NYC 1foot Digital Elevation Model: A bare-earth, hydro-flattened, digital-elevation surface model derived from 2010 Light Detection and Ranging (LiDAR) data. Surface models are raster representations derived by interpolating the LiDAR point data to produce a seamless gridded elevation data set. A Digital Elevation Model (DEM) is a surface model generated from the LiDAR returns that correspond to the ground with all buildings, trees and other above ground features removed. The cell values represent the elevation of the ground relative to sea level. The DEM was generated by interpolating the LiDAR ground points to create a 1 foot resolution seamless surface. Cell values correspond to the ground elevation value (feet) above sea level. A proprietary approach to surface model generation was developed that reduced spurious elevation values in areas where there were no LiDAR returns, primarily beneath buildings and over water. This was combined with a detailed manual QA/QC process, with emphasis on accurate representation of docks and bare-earth within 2000ft of the water bodies surrounding each of the five boroughs.
Please see the following link for additional documentation- https://github.com/CityOfNewYork/nyc-geo-metadata/blob/master/Metadata/Metadata_DigitalElevationModel.md
Downloadable contour zips by county/municipality. Click on the area you want to download, and use the pop-up window click to download contour data. The DOWNLOAD (DIRECT_DL) field contains this url to download the associated zip file that contains a GDB and layer file More information for existing Contour data can be found at https://gis.ny.gov/nys-contours. Last updated 4/29/2025.Please contact NYS ITS Geospatial Services at nysgis@its.ny.gov if you have any questions.
This map features a topographical map of the City and County of New York, and the adjacent Country from 1836. The map is overlayed on a contemporary topographic map of New York City and the surrounding area for comparison purposes.More information on this map …
Geospatial data about Suffolk County, New York Contours - 10 Foot. Export to CAD, GIS, PDF, CSV and access via API.
This list contains information on maps maintained by the topographical bureau
This map features a topographical map of the City and County of New York, and the adjacent Country from 1836.
Historic LIDAR Projects within New York State. New York State has access to and distributes many of the older LIDAR collections within New York State. These historic projects have been fully replaced with more recent LIDAR projects. More information for existing LIDAR collections can be found at https://gis.ny.gov/lidar. Last updated 8/2/24.Feature and map services available:https://elevation.its.ny.gov/arcgis/rest/services/indexes/Historic_LiDAR_Collections/FeatureServerhttps://elevation.its.ny.gov/arcgis/rest/services/indexes/Historic_LiDAR_Collections/MapServerFor Latest Collections, see:https://elevation.its.ny.gov/arcgis/rest/services/indexes/Latest_LiDAR_Collections/FeatureServerhttps://elevation.its.ny.gov/arcgis/rest/services/indexes/Latest_LiDAR_Collections/MapServerPlease contact nysgis@its.ny.gov if you have any questions.
Important Note: This item is in mature support as of June 2021 and is no longer updated.
This map presents land cover and detailed topographic maps for the United States. It uses the USA Topographic Map service. The map includes the National Park Service (NPS) Natural Earth physical map at 1.24km per pixel for the world at small scales, i-cubed eTOPO 1:250,000-scale maps for the contiguous United States at medium scales, and National Geographic TOPO! 1:100,000 and 1:24,000-scale maps (1:250,000 and 1:63,000 in Alaska) for the United States at large scales. The TOPO! maps are seamless, scanned images of United States Geological Survey (USGS) paper topographic maps.
The maps provide a very useful basemap for a variety of applications, particularly in rural areas where the topographic maps provide unique detail and features from other basemaps.
To add this map service into a desktop application directly, go to the entry for the USA Topo Maps map service.
Tip: Here are some famous locations as they appear in this web map, accessed by including their location in the URL that launches the map:
The Statue of Liberty, New York
Using a combination of public and proprietary historical construction test borings, recent exploration drilling, USGS observation wells, outcrops, and seismic measurements, a series of geospatial overlays for bedrock elevation and overburden thickness were created for the Five Boroughs of New York City, New York. Rasters were interpolated from a point elevation data set and refined using published and interpretive bedrock contours, and interpreted glacial valleys and faults. Contours for bedrock elevation were generated at 100-ft contour intervals and smoothed. This data release includes shapefiles containing the input point elevation features and output contours, and rasters of interpolated bedrock elevation and overburden thickness surfaces.
Note: The files can be downloaded from the Attachments section below. Please note that the total size is 180GB, so the download may take some time depending on your system’s capabilities and configuration.
Topographic and bathymetric LiDAR data was collected for New York City in 2017. Topographic data was collected for the entire city, plus an additional 100 meter buffer, using a Leica ALS80 sensor equipped to capture at least 8 pulse/m2. Dates of capture for topographic data were between 05/03/2017 and 05/17/2017 during 50% leaf-off conditions. Bathymetric data was collected in select areas of the city (where bathymetric data capture was expected) using a Riegl VQ-880-G sensor equipped to capture approximately 15 pulses/m2 (1.5 Secchi depths). Dates of capture for bathymetric were between 07/04/2017 - 07/26/2017. LiDAR data was tidally-coordinated and captured between mean lower low water (+30% of mean tide) ranges.
The horizontal datum for all datasets is NAD83, the vertical datum is NAVD88, Geoid 12B, and the data is projected in New York State Plane - Long Island. Units are in US Survey Feet. To learn more about these datasets, visit the interactive “Understanding the 2017 New York City LiDAR Capture” Story Map -- https://maps.nyc.gov/lidar/2017/ Please see the following link for additional documentation on this dataset -- https://github.com/CityOfNewYork/nyc-geo-metadata/blob/master/Metadata/Metadata_LiDAR_Summary.md
Link to the ScienceBase Item Summary page for the item described by this metadata record. Service Protocol: Link to the ScienceBase Item Summary page for the item described by this metadata record. Application Profile: Web Browser. Link Function: information
The data contained in these files are hydrographic and topographic data collected by the SHOALS-1000T system along the Delaware, Maryland, New Jersey, New York, North Carolina and Virginia coastline as part of the National Coastal Mapping Program. The lidar data for DE, MD, NJ and VA was collected from 20050824-20050908. The lidar data for NY and NC was collected from 20051001-20051126.
Origin...
This map features a topographical map of the City and County of New York, and the adjacent Country from 1836. The map is overlayed on a contemporary topographic map of New York City and the surrounding area for comparison purposes.More information on this map …
Latest LIDAR Projects required for statewide within New York State. More information for existing LIDAR collections can be found at https://gis.ny.gov/lidar. Last updated 8/2/24.Feature and map services available:https://elevation.its.ny.gov/arcgis/rest/services/indexes/Latest_LiDAR_Collections/FeatureServerhttps://elevation.its.ny.gov/arcgis/rest/services/indexes/Latest_LiDAR_Collections/MapServerFor Historic Collections, see:https://elevation.its.ny.gov/arcgis/rest/services/indexes/Historic_LiDAR_Collections/FeatureServerhttps://elevation.its.ny.gov/arcgis/rest/services/indexes/Historic_LiDAR_Collections/MapServerPlease contact nysgis@its.ny.gov if you have any questions.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
LiDAR (Light Detection and Ranging) is a remote sensing technology, i.e. the technology is not in direct contact with what is being measured. From satellite, aeroplane or helicopter, a LiDAR system sends a light pulse to the ground. This pulse hits the ground and returns back to a sensor on the system. The time is recorded to measure how long it takes for this light to return. Knowing this time measurement scientists are able to create topography maps.LiDAR data are collected as points (X,Y,Z (x & y coordinates) and z (height)). The data is then converted into gridded (GeoTIFF) data to create a Digital Terrain Model and Digital Surface Model of the earth. This LiDAR data was collected on 25th March 2015.An ordnance datum (OD) is a vertical datum used as the basis for deriving heights on maps. This data is referenced to the Malin Head Vertical Datum which is the mean sea level of the tide gauge at Malin Head, County Donegal. It was adopted as the national datum in 1970 from readings taken between 1960 and 1969 and all heights on national grid maps are measured above this datum. Digital Terrain Models (DTM) are bare earth models (no trees or buildings) of the Earth’s surface.Digital Surface Models (DSM) are earth models in its current state. For example, a DSM includes elevations from buildings, tree canopy, electrical power lines and other features. Hillshading is a method which gives a 3D appearance to the terrain. It shows the shape of hills and mountains using shading (levels of grey) on a map, by the use of graded shadows that would be cast by high ground if light was shining from a chosen direction.This data shows the hillshade of the DSM.This data was collected by New York University. All data formats are provided as GeoTIFF rasters. Raster data is another name for gridded data. Raster data stores information in pixels (grid cells). Each raster grid makes up a matrix of cells (or pixels) organised into rows and columns. NYU data has a grid cell size of 1meter by 1meter. This means that each cell (pixel) represents an area of 1meter squared.
DEM Bare Earth Tile Indexes for each LiDAR project. The “DIRECT_DL” field contains a hyperlink to download the associated IMG files. More information for existing DEM collections can be found at https://gis.ny.gov/nys-dem. Service last updated 7/26/24Feature and map services available:https://elevation.its.ny.gov/arcgis/rest/services/Dem_Indexes/FeatureServerhttps://elevation.its.ny.gov/arcgis/rest/services/Dem_Indexes/MapServer
Please contact NYS ITS Geospatial Services at nysgis@its.ny.gov if you have any questions.
The New York State Departments of Environmental Conservation and Health are concerned about groundwater contamination in the carbonate-bedrock aquifers with the potential to host karst features throughout New York State, especially relating to the unintended introduction of chemical or agricultural contamination into these aquifers. USGS Scientific Investigations Report, SIR 2020-5030 (Kappel and others, 2020), provides local and State regulators and the public the information needed to determine the extent of carbonate bedrock in New York, the associated environmental impacts of karst, and the means to protect New York’s karst water resources. The four geodatabases presented in this data release were compiled in support of SIR 2020-5030. Closed depression-focused recharge is one potential pathway for aquifer contamination. A closed depression is any enclosed area that has no surface drainage outlet and from which water escapes only by evaporation or subsurface drainage. On a topographic map a closed depression is typically represented by a hachured contour line forming a closed loop. The map representation applies to closed depressions of both natural and anthropogenic origin. Closed depressions formed by natural processes need not be karst in origin to represent a source of focused-recharge. Three of the four geodatabases in this data release form a comprehensive inventory of all closed depressions, natural and anthropogenic, within the State which are proximal to carbonate, evaporite, or marble units and that have the potential for developing karst features. The fourth geodatabase in this data release contains a digital representation of the study area boundary adopted for the GIS analyses. The three closed depression inventory geodatabases were compiled in the following order: 1) Digital Contour Database of Closed Depressions, 2) Digital Raster Graphic Database of Closed Depressions, and 3) LiDAR Database of Closed Depressions. There is no duplication of features among these three geodatabases. Additionally, the closed depressions inventoried for this data release, were compared with closed depressions mapped in other published geospatial data to eliminate duplication with those datasets. The datasets referenced were the New York State Department of Environmental Conservation Mining Database and the National Hydrography Dataset waterbody features. The Digital Contour Database of Closed Depressions contains features derived from data associated with U.S. Geological Survey Scientific Investigations Report 2012–5167. The source data is a statewide contour dataset that was generated from the National Elevation Dataset (NED) and the National Hydrography Dataset (NHD) in a fully automated process. Closed depressions included in the Digital Raster Graphic Database of Closed Depressions were digitized from an assemblage of approximately 650 Digital Raster Graphic (DRG) images of scanned U.S. Geological Survey 1:24,000-scale topographic maps. A DRG is a scanned image of a U.S. Geological Survey topographic map that can be added as a background layer in a GIS. The LiDAR Database of Closed Depressions contains features generated from high-resolution LiDAR-derived bare-earth DEMs obtained from the New York State Office of Information Technology Services. At the time of analysis (2017) LiDAR data existed for approximately 65 percent of the study area. The DEMs were processed to identify depressions with an area of at least 4,047 square meters (1-acre) and a depth of at least 1-meter. These threshold values are greater than what is typically used for lidar-based sinkhole identification studies. For the purpose of this study, the use of lidar was primarily intended to identify closed depressions that were not represented in the Digital Raster Graphic Database, in the same manner that the DRG images were used to identify closed depressions not represented in the Digital Contour Database. For that reason, the threshold values were based on random sampling of DRG-derived closed depressions within the study area and represent the approximate mean geometric characteristics of the closed depressions sampled. For ongoing and planned larger-scale county-based assessments in New York, the thresholds will be reduced to 10- and 30-centimeters depth and 100 square meters.
This DGS consists of bathymetric elevation contour lines at ten foot intervals off the New Jersey shore including parts of Delaware Bay, New York Bay, Raritan Bay and Sandy Hook Bay. The bathymetric-elevation contour lines range from -10 feet to -220 feet and extend 20 miles offshore. "Bathymetry" data represents the water depth relative to sea level. The shapefile was created from xyz ASCII grid data obtained from The National Ocean & Atmospheric Administration (NOAA), National Geophysical Data Center (NGDC), Coastal Relief Model Development Program. The data originated from a vast compilation of hydrographic soundings collected by the National Ocean Service (NOS) and various academic institutions.
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
These data were collected in April of 2000 for the Cayuga County New York Department of Planning and Economic Development. Elevation points were sampled at densities necessary to support the generation of contours that meet or exceed United States National Map Accuracy Standards applicable to the map scales that County tax maps are published and for the following intervals of contour lines to be depicted: four feet for the entire county, two feet for the City of Auburn and adjacent area and two feet for six floodplain areas. This is a bare earth data set. There are points returned from water surfaces. Point spacing is approximately 5 m. Also, there are areas in the county where the data have been regularized, i.e. gridded points.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This data was collected by the Geological Survey Ireland, the Department of Culture, Heritage and the Gaeltacht, the Discovery Programme, the Heritage Council, Transport Infrastructure Ireland, New York University, the Office of Public Works and Westmeath County Council. All data formats are provided as GeoTIFF rasters but are at different resolutions. Data resolution varies depending on survey requirements. Resolutions for each organisation are as follows: GSI – 1m DCHG/DP/HC - 0.13m, 0.14m, 1m NY – 1m TII – 2m OPW – 2m WMCC - 0.25m Both a DTM and DSM are raster data. Raster data is another name for gridded data. Raster data stores information in pixels (grid cells). Each raster grid makes up a matrix of cells (or pixels) organised into rows and columns. The grid cell size varies depending on the organisation that collected it. GSI data has a grid cell size of 1 meter by 1 meter. This means that each cell (pixel) represents an area of 1 meter squared.
NYC 1foot Digital Elevation Model: A bare-earth, hydro-flattened, digital-elevation surface model derived from 2010 Light Detection and Ranging (LiDAR) data. Surface models are raster representations derived by interpolating the LiDAR point data to produce a seamless gridded elevation data set. A Digital Elevation Model (DEM) is a surface model generated from the LiDAR returns that correspond to the ground with all buildings, trees and other above ground features removed. The cell values represent the elevation of the ground relative to sea level. The DEM was generated by interpolating the LiDAR ground points to create a 1 foot resolution seamless surface. Cell values correspond to the ground elevation value (feet) above sea level. A proprietary approach to surface model generation was developed that reduced spurious elevation values in areas where there were no LiDAR returns, primarily beneath buildings and over water. This was combined with a detailed manual QA/QC process, with emphasis on accurate representation of docks and bare-earth within 2000ft of the water bodies surrounding each of the five boroughs.
Please see the following link for additional documentation- https://github.com/CityOfNewYork/nyc-geo-metadata/blob/master/Metadata/Metadata_DigitalElevationModel.md