Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Chart and table of population level and growth rate for the state of New York from 1900 to 2024.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the New York population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of New York across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.
Key observations
In 2024, the population of New York was 19.87 million, a 0.66% increase year-by-year from 2023. Previously, in 2023, New York population was 19.74 million, an increase of 0.17% compared to a population of 19.7 million in 2022. Over the last 20 plus years, between 2000 and 2024, population of New York increased by 870,289. In this period, the peak population was 20.11 million in the year 2020. The numbers suggest that the population has already reached its peak and is showing a trend of decline. Source: U.S. Census Bureau Population Estimates Program (PEP).
When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).
Data Coverage:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for New York Population by Year. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Prattsburgh town population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of Prattsburgh town across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.
Key observations
In 2023, the population of Prattsburgh town was 1,966, a 0% decrease year-by-year from 2022. Previously, in 2022, Prattsburgh town population was 1,966, a decline of 0.15% compared to a population of 1,969 in 2021. Over the last 20 plus years, between 2000 and 2023, population of Prattsburgh town decreased by 127. In this period, the peak population was 2,150 in the year 2005. The numbers suggest that the population has already reached its peak and is showing a trend of decline. Source: U.S. Census Bureau Population Estimates Program (PEP).
When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).
Data Coverage:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Prattsburgh town Population by Year. You can refer the same here
https://www.newyork-demographics.com/terms_and_conditionshttps://www.newyork-demographics.com/terms_and_conditions
A dataset listing New York cities by population for 2024.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
There are a number of Kaggle datasets that provide spatial data around New York City. For many of these, it may be quite interesting to relate the data to the demographic and economic characteristics of nearby neighborhoods. I hope this data set will allow for making these comparisons without too much difficulty.
Exploring the data and making maps could be quite interesting as well.
This dataset contains two CSV files:
nyc_census_tracts.csv
This file contains a selection of census data taken from the ACS DP03 and DP05 tables. Things like total population, racial/ethnic demographic information, employment and commuting characteristics, and more are contained here. There is a great deal of additional data in the raw tables retrieved from the US Census Bureau website, so I could easily add more fields if there is enough interest.
I obtained data for individual census tracts, which typically contain several thousand residents.
census_block_loc.csv
For this file, I used an online FCC census block lookup tool to retrieve the census block code for a 200 x 200 grid containing
New York City and a bit of the surrounding area. This file contains the coordinates and associated census block codes along
with the state and county names to make things a bit more readable to users.
Each census tract is split into a number of blocks, so one must extract the census tract code from the block code.
The data here was taken from the American Community Survey 2015 5-year estimates (https://factfinder.census.gov/faces/nav/jsf/pages/index.xhtml).
The census block coordinate data was taken from the FCC Census Block Conversions API (https://www.fcc.gov/general/census-block-conversions-api)
As public data from the US government, this is not subject to copyright within the US and should be considered public domain.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Irondequoit town population distribution across 18 age groups. It lists the population in each age group along with the percentage population relative of the total population for Irondequoit town. The dataset can be utilized to understand the population distribution of Irondequoit town by age. For example, using this dataset, we can identify the largest age group in Irondequoit town.
Key observations
The largest age group in Irondequoit, New York was for the group of age 30 to 34 years years with a population of 4,178 (8.28%), according to the ACS 2019-2023 5-Year Estimates. At the same time, the smallest age group in Irondequoit, New York was the 80 to 84 years years with a population of 1,248 (2.47%). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates
Age groups:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Irondequoit town Population by Age. You can refer the same here
https://www.icpsr.umich.edu/web/ICPSR/studies/4400/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/4400/terms
This poll, fielded August 22-28, 2005, is part of a continuing series of monthly surveys that solicit public opinion on the current presidency and on a range of other political and social issues. The focus of this survey was the 2005 New York City mayoral race. Residents of the city were asked to give their opinions of the candidates running for mayor and how those candidates would deal with various issues. Their opinions were also sought about the New York City school system. The candidates mentioned in the survey included current Mayor Michael Bloomberg, Fernando Ferrer, Virginia Fields, Gifford Miller, and Anthony Weiner. A series of questions asked the respondents to give their opinion on the subject of the World Trade Center site, whether Mayor Bloomberg or Governor George Pataki was more responsible for the redevelopment of this site, and if they thought the efforts to redevelop the site were going too quickly, too slowly, or just the right pace. Respondents were also asked to rate the New York City economy and if they thought it was getting better or worse. Questions respondents were asked concerning New York City schools included whether they were satisfied with the public school system, what type of school the respondents' children attended, and their opinion regarding the amount of influence the Bloomberg administration had had on the improvement of test scores in the New York public schools. Respondents were asked to compare neighborhood safety at the time of the survey to that of four years previously, what their opinion was on race relations in the New York City area, and if they approved or disapproved of the way Mayor Bloomberg was handling the redevelopment of downtown Manhattan. Other general topics included the economy, crime, security, and public transportation. Demographic variables include age, sex, race, household income, education level, employment status, political party affiliation, political philosophy, religious affiliation, marital status, borough of residence, and age group.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Canaan town population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of Canaan town across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.
Key observations
In 2023, the population of Canaan town was 1,540, a 1.09% decrease year-by-year from 2022. Previously, in 2022, Canaan town population was 1,557, a decline of 1.46% compared to a population of 1,580 in 2021. Over the last 20 plus years, between 2000 and 2023, population of Canaan town decreased by 296. In this period, the peak population was 1,900 in the year 2005. The numbers suggest that the population has already reached its peak and is showing a trend of decline. Source: U.S. Census Bureau Population Estimates Program (PEP).
When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).
Data Coverage:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Canaan town Population by Year. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Bolton town population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of Bolton town across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.
Key observations
In 2023, the population of Bolton town was 2,005, a 0.35% increase year-by-year from 2022. Previously, in 2022, Bolton town population was 1,998, a decline of 0.60% compared to a population of 2,010 in 2021. Over the last 20 plus years, between 2000 and 2023, population of Bolton town decreased by 110. In this period, the peak population was 2,328 in the year 2011. The numbers suggest that the population has already reached its peak and is showing a trend of decline. Source: U.S. Census Bureau Population Estimates Program (PEP).
When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).
Data Coverage:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Bolton town Population by Year. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Williamson town population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of Williamson town across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.
Key observations
In 2023, the population of Williamson town was 6,814, a 0.04% decrease year-by-year from 2022. Previously, in 2022, Williamson town population was 6,817, a decline of 0.47% compared to a population of 6,849 in 2021. Over the last 20 plus years, between 2000 and 2023, population of Williamson town increased by 56. In this period, the peak population was 6,996 in the year 2010. The numbers suggest that the population has already reached its peak and is showing a trend of decline. Source: U.S. Census Bureau Population Estimates Program (PEP).
When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).
Data Coverage:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Williamson town Population by Year. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Peru town population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of Peru town across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.
Key observations
In 2023, the population of Peru town was 6,672, a 0.40% decrease year-by-year from 2022. Previously, in 2022, Peru town population was 6,699, a decline of 0.84% compared to a population of 6,756 in 2021. Over the last 20 plus years, between 2000 and 2023, population of Peru town increased by 288. In this period, the peak population was 7,000 in the year 2010. The numbers suggest that the population has already reached its peak and is showing a trend of decline. Source: U.S. Census Bureau Population Estimates Program (PEP).
When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).
Data Coverage:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Peru town Population by Year. You can refer the same here
In 2023, the median household income in New York amounted to 81,600 U.S. dollars. This is an increase from the previous year, when the median household income in the state amounted to 75,910 U.S. dollars. The median household income for the United States can be accessed here.
This statistic shows the top 25 cities in the United States with the highest resident population as of July 1, 2022. There were about 8.34 million people living in New York City as of July 2022.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Note: ACE = Adult Content Exposure; SME = Smoking in the Movies Exposure.
https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html
Infectious diseases can cause steep declines in wildlife populations, leading to changes in genetic diversity that may affect the susceptibility of individuals to infection and the overall resilience of populations to pathogen outbreaks. Here, we examine evidence for a genetic bottleneck in a population of American crows (Corvus brachyrhynchos) before and after the emergence of West Nile virus (WNV). More than 50% of marked birds in this population were lost over the two-year period of the epizootic, representing a 10-fold increase in adult mortality. Using analyses of SNPs and microsatellite markers, we tested for evidence of a genetic bottleneck and compared levels of inbreeding and immigration in the pre- and post-WNV populations. Counter to expectations, genetic diversity (allelic diversity and the number of new alleles) increased after WNV emergence. This was likely due to increases in immigration, as the estimated membership coefficients were lower in the post-WNV population. Simultaneously, however, the frequency of inbreeding appeared to increase: mean inbreeding coefficients were higher among SNP markers, and heterozygosity-heterozygosity correlations were stronger among microsatellite markers, in the post-WNV population. These results indicate that loss of genetic diversity at the population level is not an inevitable consequence of a population decline, particularly in the presence of gene flow. The changes observed in post-WNV crows could have very different implications for their response to future pathogen risks, potentially making the population as a whole more resilient to a changing pathogen community, while increasing the frequency of inbred individuals with elevated susceptibility to disease. Methods Study population and data collection. Crows in the Ithaca, New York, population are cooperative breeders. They live in groups of up to 14 birds, including a socially bonded pair of adults as well as 0-12 auxiliary birds, which are usually offspring from previous broods). Although auxiliaries usually do not contribute offspring to the brood, molecular work in the post-WNV population indicates that auxiliary males occasionally do sire extra-pair offspring with the female breeder, arising both through incest (mothers mating with their adult auxiliary sons) and through matings between non-relatives (e.g., unrelated step-mothers and adult auxiliary males). Genetic samples were collected from crow nestlings from 1990–2011. We collected blood (~150 ul) from the brachial vein of nestlings and banded them with unique combinations of metal bands, color bands, and patagial tags on days 24–30 after hatching. DNA was extracted from samples using DNeasy tissue kits (Qiagen, Valencia, CA) following the manufacturer’s protocol. All fieldwork with American crows was carried out under protocols approved by the Institutional Animal Care and Use Committees of Binghamton University (no. 537-03 and 607-07) and Cornell University (no. 1988–0210). The pre-WNV dataset included samples collected between 1990 and 2002. The 2002 nestlings were sampled prior to WNV emergence, as nestlings fledge the nest between May and July, whereas WNV mortality typically occurs between August and October in this crow population. The post-WNV samples were collected between 2005 and 2011. Samples collected immediately after WNV emergence (2003 and 2004) were not included in the analysis to allow time for the birds to respond to the population loss. We maximized independence of the birds selected for analysis by including only one randomly chosen offspring per brood and no more than two broods per family group in the pre-and post-WNV samples, with each brood per family group separated by the maximum number of years possible within the pre- or post-WNV sampling periods (1990–2002 pre-WNV; 2005–2011 post-WNV; Figure S1). Birds were randomly and independently selected (with replacement) for the SNP and microsatellite analyses; therefore, there was little overlap among individual birds included in these marker sets. Of the 286 individual birds included in this analysis, 22 were common to both marker sets (15 pre-WNV; 7 post-WNV). The 20-year time period of this study may have encompassed 2–4 breeding cohorts (approximately 1–2 pre- and 1–2 post-WNV, with a sharp turn-over immediately after WNV emergence). Crows can produce offspring as early as two years after hatching, but most do not begin breeding independently until at least 3–4 years after hatching. Breeding initiation is limited at least in part by breeding vacancies, which are created by the death of one or both members of an established breeding pair. Such breeding vacancies likely increased in availability after the emergence of WNV. Microsatellite genotyping. A total of 222 crows (n = 113 and 109 crows pre- and post-WNV, respectively) were genotyped at 34 polymorphic microsatellite loci that were optimized for American crows. Alleles were scored using the microsatellite plugin for Geneious 9.1.8. We used GenePop version 4.7 to test for linkage disequilibrium between all pairs of loci, departures from Hardy–Weinberg equilibrium (HWE), and null allele frequency. Locus characteristics (e.g., alleles/ locus, tests of Hardy–Weinberg equilibrium and null allele frequencies) are given in the supplementary materials (Table S1). Departures from HWE expectations were observed at two loci (PnuA3w from the pre-WNV sample and Cb06 from the post-WNV sample) after Bonferroni correction (Table S1); these loci were removed from subsequent analysis. In 561 pairwise comparisons, four pairs of loci appeared to be in linkage disequilibrium (Cb20 and Cb21; Cb14 and CoBr36; CoBr22 and Cb17, and CoBr12 and Cb10), but this linkage was only apparent at both time points (the pre-WNV and post-WNV populations) for Cb20 and Cb21. We removed both Cb20 and Cb21 from the analysis but retained the other loci because apparent linkage at only a single time point was unlikely to be a result of physical linkage. Two additional loci (Cb17 and Cb10) had a high frequency of null alleles (> 0.1) and were removed from the dataset. All subsequent analyses are therefore based on 28 loci. We scored all birds at a minimum of 26 of these 28 loci, and most (>98%) were scored at all loci (mean proportion of loci typed >0.99). Mean allelic diversity at these loci was 11.25 ± 1.17 alleles/locus (range: 3–31 alleles/locus). Double Digest Restriction Associated DNA (ddRAD) sequencing. We performed ddRAD sequencing on 86 randomly selected crows (43 pre-WNV and 43 post-WNV). 100-500 ng of DNA were digested with SbfI-HF (NEB, R3642L) and MspI-HF (NEB, R016S) restriction enzymes. Samples were ligated with a P2-MspI adapter and pooled in groups of 18-20, each with a unique P1 adapter. Pooled index groups were purified using 1.5X volumes of homemade MagNA made with Sera-Mag Magnetic Speed-beads (FisherSci). Fragments 450-600 bp long were selected using BluePippin (Sage Science) by the Cornell University Biotechnology Resource Center (BRC). After size selection, unique index barcodes were added to each index group by performing 11 cycles of PCR with Phusion® DNA polymerase (NEB). Reactions were purified using 0.7X volumes of MagNA beads and pooled in equimolar ratios for sequencing on the Illumina HiSeq 2500 at the BRC, with single end reads (100 bp). The sequencing was performed with an added Illumina PhiX control (15%) due to low 5’ complexity. Pre- and post-WNV samples were library prepared together and sequenced on a single lane to avoid the introduction of a library or lane effect. We used FASTQC v0.11.9 (Babraham Bioinformatics; http://www.bioinformatics.babraham.ac.uk/projects/fastqc/) to assess read quality. We trimmed reads to 147 bp using fastX_trimmer (FASTX-Toolkit) to exclude low-quality data at the 3’ end of reads. Next, we eliminated reads with Phred scores below 10, then eliminated reads in which 5% or more bases had Phred scores below 20 (fastq_quality_filter). The fastq files were demultiplexed using the process_radtags module in STACKS v2.52 pipeline to create a file with sequences specific to each individual. We first scaffolded the American Crow reference genome (NCBI assembly: ASM69197v1, Accession no: GCA_000691975.1) into putative pseudochromosomes using the synteny-based Chromosemble tool in Satsuma2 (Grabherr et al. 2010) and the Hooded Crow genome (NCBI assembly: ASM73873v5, Accession no: GCA_000738735.5). We aligned sequence reads to the American Crow pseudochromosome assembly using BWA-MEM (Li & Durbin 2009). We called SNPs in ANGSD (Korneliussen et al. 2014) using the GATK model, requiring SNPs to be present in 80% of the individuals (0.95 postcutoff, SNP p-value 1e-6) with a minimum allele frequency of 0.015. We removed bases with quality scores below 20 (-minQ 20), bad reads (-remove_bads), mapping quality below 20 (-minMapQ20), base alignment quality below 1 (-baq), more than two alleles (-skipTriallelic), and heterozygote bias (-hetbias_pval 1e-5), requiring the minimum depth per individual to be at least two and read depth higher than 1,800. These filters resulted in 16,200 SNPs. To reduce differences in missingness between the pre- and post-WNV populations, we excluded loci that had less than 80% called genotypes per population, resulting in 5,151 SNPs.
The Local Area Unemployment Statistics program estimates labor force statistics (labor force, employed, unemployment, unemployment rate) for New York State civilian labor force aged 16 and up. Areas covered include, New York State, New York City, Balance of State, Metropolitan Statistical Areas, Counties, Labor Market Regions, Workforce Investment Board Areas, and cities and towns with populations of 25,000 or more. Data are not seasonally adjusted. Civilian labor force data do not include military, prison inmate, or other institutional populations.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Riverhead town population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of Riverhead town across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.
Key observations
In 2023, the population of Riverhead town was 35,723, a 0.45% decrease year-by-year from 2022. Previously, in 2022, Riverhead town population was 35,885, a decline of 0.38% compared to a population of 36,021 in 2021. Over the last 20 plus years, between 2000 and 2023, population of Riverhead town increased by 7,762. In this period, the peak population was 36,021 in the year 2021. The numbers suggest that the population has already reached its peak and is showing a trend of decline. Source: U.S. Census Bureau Population Estimates Program (PEP).
When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).
Data Coverage:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Riverhead town Population by Year. You can refer the same here
List of every shooting incident that occurred in NYC during the current calendar year.
This is a breakdown of every shooting incident that occurred in NYC during the current calendar year. This data is manually extracted every quarter and reviewed by the Office of Management Analysis and Planning before being posted on the NYPD website. Each record represents a shooting incident in NYC and includes information about the event, the location and time of occurrence. In addition, information related to suspect and victim demographics is also included. This data can be used by the public to explore the nature of police enforcement activity. Please refer to the attached data footnotes for additional information about this dataset.
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
The dataset is composed of two data tables containing information from electrofishing surveys conducted in streams of the Adirondack region. The first data table contains information on the sampled reaches and the second data table contains fish collection information. Historical data (1979-1999) were collected by the New York State Department of Environmental Conservation and contemporary data (2020) were collected by the U.S. Geological Survey.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Louisville town population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of Louisville town across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.
Key observations
In 2023, the population of Louisville town was 3,005, a 0.23% decrease year-by-year from 2022. Previously, in 2022, Louisville town population was 3,012, a decline of 0.89% compared to a population of 3,039 in 2021. Over the last 20 plus years, between 2000 and 2023, population of Louisville town decreased by 212. In this period, the peak population was 3,288 in the year 2005. The numbers suggest that the population has already reached its peak and is showing a trend of decline. Source: U.S. Census Bureau Population Estimates Program (PEP).
When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).
Data Coverage:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Louisville town Population by Year. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Chart and table of population level and growth rate for the state of New York from 1900 to 2024.