportionately high and adverse human health, environmental, climate-related and other cumulative impacts on disadvantaged communities, as well as the accompanying economic challenges of such impacts. It is therefore the policy of my Administration to secure environmental justice and spur economic opportunity for disadvantaged communities that have been historically marginalized and overburdened by pollution and underinvestment in housing, transportation, water and wastewater infrastructure, and health care." Source: Executive Order on Tackling the Climate Crisis at Home and AbroadUse of this Data"The pilot identifies 21 priority programs to immediately begin enhancing benefits for disadvantaged communities. These priority programs will provide a blueprint for other agencies to help inform their work to implement the Justice40 Initiative across government." Source: The Path to Achieving Justice 40

  17. ACS Youth School and Work Activity Variables - Centroids-State

    • anrgeodata.vermont.gov
    Updated Nov 20, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri JSAPI (2018). ACS Youth School and Work Activity Variables - Centroids-State [Dataset]. https://anrgeodata.vermont.gov/datasets/652b78a18f794cb5840dd16a0697c83d
    Explore at:
    Dataset updated
    Nov 20, 2018
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Esri JSAPI
    Area covered
    Description

    This layer shows youth (age 16-19) school enrollment and employment status. This is shown by tract, county, and state centroids. This service is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. Estimates here for 'disconnected youth' differ from estimates of 'idle youth' on Census Bureau's website because idle youth includes those unemployed (actively looking for work). This layer is symbolized by the count of total youth and the percentage of youth who were disconnected. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2012-2016ACS Table(s): B14005 Data downloaded from: Census Bureau's API for American Community Survey Date of API call: October 16, 2018National Figures: American Fact FinderThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:This dataset is updated automatically when the most current vintage of ACS data is released each year. The service contains the ACS data as of the current vintage listed. Tabular data is updated annually with the Census Bureau's release schedule. This may alter data values, fields, and boundaries. Click here to learn more about ACS data releases.Boundaries come from the US Census TIGER geodatabases. Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines clipped for cartographic purposes. For census tracts, the water cutouts are derived from a subset of the 2010 AWATER (Area Water) boundaries offered by TIGER. For state and county boundaries, the water and coastlines are derived from the coastlines of the 500k TIGER Cartographic Boundary Shapefiles. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters). The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -555555...) have been set to null. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small. NOTE: any calculated percentages or counts that contain estimates that have null margins of error yield null margins of error for the calculated fields.

  18. Data from: Public Housing Authorities

    • data.lojic.org
    • hudgis-hud.opendata.arcgis.com
    • +1more
    Updated Nov 12, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Housing and Urban Development (2024). Public Housing Authorities [Dataset]. https://data.lojic.org/maps/HUD::public-housing-authorities-1
    Explore at:
    Dataset updated
    Nov 12, 2024
    Dataset provided by
    United States Department of Housing and Urban Developmenthttp://www.hud.gov/
    Authors
    Department of Housing and Urban Development
    Area covered
    Description

    Public Housing was established to provide decent and safe rental housing for eligible low-income families, the elderly, and persons with disabilities. Public housing comes in all sizes and types, from scattered single family houses to high-rise apartments for elderly families. There are approximately 1.2 million households living in public housing units, managed by over 3,300 housing agencies (HAs). HUD administers Federal aid to local housing agencies (HAs) that manage the housing for low-income residents at rents they can afford. HUD furnishes technical and professional assistance in planning, developing and managing these developments. Location data for HUD-related properties and facilities are derived from HUD's enterprise geocoding service. While not all addresses are able to be geocoded and mapped to 100% accuracy, we are continuously working to improve address data quality and enhance coverage. Please consider this issue when using any datasets provided by HUD. When using this data, take note of the field titled “LVL2KX” which indicates the overall accuracy of the geocoded address using the following return codes: ‘R’ - Interpolated rooftop (high degree of accuracy, symbolized as green) ‘4’ - ZIP+4 centroid (high degree of accuracy, symbolized as green) ‘B’ - Block group centroid (medium degree of accuracy, symbolized as yellow) ‘T’ - Census tract centroid (low degree of accuracy, symbolized as red) ‘2’ - ZIP+2 centroid (low degree of accuracy, symbolized as red) ‘Z’ - ZIP5 centroid (low degree of accuracy, symbolized as red) ‘5’ - ZIP5 centroid (same as above, low degree of accuracy, symbolized as red) Null - Could not be geocoded (does not appear on the map) For the purposes of displaying the location of an address on a map only use addresses and their associated lat/long coordinates where the LVL2KX field is coded ‘R’ or ‘4’. These codes ensure that the address is displayed on the correct street segment and in the correct census block. The remaining LVL2KX codes provide a cascading indication of the most granular level geography for which an address can be confirmed. For example, if an address cannot be accurately interpolated to a rooftop (‘R’), or ZIP+4 centroid (‘4’), then the address will be mapped to the centroid of the next nearest confirmed geography: block group, tract, and so on. When performing any point-in polygon analysis it is important to note that points mapped to the centroids of larger geographies will be less likely to map accurately to the smaller geographies of the same area. For instance, a point coded as ‘5’ in the correct ZIP Code will be less likely to map to the correct block group or census tract for that address. To learn more about Public Housing visit: https://www.hud.gov/program_offices/public_indian_housing/programs/ph/, for questions about the spatial attribution of this dataset, please reach out to us at GISHelpdesk@hud.gov. Data Dictionary: DD_Public Housing Authorities Date Updated: Q1 2025

  19. Local Employment Dynamics (LED) for COC Grantee Areas

    • hudgis-hud.opendata.arcgis.com
    • data.lojic.org
    Updated Jul 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Housing and Urban Development (2023). Local Employment Dynamics (LED) for COC Grantee Areas [Dataset]. https://hudgis-hud.opendata.arcgis.com/maps/HUD::local-employment-dynamics-led-for-coc-grantee-areas
    Explore at:
    Dataset updated
    Jul 31, 2023
    Dataset provided by
    United States Department of Housing and Urban Developmenthttp://www.hud.gov/
    Authors
    Department of Housing and Urban Development
    Area covered
    Description

    The Local Employment Dynamics (LED) Partnership is a voluntary federal-state enterprise created for the purpose of merging employee, and employer data to provide a set of enhanced labor market statistics known collectively as Quarterly Workforce Indicators (QWI). The QWI are a set of economic indicators including employment, job creation, earnings, and other measures of employment flows. For the purposes of this dataset, LED data for 2018 is aggregated to Census Summary Level 070 (State + County + County Subdivision + Place/Remainder), and joined with the Continuum of Care Program grantee areas spatial dataset for FY2017. The Continuum of Care (CoC) Homeless Assistance Programs administered by HUD award funds competitively and require the development of a Continuum of Care system in the community where assistance is being sought. A continuum of care system is designed to address the critical problem of homelessness through a coordinated community-based process of identifying needs and building a system to address those needs. The approach is predicated on the understanding that homelessness is not caused merely by a lack of shelter, but involves a variety of underlying, unmet needs - physical, economic, and social. Funds are granted based on the competition following the Notice of Funding Availability (NOFA). Please note that this version of the data does not include Community Planning and Development (CPD) entitlement grantees. LED data for CPD entitlement areas can be obtained from the LED for CDBG Grantee Areas feature service. To learn more about the Local Employment Dynamics (LED) Partnership visit: https://lehd.ces.census.gov/, for questions about the spatial attribution of this dataset, please reach out to us at GISHelpdesk@hud.gov. Data Dictionary: DD_LED for CoC Grantee Areas

    Date of Coverage: CoC-2021/LED-2018

  20. d

    Economic Characteristics of DC Census Tracts

    • opdatahub.dc.gov
    Updated Jul 13, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Washington, DC (2021). Economic Characteristics of DC Census Tracts [Dataset]. https://opdatahub.dc.gov/items/a2f2d27e094e4aba97fa3375c6fb027c
    Explore at:
    Dataset updated
    Jul 13, 2021
    Dataset authored and provided by
    City of Washington, DC
    Area covered
    Description

    Employment, Commuting, Occupation, Income, Health Insurance, Poverty, and more. This service is updated annually with American Community Survey (ACS) 5-year data. Contact: District of Columbia, Office of Planning. Email: planning@dc.govGeography: Census TractsCurrent Vintage: 2019-2023ACS Table(s): DP03Data downloaded from: Census Bureau's API for American Community Survey Date of API call: January 2, 2025National Figures: data.census.gov The United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. Please cite the Census and ACS when using this data. Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables. Data Processing Notes:This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Click here to learn more about ACS data releases.Boundaries come from the US Census TIGER geodatabases. Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines clipped for cartographic purposes. For census tracts, the water cutouts are derived from a subset of the 2010 AWATER (Area Water) boundaries offered by TIGER. For state and county boundaries, the water and coastlines are derived from the coastlines of the 500k TIGER Cartographic Boundary Shapefiles. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters). Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Data processed using R statistical package and ArcGIS Desktop.Margin of Error was not included in this layer but is available from the Census Bureau. Contact the Office of Planning for more information about obtaining Margin of Error values.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Esri (2018). ACS Transportation to Work Variables - Boundaries [Dataset]. https://covid-hub.gio.georgia.gov/maps/222007e8651f4907bf29b9359a2f3252
Organization logo

ACS Transportation to Work Variables - Boundaries

Explore at:
Dataset updated
Oct 22, 2018
Dataset authored and provided by
Esrihttp://esri.com/
Area covered
Description

This layer shows workers' place of residence by mode of commute. This is shown by tract, county, and state boundaries. This service is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. This layer is symbolized by the percentage of workers who drove alone. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2019-2023ACS Table(s): B08301 (Not all lines of this ACS table are available in this feature layer.)Data downloaded from: Census Bureau's API for American Community Survey Date of API call: December 12, 2024National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. For more information about ACS layers, visit the FAQ. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Click here to learn more about ACS data releases.Boundaries come from the US Census TIGER geodatabases, specifically, the National Sub-State Geography Database (named tlgdb_(year)_a_us_substategeo.gdb). Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For census tracts, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract level boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2023 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters).The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small.

Search
Clear search
Close search
Google apps
Main menu