19 datasets found
  1. N

    New York City Population By Community Districts

    • data.cityofnewyork.us
    • s.cnmilf.com
    • +3more
    application/rdfxml +5
    Updated Feb 20, 2013
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of City Planning (DCP) (2013). New York City Population By Community Districts [Dataset]. https://data.cityofnewyork.us/City-Government/New-York-City-Population-By-Community-Districts/xi7c-iiu2
    Explore at:
    csv, application/rdfxml, xml, tsv, application/rssxml, jsonAvailable download formats
    Dataset updated
    Feb 20, 2013
    Dataset authored and provided by
    Department of City Planning (DCP)
    Area covered
    New York
    Description

    New York City Population By Community Districts

    The data was collected from Census Bureaus' Decennial data dissemination (SF1) for the years 1970, 1980, 1990, 2000 and 2010.

    Compiled by the Population Division – New York City Department of City Planning

  2. f

    Census Block Error Tables, Map Document, Geodatabase, Model Toolkit, and...

    • figshare.com
    zip
    Updated Jan 2, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Steven Rubinyi (2020). Census Block Error Tables, Map Document, Geodatabase, Model Toolkit, and Codes [Dataset]. http://doi.org/10.6084/m9.figshare.11444808.v6
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jan 2, 2020
    Dataset provided by
    figshare
    Authors
    Steven Rubinyi
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Includes the error tables, ESRI ArcMap document, accompanying ESRI Geodatabase, ESRI Toolkit and the Python scripts/codes used in the analysis. The error tables are by Census Block for each tested method as well as the calculated grouped error statistics.Our study area focuses on New York City, which provides a data-rich urban environment with extreme variations in local population density and diverse types of input data in which to construct multiple methods. In this study area we can then compare the efficacy of multiple methodologies, which employ a strong binary mask paired with a density variable directly derived from the binary mask. We test the following methodologies:1. Land areas binary mask2. Building footprint binary mask3. Building footprint binary mask and area density variable4. Building footprints binary mask and volume density variable5. Residential building footprint binary mask6. Residential building footprint binary mask and area density variable7. Residential building footprint binary mask and volume density variable

  3. a

    Mapping The Green Book in New York City

    • gis-day-monmouthnj.hub.arcgis.com
    Updated Apr 16, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    SkyeLam (2021). Mapping The Green Book in New York City [Dataset]. https://gis-day-monmouthnj.hub.arcgis.com/items/c61ac50131594a4fb2ff371e2bce7517
    Explore at:
    Dataset updated
    Apr 16, 2021
    Dataset authored and provided by
    SkyeLam
    Area covered
    New York
    Description

    My ArcGIS StoryMap is centered around The Green Book, an annual travel guide that allowed African Americans to travel safely during the height of the Jim Crow Era in the United States. More specifically, The Green Book listed establishments, such as hotels and restaurants, that would openly accept and welcome black customers into their businesses. As someone who is interested in the intersection between STEM and the humanities, I wanted to utilize The Science of Where to formulate a project that would reveal important historical implications to the public. Therefore, my overarching goal was to map each location in The Green Book in order to draw significant conclusions regarding racial segregation in one of the largest cities in the entire world.Although a more detailed methodology of my work can be found in the project itself, the following is a step by step walkthrough of my overall scientific process:Develop a question in relation to The Green Book to be solved through the completion of the project.Perform background research on The Green Book to gain a more comprehensive understanding of the subject matter.Formulate a hypothesis that answers the proposed question based on the background research.Transcribe names and addresses for each of the hotel listings in The Green Book into a comma separated values file.Transcribe names and addresses for each of the restaurants listings in The Green Book into a comma separated values file.Repeat Steps 4 and 5 for the 1940, 1950, 1960, and 1966 publications of The Green Book. In total, there should be eight unique database files (1940 New York City Hotels, 1940 New York City Restaurants, 1950 New York City Hotels, 1950 New York City Restaurants, 1960 New York City Hotels, 1960 New York City Restaurants, 1966 New York City Hotels, and 1966 New York City Restaurants.)Construct an address locator that references a New York City street base map to plot the information from the databases in Step 6 as points on a map.Manually plot locations that the address locator did not automatically match on the map.Repeat Steps 7 and 8 for all eight database files.Find and match the point locations for each listing in The Green Book with historical photographs.Generate a map tour using the geotagged images for each point from Step 10.Create a point density heat map for the locations in all eight database files.Research and obtain professional and historically accurate racial demographic data for New York City during the same time period as when The Green Book was published.Generate a hot spot map of the black population percentage using the demographic data.Analyze any geospatial trends between the point density heat maps for The Green Book and the black population percentage hot spot maps from the demographic data.Research and obtain professional and historically accurate redlining data for New York City during the same time period as when The Green Book was published.Overlay the points from The Green Book listings from Step 9 on top of the redlining shapefile.Count the number of point features completely located within each redlining zone ranking utilizing the spatial join tool.Plot the data recorded from Step 18 in the form of graphs.Analyze any geospatial trends between the listings for The Green Book and its location relative to the redlining ranking zones.Draw conclusions from the analyses in Steps 15 and 20 to present a justifiable rationale for the results._Student Generated Maps:New York City Pin Location Maphttps://arcg.is/15i4nj1940 New York City Hotels Maphttps://arcg.is/WuXeq1940 New York City Restaurants Maphttps://arcg.is/L4aqq1950 New York City Hotels Maphttps://arcg.is/1CvTGj1950 New York City Restaurants Maphttps://arcg.is/0iSG4r1960 New York City Hotels Maphttps://arcg.is/1DOzeT1960 New York City Restaurants Maphttps://arcg.is/1rWKTj1966 New York City Hotels Maphttps://arcg.is/4PjOK1966 New York City Restaurants Maphttps://arcg.is/1zyDTv11930s Manhattan Black Population Percentage Enumeration District Maphttps://arcg.is/1rKSzz1930s Manhattan Black Population Percentage Hot Spot Map (Same as Previous)https://arcg.is/1rKSzz1940 Hotels Point Density Heat Maphttps://arcg.is/jD1Ki1940 Restaurants Point Density Heat Maphttps://arcg.is/1aKbTS1940 Hotels Redlining Maphttps://arcg.is/8b10y1940 Restaurants Redlining Maphttps://arcg.is/9WrXv1950 Hotels Redlining Maphttps://arcg.is/ruGiP1950 Restaurants Redlining Maphttps://arcg.is/0qzfvC01960 Hotels Redlining Maphttps://arcg.is/1KTHLK01960 Restaurants Redlining Maphttps://arcg.is/0jiu9q1966 Hotels Redlining Maphttps://arcg.is/PXKn41966 Restaurants Redlining Maphttps://arcg.is/uCD05_Bibliography:Image Credits (In Order of Appearance)Header/Thumbnail Image:Student Generated Collage (Created Using Pictures from the Schomburg Center for Research in Black Culture, Manuscripts, Archives and Rare Books Division, The New York Public Library, https://digitalcollections.nypl.org/collections/the-green-book#/?tab=about.)Mob Violence Image:Kelley, Robert W. “A Mob Rocks an out of State Car Passing.” Life Magazine, www.life.com/history/school-integration-clinton-history, The Green Book Example Image:Schomburg Center for Research in Black Culture, Manuscripts, Archives and Rare Books Division, The New York Public Library Digital Collections, https://images.nypl.org/index.php?id=5207583&t=w. 1940s Borough of Manhattan Hotels and Restaurants Photographs:“Manhattan 1940s Tax Photos.” NYC Municipal Archives Collections, The New York City Department of Records & Information Services, https://nycma.lunaimaging.com/luna/servlet/NYCMA~5~5?cic=NYCMA~5~5.Figure 1:Student Generated GraphFigure 2:Student Generated GraphFigure 3:Student Generated GraphGIS DataThe Green Book Database:Student Generated (See Above)The Green Book Listings Maps:Student Generated (See Above)The Green Book Point Density Heat Maps:Student Generated (See Above)The Green Book Road Trip Map:Student GeneratedLION New York City Single Line Street Base Map:https://www1.nyc.gov/site/planning/data-maps/open-data/dwn-lion.page 1930s Manhattan Census Data:https://s4.ad.brown.edu/Projects/UTP2/ncities.htm Mapping Inequality Redlining Data:https://dsl.richmond.edu/panorama/redlining/#loc=12/40.794/-74.072&city=manhattan-ny&text=downloads 1940 The Green Book Document:Schomburg Center for Research in Black Culture, Manuscripts, Archives and Rare Books Division, The New York Public Library. "The Negro Motorist Green-Book: 1940" The New York Public Library Digital Collections, 1940, https://digitalcollections.nypl.org/items/dc858e50-83d3-0132-2266-58d385a7b928. 1950 The Green Book Document:Schomburg Center for Research in Black Culture, Manuscripts, Archives and Rare Books Division, The New York Public Library. "The Negro Motorist Green-Book: 1950" The New York Public Library Digital Collections, 1950, https://digitalcollections.nypl.org/items/283a7180-87c6-0132-13e6-58d385a7b928. 1960 The Green Book Document:Schomburg Center for Research in Black Culture, Manuscripts, Archives and Rare Books Division, The New York Public Library. "The Travelers' Green Book: 1960" The New York Public Library Digital Collections, 1960, https://digitalcollections.nypl.org/items/a7bf74e0-9427-0132-17bf-58d385a7b928. 1966 The Green Book Document:Schomburg Center for Research in Black Culture, Manuscripts, Archives and Rare Books Division, The New York Public Library. "Travelers' Green Book: 1966-67 International Edition" The New York Public Library Digital Collections, 1966, https://digitalcollections.nypl.org/items/27516920-8308-0132-5063-58d385a7bbd0. Hyperlink Credits (In Order of Appearance)Referenced Hyperlink #1: Coen, Ross. “Sundown Towns.” Black Past, 23 Aug. 2020, blackpast.org/african-american-history/sundown-towns.Referenced Hyperlink #2: Foster, Mark S. “In the Face of ‘Jim Crow’: Prosperous Blacks and Vacations, Travel and Outdoor Leisure, 1890-1945.” The Journal of Negro History, vol. 84, no. 2, 1999, pp. 130–149., doi:10.2307/2649043. Referenced Hyperlink #3:Driskell, Jay. “An Atlas of Self-Reliance: The Negro Motorist's Green Book (1937-1964).” National Museum of American History, Smithsonian Institution, 30 July 2015, americanhistory.si.edu/blog/negro-motorists-green-book. Referenced Hyperlink #4:Kahn, Eve M. “The 'Green Book' Legacy, a Beacon for Black Travelers.” The New York Times, The New York Times, 6 Aug. 2015, www.nytimes.com/2015/08/07/arts/design/the-green-book-legacy-a-beacon-for-black-travelers.html. Referenced Hyperlink #5:Giorgis, Hannah. “The Documentary Highlighting the Real 'Green Book'.” The Atlantic, Atlantic Media Company, 25 Feb. 2019, www.theatlantic.com/entertainment/archive/2019/02/real-green-book-preserving-stories-of-jim-crow-era-travel/583294/. Referenced Hyperlink #6:Staples, Brent. “Traveling While Black: The Green Book's Black History.” The New York Times, The New York Times, 25 Jan. 2019, www.nytimes.com/2019/01/25/opinion/green-book-black-travel.html. Referenced Hyperlink #7:Pollak, Michael. “How Official Is Official?” The New York Times, The New York Times, 15 Oct. 2010, www.nytimes.com/2010/10/17/nyregion/17fyi.html. Referenced Hyperlink #8:“New Name: Avenue Becomes a Boulevard.” The New York Times, The New York Times, 22 Oct. 1987, www.nytimes.com/1987/10/22/nyregion/new-name-avenue-becomes-a-boulevard.html. Referenced Hyperlink #9:Norris, Frank. “Racial Dynamism in Los Angeles, 1900–1964.” Southern California Quarterly, vol. 99, no. 3, 2017, pp. 251–289., doi:10.1525/scq.2017.99.3.251. Referenced Hyperlink #10:Shertzer, Allison, et al. Urban Transition Historical GIS Project, 2016, https://s4.ad.brown.edu/Projects/UTP2/ncities.htm. Referenced Hyperlink #11:Mitchell, Bruce. “HOLC ‘Redlining’ Maps: The Persistent Structure Of Segregation And Economic Inequality.” National Community Reinvestment Coalition, 20 Mar. 2018,

  4. n

    New York Cities by Population

    • newyork-demographics.com
    Updated Jun 20, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kristen Carney (2024). New York Cities by Population [Dataset]. https://www.newyork-demographics.com/cities_by_population
    Explore at:
    Dataset updated
    Jun 20, 2024
    Dataset provided by
    Cubit Planning, Inc.
    Authors
    Kristen Carney
    License

    https://www.newyork-demographics.com/terms_and_conditionshttps://www.newyork-demographics.com/terms_and_conditions

    Area covered
    New York
    Description

    A dataset listing New York cities by population for 2024.

  5. Population density in the U.S. 2023, by state

    • statista.com
    Updated Dec 3, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Population density in the U.S. 2023, by state [Dataset]. https://www.statista.com/statistics/183588/population-density-in-the-federal-states-of-the-us/
    Explore at:
    Dataset updated
    Dec 3, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2023
    Area covered
    United States
    Description

    In 2023, Washington, D.C. had the highest population density in the United States, with 11,130.69 people per square mile. As a whole, there were about 94.83 residents per square mile in the U.S., and Alaska was the state with the lowest population density, with 1.29 residents per square mile. The problem of population density Simply put, population density is the population of a country divided by the area of the country. While this can be an interesting measure of how many people live in a country and how large the country is, it does not account for the degree of urbanization, or the share of people who live in urban centers. For example, Russia is the largest country in the world and has a comparatively low population, so its population density is very low. However, much of the country is uninhabited, so cities in Russia are much more densely populated than the rest of the country. Urbanization in the United States While the United States is not very densely populated compared to other countries, its population density has increased significantly over the past few decades. The degree of urbanization has also increased, and well over half of the population lives in urban centers.

  6. N

    2020 Census Tracts

    • data.cityofnewyork.us
    • catalog.data.gov
    Updated May 29, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of City Planning (DCP) (2025). 2020 Census Tracts [Dataset]. https://data.cityofnewyork.us/City-Government/2020-Census-Tracts/63ge-mke6
    Explore at:
    csv, application/rssxml, tsv, kml, kmz, xml, application/rdfxml, application/geo+jsonAvailable download formats
    Dataset updated
    May 29, 2025
    Dataset authored and provided by
    Department of City Planning (DCP)
    Description

    2020 Census Tracts from the US Census for New York City. These boundary files are derived from the US Census Bureau's TIGER data products and have been geographically modified to fit the New York City base map. All previously released versions of this data are available at BYTES of the BIG APPLE- Archive.

  7. a

    North America Population Density 2020

    • hub.arcgis.com
    Updated Apr 19, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CECAtlas (2023). North America Population Density 2020 [Dataset]. https://hub.arcgis.com/maps/1d0db1455e014ffe92ea4265145f045b
    Explore at:
    Dataset updated
    Apr 19, 2023
    Dataset authored and provided by
    CECAtlas
    License
    Area covered
    Description

    The Gridded Population of the World, Version 4 (GPWv4): Population Density, Revision 11 consists of estimates of human population density (number of persons per square kilometer) based on counts consistent with national censuses and population registers. A proportional allocation gridding algorithm, utilizing approximately 13.5 million national and sub-national administrative units, was used to assign population counts to 30 arc-second grid cells. The population density rasters were created by dividing the population count raster for a given target year by the land area raster. The data files were produced as global rasters at 30 arc-second (~1 km at the equator) resolution. To enable faster global processing, and in support of research communities, the 30 arc-second count data were aggregated to 2.5 arc-minute, 15 arc-minute, 30 arc-minute and 1-degree resolutions to produce density rasters at these resolutions.Source: Center for International Earth Science Information Network - CIESIN - Columbia University. 2018. Gridded Population of the World, Version 4 (GPWv4): Population Density, Revision 11. Palisades, New York: NASA Socioeconomic Data and Applications Center (SEDAC). Available at https://doi.org/10.7927/H49C6VHW. (October 2022)Files Download

  8. d

    2019 Cartographic Boundary KML, 2010 Urban Areas (UA) within 2010 County and...

    • catalog.data.gov
    Updated Jan 15, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2021). 2019 Cartographic Boundary KML, 2010 Urban Areas (UA) within 2010 County and Equivalent for New York, 1:500,000 [Dataset]. https://catalog.data.gov/dataset/2019-cartographic-boundary-kml-2010-urban-areas-ua-within-2010-county-and-equivalent-for-new-yo
    Explore at:
    Dataset updated
    Jan 15, 2021
    Area covered
    New York
    Description

    The 2019 cartographic boundary KMLs are simplified representations of selected geographic areas from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). These boundary files are specifically designed for small-scale thematic mapping. When possible, generalization is performed with the intent to maintain the hierarchical relationships among geographies and to maintain the alignment of geographies within a file set for a given year. Geographic areas may not align with the same areas from another year. Some geographies are available as nation-based files while others are available only as state-based files. The records in this file allow users to map the parts of Urban Areas that overlap a particular county. After each decennial census, the Census Bureau delineates urban areas that represent densely developed territory, encompassing residential, commercial, and other nonresidential urban land uses. In general, this territory consists of areas of high population density and urban land use resulting in a representation of the ""urban footprint."" There are two types of urban areas: urbanized areas (UAs) that contain 50,000 or more people and urban clusters (UCs) that contain at least 2,500 people, but fewer than 50,000 people (except in the U.S. Virgin Islands and Guam which each contain urban clusters with populations greater than 50,000). Each urban area is identified by a 5-character numeric census code that may contain leading zeroes. The primary legal divisions of most states are termed counties. In Louisiana, these divisions are known as parishes. In Alaska, which has no counties, the equivalent entities are the organized boroughs, city and boroughs, municipalities, and for the unorganized area, census areas. The latter are delineated cooperatively for statistical purposes by the State of Alaska and the Census Bureau. In four states (Maryland, Missouri, Nevada, and Virginia), there are one or more incorporated places that are independent of any county organization and thus constitute primary divisions of their states. These incorporated places are known as independent cities and are treated as equivalent entities for purposes of data presentation. The District of Columbia and Guam have no primary divisions, and each area is considered an equivalent entity for purposes of data presentation. The Census Bureau treats the following entities as equivalents of counties for purposes of data presentation: Municipios in Puerto Rico, Districts and Islands in American Samoa, Municipalities in the Commonwealth of the Northern Mariana Islands, and Islands in the U.S. Virgin Islands. The entire area of the United States, Puerto Rico, and the Island Areas is covered by counties or equivalent entities. The generalized boundaries for counties and equivalent entities are as of January 1, 2010.

  9. d

    Google Map Data, Google Map Data Scraper, Business location Data- Scrape All...

    • datarade.ai
    Updated May 23, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    APISCRAPY (2022). Google Map Data, Google Map Data Scraper, Business location Data- Scrape All Publicly Available Data From Google Map & Other Platforms [Dataset]. https://datarade.ai/data-products/google-map-data-google-map-data-scraper-business-location-d-apiscrapy
    Explore at:
    .bin, .json, .xml, .csv, .xls, .sql, .txtAvailable download formats
    Dataset updated
    May 23, 2022
    Dataset authored and provided by
    APISCRAPY
    Area covered
    United States of America, Serbia, Albania, Denmark, Switzerland, Gibraltar, Svalbard and Jan Mayen, Bulgaria, Macedonia (the former Yugoslav Republic of), Japan
    Description

    APISCRAPY, your premier provider of Map Data solutions. Map Data encompasses various information related to geographic locations, including Google Map Data, Location Data, Address Data, and Business Location Data. Our advanced Google Map Data Scraper sets us apart by extracting comprehensive and accurate data from Google Maps and other platforms.

    What sets APISCRAPY's Map Data apart are its key benefits:

    1. Accuracy: Our scraping technology ensures the highest level of accuracy, providing reliable data for informed decision-making. We employ advanced algorithms to filter out irrelevant or outdated information, ensuring that you receive only the most relevant and up-to-date data.

    2. Accessibility: With our data readily available through APIs, integration into existing systems is seamless, saving time and resources. Our APIs are easy to use and well-documented, allowing for quick implementation into your workflows. Whether you're a developer building a custom application or a business analyst conducting market research, our APIs provide the flexibility and accessibility you need.

    3. Customization: We understand that every business has unique needs and requirements. That's why we offer tailored solutions to meet specific business needs. Whether you need data for a one-time project or ongoing monitoring, we can customize our services to suit your needs. Our team of experts is always available to provide support and guidance, ensuring that you get the most out of our Map Data solutions.

    Our Map Data solutions cater to various use cases:

    1. B2B Marketing: Gain insights into customer demographics and behavior for targeted advertising and personalized messaging. Identify potential customers based on their geographic location, interests, and purchasing behavior.

    2. Logistics Optimization: Utilize Location Data to optimize delivery routes and improve operational efficiency. Identify the most efficient routes based on factors such as traffic patterns, weather conditions, and delivery deadlines.

    3. Real Estate Development: Identify prime locations for new ventures using Business Location Data for market analysis. Analyze factors such as population density, income levels, and competition to identify opportunities for growth and expansion.

    4. Geospatial Analysis: Leverage Map Data for spatial analysis, urban planning, and environmental monitoring. Identify trends and patterns in geographic data to inform decision-making in areas such as land use planning, resource management, and disaster response.

    5. Retail Expansion: Determine optimal locations for new stores or franchises using Location Data and Address Data. Analyze factors such as foot traffic, proximity to competitors, and demographic characteristics to identify locations with the highest potential for success.

    6. Competitive Analysis: Analyze competitors' business locations and market presence for strategic planning. Identify areas of opportunity and potential threats to your business by analyzing competitors' geographic footprint, market share, and customer demographics.

    Experience the power of APISCRAPY's Map Data solutions today and unlock new opportunities for your business. With our accurate and accessible data, you can make informed decisions, drive growth, and stay ahead of the competition.

    [ Related tags: Map Data, Google Map Data, Google Map Data Scraper, B2B Marketing, Location Data, Map Data, Google Data, Location Data, Address Data, Business location data, map scraping data, Google map data extraction, Transport and Logistic Data, Mobile Location Data, Mobility Data, and IP Address Data, business listings APIs, map data, map datasets, map APIs, poi dataset, GPS, Location Intelligence, Retail Site Selection, Sentiment Analysis, Marketing Data Enrichment, Point of Interest (POI) Mapping]

  10. d

    2015 Cartographic Boundary File, Urban Area-State-County for New York,...

    • catalog.data.gov
    Updated Jan 13, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2021). 2015 Cartographic Boundary File, Urban Area-State-County for New York, 1:500,000 [Dataset]. https://catalog.data.gov/dataset/2015-cartographic-boundary-file-urban-area-state-county-for-new-york-1-500000
    Explore at:
    Dataset updated
    Jan 13, 2021
    Area covered
    New York
    Description

    The 2015 cartographic boundary KMLs are simplified representations of selected geographic areas from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). These boundary files are specifically designed for small-scale thematic mapping. When possible, generalization is performed with the intent to maintain the hierarchical relationships among geographies and to maintain the alignment of geographies within a file set for a given year. Geographic areas may not align with the same areas from another year. Some geographies are available as nation-based files while others are available only as state-based files. The records in this file allow users to map the parts of Urban Areas that overlap a particular county. After each decennial census, the Census Bureau delineates urban areas that represent densely developed territory, encompassing residential, commercial, and other nonresidential urban land uses. In general, this territory consists of areas of high population density and urban land use resulting in a representation of the "urban footprint." There are two types of urban areas: urbanized areas (UAs) that contain 50,000 or more people and urban clusters (UCs) that contain at least 2,500 people, but fewer than 50,000 people (except in the U.S. Virgin Islands and Guam which each contain urban clusters with populations greater than 50,000). Each urban area is identified by a 5-character numeric census code that may contain leading zeroes. The primary legal divisions of most states are termed counties. In Louisiana, these divisions are known as parishes. In Alaska, which has no counties, the equivalent entities are the organized boroughs, city and boroughs, municipalities, and for the unorganized area, census areas. The latter are delineated cooperatively for statistical purposes by the State of Alaska and the Census Bureau. In four states (Maryland, Missouri, Nevada, and Virginia), there are one or more incorporated places that are independent of any county organization and thus constitute primary divisions of their states. These incorporated places are known as independent cities and are treated as equivalent entities for purposes of data presentation. The District of Columbia and Guam have no primary divisions, and each area is considered an equivalent entity for purposes of data presentation. The Census Bureau treats the following entities as equivalents of counties for purposes of data presentation: Municipios in Puerto Rico, Districts and Islands in American Samoa, Municipalities in the Commonwealth of the Northern Mariana Islands, and Islands in the U.S. Virgin Islands. The entire area of the United States, Puerto Rico, and the Island Areas is covered by counties or equivalent entities. The boundaries for counties and equivalent entities are as of January 1, 2010.

  11. a

    Population Density 2015 tiles

    • gis-for-secondary-schools-schools-be.hub.arcgis.com
    • fesec-cesj.opendata.arcgis.com
    • +1more
    Updated Apr 11, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Maps.com (2017). Population Density 2015 tiles [Dataset]. https://gis-for-secondary-schools-schools-be.hub.arcgis.com/datasets/beyondmaps::population-density-2015-tiles
    Explore at:
    Dataset updated
    Apr 11, 2017
    Dataset provided by
    Maps.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    Estimates of human population for the year 2015 by 2.5 arc-minute grid cells. 2015 global population density from CIESIN Gridded Population of the World version 4. Center for International Earth Science Information Network - CIESIN - Columbia University. 2016. Gridded Population of the World, Version 4 (GPWv4): Population Density. Palisades, NY: NASA Socioeconomic Data and Applications Center (SEDAC). http://dx.doi.org/10.7927/H4NP22DQ Accessed 5 April 2017.

  12. 2016 Cartographic Boundary File, 2010 Urban Areas (UA) within 2010 County...

    • data.wu.ac.at
    html, zip
    Updated Jun 5, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    US Census Bureau, Department of Commerce (2017). 2016 Cartographic Boundary File, 2010 Urban Areas (UA) within 2010 County and Equivalent for New York, 1:500,000 [Dataset]. https://data.wu.ac.at/schema/data_gov/OGJiZGQxM2QtMWUyNC00YTI0LTkwZjgtZWI5OWM3Nzg2MjVk
    Explore at:
    html, zipAvailable download formats
    Dataset updated
    Jun 5, 2017
    Dataset provided by
    United States Department of Commercehttp://www.commerce.gov/
    United States Census Bureauhttp://census.gov/
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Area covered
    6cf00c20256364ac47eaf794d2daf7f342cfd739
    Description

    The 2016 cartographic boundary KMLs are simplified representations of selected geographic areas from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). These boundary files are specifically designed for small-scale thematic mapping. When possible, generalization is performed with the intent to maintain the hierarchical relationships among geographies and to maintain the alignment of geographies within a file set for a given year. Geographic areas may not align with the same areas from another year. Some geographies are available as nation-based files while others are available only as state-based files.

    The records in this file allow users to map the parts of Urban Areas that overlap a particular county.

    After each decennial census, the Census Bureau delineates urban areas that represent densely developed territory, encompassing residential, commercial, and other nonresidential urban land uses. In general, this territory consists of areas of high population density and urban land use resulting in a representation of the ""urban footprint."" There are two types of urban areas: urbanized areas (UAs) that contain 50,000 or more people and urban clusters (UCs) that contain at least 2,500 people, but fewer than 50,000 people (except in the U.S. Virgin Islands and Guam which each contain urban clusters with populations greater than 50,000). Each urban area is identified by a 5-character numeric census code that may contain leading zeroes.

    The primary legal divisions of most states are termed counties. In Louisiana, these divisions are known as parishes. In Alaska, which has no counties, the equivalent entities are the organized boroughs, city and boroughs, municipalities, and for the unorganized area, census areas. The latter are delineated cooperatively for statistical purposes by the State of Alaska and the Census Bureau. In four states (Maryland, Missouri, Nevada, and Virginia), there are one or more incorporated places that are independent of any county organization and thus constitute primary divisions of their states. These incorporated places are known as independent cities and are treated as equivalent entities for purposes of data presentation. The District of Columbia and Guam have no primary divisions, and each area is considered an equivalent entity for purposes of data presentation. The Census Bureau treats the following entities as equivalents of counties for purposes of data presentation: Municipios in Puerto Rico, Districts and Islands in American Samoa, Municipalities in the Commonwealth of the Northern Mariana Islands, and Islands in the U.S. Virgin Islands. The entire area of the United States, Puerto Rico, and the Island Areas is covered by counties or equivalent entities.

    The generalized boundaries for counties and equivalent entities are as of January 1, 2010.

  13. c

    Census ACS Poverty Status Map - By Census Tract, County, and State

    • data.cityofrochester.gov
    Updated Mar 3, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Open_Data_Admin (2020). Census ACS Poverty Status Map - By Census Tract, County, and State [Dataset]. https://data.cityofrochester.gov/maps/49093605a9234236998175f4be79ff51
    Explore at:
    Dataset updated
    Mar 3, 2020
    Dataset authored and provided by
    Open_Data_Admin
    Area covered
    Description

    Note: These layers were compiled by Esri's Demographics Team using data from the Census Bureau's American Community Survey. These data sets are not owned by the City of Rochester.Overview of the map/data: This map shows the percentage of the population living below the federal poverty level over the previous 12 months, shown by tract, county, and state boundaries. Estimates are from the 2018 ACS 5-year samples. This service is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. Current Vintage: 2019-2023ACS Table(s): B17020, C17002Data downloaded from: Census Bureau's API for American Community Survey Date of API call: December 12, 2024National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:This layer will be updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Click here to learn more about ACS data releases.Boundaries come from the US Census TIGER geodatabases. Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines clipped for cartographic purposes. For census tracts, the water cutouts are derived from a subset of the 2010 AWATER (Area Water) boundaries offered by TIGER. For state and county boundaries, the water and coastlines are derived from the coastlines of the 500k TIGER Cartographic Boundary Shapefiles. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters). The States layer contains 52 records - all US states, Washington D.C., and Puerto Rico.Census tracts with no population are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -555555...) have been set to null. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small. NOTE: any calculated percentages or counts that contain estimates that have null margins of error yield null margins of error for the calculated fields.

  14. S

    CIESIN/CIAT: Population Density Grid, v3 (GPWv3) (1990, 2000, 2010) for...

    • dataportal.senckenberg.de
    zip
    Updated Dec 17, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bachmann (2020). CIESIN/CIAT: Population Density Grid, v3 (GPWv3) (1990, 2000, 2010) for UNDESERT study areas in Burkina Faso, Benin, Niger and Senegal [Dataset]. https://dataportal.senckenberg.de/de/dataset/ciesinciat-population-density-grid-v3-gpwv3-1990-2000-2010-for-undesert-study
    Explore at:
    zipAvailable download formats
    Dataset updated
    Dec 17, 2020
    Dataset provided by
    Senckenberg Biodiversitätsinformatik
    Authors
    Bachmann
    Time period covered
    1990 - 2010
    Area covered
    Senegal, Burkina Faso, Benin, Niger
    Description

    The population density maps presented here for the UNDESERT study areas in Burkina Faso, Benin, Niger and Senegal for 1990, 2000 and 2010 were produced by the Columbia University Center for International Earth Science Information Network (CIESIN) in collaboration with the Centro Internacional de Agricultura Tropical (CIAT). CIESIN/CIAT population density grids are available for the entire globe at a 2.5 arc-minutes resolution (http://sedac.ciesin.columbia.edu/data/collection/gpw-v3/sets/browse). The UNDESERT project (EU FP7 243906), financed by the European Commission, Directorate General for Research and Innovation, Environment Program, aims to improve the Understanding and Combating of Desertification to Mitigate its Impact on Ecosystem Services in West Africa. Humans originate and contribute significantly to desertification processes. Based on the CIESIN/CIAT population density grids we want to illustrate how population density changed in the UNDESERT study areas and countries during the last 20 years. Data for 1990 and 2000 were downloaded from the Gridded Population of the World, Version 3 (GPWv3) consisting of estimates of human population by 2.5 arc-minute grid cells and associated data sets dated circa 2000. Data for 2010 were copied from the Gridded Population of the World, Version 3 (GPWv3) consisting in a future estimate of human population by 2.5 arc-minute grid cells. The future estimate population values are extrapolated based on a combination of subnational growth rates from census dates and national growth rates from United Nations statistics.

    Source: http://sedac.ciesin.columbia.edu/data/set/gpw-v3-population-density Center for International Earth Science Information Network (CIESIN)/Columbia University, and Centro Internacional de Agricultura Tropical (CIAT). 2005. Gridded Population of the World, Version 3 (GPWv3): Population Density Grid. Palisades, NY: NASA Socioeconomic Data and Applications Center (SEDAC). http://sedac.ciesin.columbia.edu/data/set/gpw-v3-population-density. Accessed 28/10/2013 And http://sedac.ciesin.columbia.edu/data/set/gpw-v3-population-density-future-estimates Center for International Earth Science Information Network (CIESIN)/Columbia University, and Centro Internacional de Agricultura Tropical (CIAT). 2005. Gridded Population of the World, Version 3 (GPWv3): Population Density Grid, Future Estimates. Palisades, NY: NASA Socioeconomic Data and Applications Center (SEDAC). http://sedac.ciesin.columbia.edu/data/set/gpw-v3-population-density-future-estimates. Accessed 28/10/2013

  15. A

    Surging Seas: Risk Zone Map

    • data.amerigeoss.org
    Updated Feb 18, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    AmeriGEOSS (2019). Surging Seas: Risk Zone Map [Dataset]. https://data.amerigeoss.org/dataset/surging-seas-risk-zone-map2
    Explore at:
    html, arcgis geoservices rest apiAvailable download formats
    Dataset updated
    Feb 18, 2019
    Dataset provided by
    AmeriGEOSS
    Description

    Introduction

    Climate Central’s Surging Seas: Risk Zone map shows areas vulnerable to near-term flooding from different combinations of sea level rise, storm surge, tides, and tsunamis, or to permanent submersion by long-term sea level rise. Within the U.S., it incorporates the latest, high-resolution, high-accuracy lidar elevation data supplied by NOAA (exceptions: see Sources), displays points of interest, and contains layers displaying social vulnerability, population density, and property value. Outside the U.S., it utilizes satellite-based elevation data from NASA in some locations, and Climate Central’s more accurate CoastalDEM in others (see Methods and Qualifiers). It provides the ability to search by location name or postal code.

    The accompanying Risk Finder is an interactive data toolkit available for some countries that provides local projections and assessments of exposure to sea level rise and coastal flooding tabulated for many sub-national districts, down to cities and postal codes in the U.S. Exposure assessments always include land and population, and in the U.S. extend to over 100 demographic, economic, infrastructure and environmental variables using data drawn mainly from federal sources, including NOAA, USGS, FEMA, DOT, DOE, DOI, EPA, FCC and the Census.

    This web tool was highlighted at the launch of The White House's Climate Data Initiative in March 2014. Climate Central's original Surging Seas was featured on NBC, CBS, and PBS U.S. national news, the cover of The New York Times, in hundreds of other stories, and in testimony for the U.S. Senate. The Atlantic Cities named it the most important map of 2012. Both the Risk Zone map and the Risk Finder are grounded in peer-reviewed science.

    Back to top


    Methods and Qualifiers

    This map is based on analysis of digital elevation models mosaicked together for near-total coverage of the global coast. Details and sources for U.S. and international data are below. Elevations are transformed so they are expressed relative to local high tide lines (Mean Higher High Water, or MHHW). A simple elevation threshold-based “bathtub method” is then applied to determine areas below different water levels, relative to MHHW. Within the U.S., areas below the selected water level but apparently not connected to the ocean at that level are shown in a stippled green (as opposed to solid blue) on the map. Outside the U.S., due to data quality issues and data limitations, all areas below the selected level are shown as solid blue, unless separated from the ocean by a ridge at least 20 meters (66 feet) above MHHW, in which case they are shown as not affected (no blue).

    Areas using lidar-based elevation data: U.S. coastal states except Alaska
    Elevation data used for parts of this map within the U.S. come almost entirely from ~5-meter horizontal resolution digital elevation models curated and distributed by NOAA in its Coastal Lidar collection, derived from high-accuracy laser-rangefinding measurements. The same data are used in NOAA’s Sea Level Rise Viewer. (High-resolution elevation data for Louisiana, southeast Virginia, and limited other areas comes from the U.S. Geological Survey (USGS)).

    Areas using CoastalDEM™ elevation data: Antigua and Barbuda, Barbados, Corn Island (Nicaragua), Dominica, Dominican Republic, Grenada, Guyana, Haiti, Jamaica, Saint Kitts and Nevis, Saint Lucia, Saint Vincent and the Grenadines, San Blas (Panama), Suriname, The Bahamas, Trinidad and Tobago.

    CoastalDEM™ is a proprietary high-accuracy bare earth elevation dataset developed especially for low-lying coastal areas by Climate Central. Use our contact form to request more information.

    Warning for areas using other elevation data (all other areas)
    Areas of this map not listed above use elevation data on a roughly 90-meter horizontal resolution grid derived from NASA’s Shuttle Radar Topography Mission (SRTM). SRTM provides surface elevations, not bare earth elevations, causing it to commonly overestimate elevations, especially in areas with dense and tall buildings or vegetation. Therefore, the map under-portrays areas that could be submerged at each water level, and exposure is greater than shown (Kulp and Strauss, 2016). However, SRTM includes error in both directions, so some areas showing exposure may not be at risk.

    SRTM data do not cover latitudes farther north than 60 degrees or farther south than 56 degrees, meaning that sparsely populated parts of Arctic Circle nations are not mapped here, and may show visual artifacts.

    Areas of this map in Alaska use elevation data on a roughly 60-meter horizontal resolution grid supplied by the U.S. Geological Survey (USGS). This data is referenced to a vertical reference frame from 1929, based on historic sea levels, and with no established conversion to modern reference frames. The data also do not take into account subsequent land uplift and subsidence, widespread in the state. As a consequence, low confidence should be placed in Alaska map portions.

    Flood control structures (U.S.)
    Levees, walls, dams or other features may protect some areas, especially at lower elevations. Levees and other flood control structures are included in this map within but not outside of the U.S., due to poor and missing data. Within the U.S., data limitations, such as an incomplete inventory of levees, and a lack of levee height data, still make assessing protection difficult. For this map, levees are assumed high and strong enough for flood protection. However, it is important to note that only 8% of monitored levees in the U.S. are rated in “Acceptable” condition

  16. Data from: Global terrestrial Human Footprint maps for 1993 and 2009

    • data.niaid.nih.gov
    • datadryad.org
    • +1more
    zip
    Updated Nov 17, 2016
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Oscar Venter; Eric W. Sanderson; Ainhoa Magrach; James R. Allan; Jutta Beher; Kendall R. Jones; Hugh P. Possingham; William F. Laurance; Peter Wood; Balázs M. Fekete; Marc A. Levy; James E.M. Watson (2016). Global terrestrial Human Footprint maps for 1993 and 2009 [Dataset]. http://doi.org/10.5061/dryad.052q5
    Explore at:
    zipAvailable download formats
    Dataset updated
    Nov 17, 2016
    Dataset provided by
    Wildlife Conservation Societyhttp://wcs.org.cn/
    James Cook University
    ARC Centre of Excellence for Environmental Decisions
    City College of New York
    ETH Zurich
    Columbia University
    University of Northern British Columbia
    Authors
    Oscar Venter; Eric W. Sanderson; Ainhoa Magrach; James R. Allan; Jutta Beher; Kendall R. Jones; Hugh P. Possingham; William F. Laurance; Peter Wood; Balázs M. Fekete; Marc A. Levy; James E.M. Watson
    License

    https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html

    Area covered
    Global terrestrial
    Description

    Remotely-sensed and bottom-up survey information were compiled on eight variables measuring the direct and indirect human pressures on the environment globally in 1993 and 2009. This represents not only the most current information of its type, but also the first temporally-consistent set of Human Footprint maps. Data on human pressures were acquired or developed for: 1) built environments, 2) population density, 3) electric infrastructure, 4) crop lands, 5) pasture lands, 6) roads, 7) railways, and 8) navigable waterways. Pressures were then overlaid to create the standardized Human Footprint maps for all non-Antarctic land areas. A validation analysis using scored pressures from 3114×1 km2 random sample plots revealed strong agreement with the Human Footprint maps. We anticipate that the Human Footprint maps will find a range of uses as proxies for human disturbance of natural systems. The updated maps should provide an increased understanding of the human pressures that drive macro-ecological patterns, as well as for tracking environmental change and informing conservation science and application.

  17. a

    GPWv4 Population Density, 2015

    • hub.arcgis.com
    • cloud.csiss.gmu.edu
    • +2more
    Updated Mar 14, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ArcGIS StoryMaps (2018). GPWv4 Population Density, 2015 [Dataset]. https://hub.arcgis.com/maps/d314746e11834a04968e64b25c49882c
    Explore at:
    Dataset updated
    Mar 14, 2018
    Dataset authored and provided by
    ArcGIS StoryMaps
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Area covered
    Description

    GPWv4 is a gridded data product that depicts global population data from the 2010 round of Population and Housing Censuses. The Population Density, 2015 layer represents persons per square kilometer for year 2015. Data SummaryGPWv4 is constructed from national or subnational input areal units of varying resolutions. The native grid cell size is 30 arc-seconds, or ~1 km at the equator. Separate grids are available for population count, population density, estimated land area, and data quality indicators; which include the water mask represented in this service. Population estimates are derived by extrapolating the raw census counts to estimates for the 2010 target year. The development of GPWv4 builds upon previous versions of the data set (Tobler et al., 1997; Deichmann et al., 2001; Balk et al., 2006).The full GPWv4 data collection will consist of population estimates for the years 2000, 2005, 2010, 2015, and 2020, and will include grids for estimates of total population, age, sex, and urban/rural status. However, this release consists only of total population estimates for the year 2015. This data is being released now to allow users access to the population grids.Recommended CitationCenter for International Earth Science Information Network - CIESIN - Columbia University. 2016. Gridded Population of the World, Version 4 (GPWv4): Population Density. Palisades, NY: NASA Socioeconomic Data and Applications Center (SEDAC). http://dx.doi.org/10.7927/H4NP22DQ. Accessed DAY MONTH YEAR

  18. c

    2012 04: Most Densely Populated Urban Areas in 2010

    • opendata.mtc.ca.gov
    Updated Apr 25, 2012
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    MTC/ABAG (2012). 2012 04: Most Densely Populated Urban Areas in 2010 [Dataset]. https://opendata.mtc.ca.gov/documents/ac10898351ca4848b14024eac431590b
    Explore at:
    Dataset updated
    Apr 25, 2012
    Dataset authored and provided by
    MTC/ABAG
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    This map shows four of these densely populated areas are in California. The San Francisco-Oakland and San Jose Urban Areas rank second and third, respectively. That the New York Metropolitan area ranks fifth on this list shows that this density ranking is greatly affected by the nature of the land area designated as urban. Census Urban Areas comprise an urban core and associated suburbs. California's urban and suburban areas are more uniform in density when compared to New York's urban core and suburban periphery which have vastly different densities. Delano ranks fourth because it has a very small land area and its population is augmented by two large California State Prisons housing 10,000 inmates.

  19. a

    Population Density (2000)

    • esri-california-office.hub.arcgis.com
    Updated Aug 31, 2016
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Nature Conservancy (2016). Population Density (2000) [Dataset]. https://esri-california-office.hub.arcgis.com/datasets/TNC::population-density-2000-1
    Explore at:
    Dataset updated
    Aug 31, 2016
    Dataset authored and provided by
    The Nature Conservancy
    License

    Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
    License information was derived automatically

    Area covered
    Description

    Human population density in 2000, by terrestrial ecoregion.

    We summarized human population density by ecoregion using the Gridded Population of the World database and projections for 2015 (CIESIN et al. 2005). The mean for each ecoregion was extracted using a zonal statistics algorithm.

    These data were derived by The Nature Conservancy, and were displayed in a map published in The Atlas of Global Conservation (Hoekstra et al., University of California Press, 2010). More information at http://nature.org/atlas.

    Data derived from:

    Center for International Earth Science Information Network (CIESIN), Columbia University; and Centro Internacional de Agricultura Tropical (CIAT). 2005. Gridded Population of the World Version 3 (GPWv3). Socioeconomic Data and Applications Center (SEDAC), Columbia University Palisades, New York. Available at http://sedac.ciesin.columbia.edu/gpw. Digital media.

    United Nations Population Division (UNPD). 2007. Global population, largest urban agglomerations and cities of largest change. World Urbanization Prospects: The 2007 Revision Population Database. Available at http://esa.un.org/unup/index.asp.

    For more about The Atlas of Global Conservation check out the web map (which includes links to download spatial data and view metadata) at http://maps.tnc.org/globalmaps.html. You can also read more detail about the Atlas at http://www.nature.org/science-in-action/leading-with-science/conservation-atlas.xml, or buy the book at http://www.ucpress.edu/book.php?isbn=9780520262560

  20. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Department of City Planning (DCP) (2013). New York City Population By Community Districts [Dataset]. https://data.cityofnewyork.us/City-Government/New-York-City-Population-By-Community-Districts/xi7c-iiu2

New York City Population By Community Districts

Explore at:
3 scholarly articles cite this dataset (View in Google Scholar)
csv, application/rdfxml, xml, tsv, application/rssxml, jsonAvailable download formats
Dataset updated
Feb 20, 2013
Dataset authored and provided by
Department of City Planning (DCP)
Area covered
New York
Description

New York City Population By Community Districts

The data was collected from Census Bureaus' Decennial data dissemination (SF1) for the years 1970, 1980, 1990, 2000 and 2010.

Compiled by the Population Division – New York City Department of City Planning

Search
Clear search
Close search
Google apps
Main menu