Facebook
TwitterThis graph shows the population density in the federal state of New York from 1960 to 2018. In 2018, the population density of New York stood at 414.7 residents per square mile of land area.
Facebook
TwitterIn 2023, Washington, D.C. had the highest population density in the United States, with 11,130.69 people per square mile. As a whole, there were about 94.83 residents per square mile in the U.S., and Alaska was the state with the lowest population density, with 1.29 residents per square mile. The problem of population density Simply put, population density is the population of a country divided by the area of the country. While this can be an interesting measure of how many people live in a country and how large the country is, it does not account for the degree of urbanization, or the share of people who live in urban centers. For example, Russia is the largest country in the world and has a comparatively low population, so its population density is very low. However, much of the country is uninhabited, so cities in Russia are much more densely populated than the rest of the country. Urbanization in the United States While the United States is not very densely populated compared to other countries, its population density has increased significantly over the past few decades. The degree of urbanization has also increased, and well over half of the population lives in urban centers.
Facebook
TwitterPopulation Numbers By New York City Neighborhood Tabulation Areas The data was collected from Census Bureaus' Decennial data dissemination (SF1). Neighborhood Tabulation Areas (NTAs), are aggregations of census tracts that are subsets of New York City's 55 Public Use Microdata Areas (PUMAs). Primarily due to these constraints, NTA boundaries and their associated names may not definitively represent neighborhoods. This report shows change in population from 2000 to 2010 for each NTA. Compiled by the Population Division – New York City Department of City Planning.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The codes attached are used to support our study. Each of these codes is exported from ArcMap where they were constructed using ModelBuilder.Our study area focuses on New York City, which provides a data-rich urban environment with extreme variations in local population density and diverse types of input data in which to construct multiple methods. In this study area we can then compare the efficacy of multiple methodologies, which employ a strong binary mask paired with a density variable directly derived from the binary mask. We test the following methodologies:
Land areas binary mask
Building footprint binary mask
Building footprint binary mask and area density variable
Building footprints binary mask and volume density variable
Residential building footprint binary mask
Residential building footprint binary mask and area density variable
Residential building footprint binary mask and volume density variable
Facebook
TwitterThis resource is a member of a series. The TIGER/Line shapefiles and related database files (.dbf) are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) System (MTS). The MTS represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line shapefile is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. Census tracts are small, relatively permanent statistical subdivisions of a county or equivalent entity and were defined by local participants as part of the 2020 Census Participant Statistical Areas Program. The Census Bureau delineated the census tracts in situations where no local participant existed or where all the potential participants declined to participate. The primary purpose of census tracts is to provide a stable set of geographic units for the presentation of census data and comparison back to previous decennial censuses. Census tracts generally have a population size between 1,200 and 8,000 people, with an optimum size of 4,000 people. When first delineated, census tracts were designed to be homogeneous with respect to population characteristics, economic status, and living conditions. The spatial size of census tracts varies widely depending on the density of settlement. Physical changes in street patterns caused by highway construction, new development, and so forth, may require boundary revisions. In addition, census tracts occasionally are split due to population growth, or combined because of substantial population decline. Census tract boundaries generally follow visible and identifiable features. They may follow legal boundaries such as minor civil division or incorporated place boundaries in some states and situations to allow for census tract-to-governmental unit relationships where the governmental boundaries tend to remain unchanged between censuses. State and county boundaries always are census tract boundaries in the standard Census Bureau geographic hierarchy. In a few rare instances, a census tract may consist of noncontiguous areas. These noncontiguous areas may occur where the census tracts are coextensive with all or parts of legal entities that are themselves noncontiguous.
Facebook
TwitterAttribution-ShareAlike 3.0 (CC BY-SA 3.0)https://creativecommons.org/licenses/by-sa/3.0/
License information was derived automatically
I wanted to make some geospatial visualizations to convey the current severity of COVID19 in different parts of the U.S..
I liked the NYTimes COVID dataset, but it was lacking information on county boundary shape data, population per county, new cases / deaths per day, and per capita calculations, and county demographics.
After a lot of work tracking down the different data sources I wanted and doing all of the data wrangling and joins in python, I wanted to open-source the final enriched data set in order to give others a head start in their COVID-19 related analytic, modeling, and visualization efforts.
This dataset is enriched with county shapes, county center point coordinates, 2019 census population estimates, county population densities, cases and deaths per capita, and calculated per day cases / deaths metrics. It contains daily data per county back to January, allowing for analyizng changes over time.
UPDATE: I have also included demographic information per county, including ages, races, and gender breakdown. This could help determine which counties are most susceptible to an outbreak.
Geospatial analysis and visualization - Which counties are currently getting hit the hardest (per capita and totals)? - What patterns are there in the spread of the virus across counties? (network based spread simulations using county center lat / lons) -county population densities play a role in how quickly the virus spreads? -how does a specific county/state cases and deaths compare to other counties/states? Join with other county level datasets easily (with fips code column)
See the column descriptions for more details on the dataset
COVID-19 U.S. Time-lapse: Confirmed Cases per County (per capita)
https://github.com/ringhilterra/enriched-covid19-data/blob/master/example_viz/covid-cases-final-04-06.gif?raw=true" alt="">-
Facebook
TwitterThe TIGER/Line shapefiles and related database files (.dbf) are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line shapefile is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. Census tracts are small, relatively permanent statistical subdivisions of a county or equivalent entity, and were defined by local participants as part of the 2020 Census Participant Statistical Areas Program. The Census Bureau delineated the census tracts in situations where no local participant existed or where all the potential participants declined to participate. The primary purpose of census tracts is to provide a stable set of geographic units for the presentation of census data and comparison back to previous decennial censuses. Census tracts generally have a population size between 1,200 and 8,000 people, with an optimum size of 4,000 people. When first delineated, census tracts were designed to be homogeneous with respect to population characteristics, economic status, and living conditions. The spatial size of census tracts varies widely depending on the density of settlement. Physical changes in street patterns caused by highway construction, new development, and so forth, may require boundary revisions. In addition, census tracts occasionally are split due to population growth, or combined as a result of substantial population decline. Census tract boundaries generally follow visible and identifiable features. They may follow legal boundaries such as minor civil division (MCD) or incorporated place boundaries in some States and situations to allow for census tract-to-governmental unit relationships where the governmental boundaries tend to remain unchanged between censuses. State and county boundaries always are census tract boundaries in the standard census geographic hierarchy. In a few rare instances, a census tract may consist of noncontiguous areas. These noncontiguous areas may occur where the census tracts are coextensive with all or parts of legal entities that are themselves noncontiguous. For the 2010 Census, the census tract code range of 9400 through 9499 was enforced for census tracts that include a majority American Indian population according to Census 2000 data and/or their area was primarily covered by federally recognized American Indian reservations and/or off-reservation trust lands; the code range 9800 through 9899 was enforced for those census tracts that contained little or no population and represented a relatively large special land use area such as a National Park, military installation, or a business/industrial park; and the code range 9900 through 9998 was enforced for those census tracts that contained only water area, no land area.
Facebook
TwitterDataset Summary About this data: This layer presents the USA 2020 Census tracts within the City of Rochester boundary. The geography is sourced from US Census Bureau 2020 TIGER FGDB (National Sub-State) and cut by the City of Rochester boundary. Data Dictionary: STATE_ABBR: The two-letter abbreviation for a state (such as NY). STATE_FIPS: The two-digit Federal Information Processing Standards (FIPS) code assigned to each US state. New York State is 36. COUNTY_FIP: The three-digit Federal Information Processing Standards (FIPS) code assigned to each US county. Monroe County is 055. STCO_FIPS: The five-digit Federal Information Processing Standards (FIPS) code assigned to iedntify a unique county, typically as a concatenation of the State FIPS code and the County FIPS code. TRACT_FIPS: The six-digit number assigned to each census tract in a US county. FIPS: A unique geographic identifier, typically as a concatenation of State FIPS code, County FIPS code, and Census tract code. POPULATION: The population of a census tract. POP_SQMI: The population per square mile of a census tract. SQMI: The size of a census tract in square miles. Division: The name of the City of Rochester data division that the census tract falls in to. Source: This data comes from the Census Bureau.
Facebook
TwitterThe EcoTrends project was established in 2004 by Dr. Debra Peters (Jornada Basin LTER, USDA-ARS Jornada Experimental Range) and Dr. Ariel Lugo (Luquillo LTER, USDA-FS Luquillo Experimental Forest) to support the collection and analysis of long-term ecological datasets. The project is a large synthesis effort focused on improving the accessibility and use of long-term data. At present, there are ~50 state and federally funded research sites that are participating and contributing to the EcoTrends project, including all 26 Long-Term Ecological Research (LTER) sites and sites funded by the USDA Agriculture Research Service (ARS), USDA Forest Service, US Department of Energy, US Geological Survey (USGS) and numerous universities. Data from the EcoTrends project are available through an exploratory web portal (http://www.ecotrends.info). This web portal enables the continuation of data compilation and accessibility by users through an interactive web application. Ongoing data compilation is updated through both manual and automatic processing as part of the LTER Provenance Aware Synthesis Tracking Architecture (PASTA). The web portal is a collaboration between the Jornada LTER and the LTER Network Office. The following dataset from Harvard Forest (HFR) contains human population density measurements in numberPerKilometerSquared units and were aggregated to a yearly timescale.
Facebook
TwitterAttribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
License information was derived automatically
Disclaimer: These data are updated by the author and are not an official product of the Federal Reserve Bank of Cleveland.This project provides two sets of migration estimates for the major US metro areas. The first series measures net migration of people to and from the urban neighborhoods of the metro areas. The second series covers all neighborhoods but breaks down net migration to other regions by four region types: (1) high-cost metros, (2) affordable, large metros, (3) midsized metros, and (4) small metros and rural areas. These series were introduced in a Cleveland Fed District Data Brief entitled “Urban and Regional Migration Estimates: Will Your City Recover from the Pandemic?"The migration estimates in this project are created with data from the Federal Reserve Bank of New York/Equifax Consumer Credit Panel (CCP). The CCP is a 5 percent random sample of the credit histories maintained by Equifax. The CCP reports the census block of residence for over 10 million individuals each quarter. Each month, Equifax receives individuals’ addresses, along with reports of debt balances and payments, from creditors (mortgage lenders, credit card issuers, student loan servicers, etc.). An algorithm maintained by Equifax considers all of the addresses reported for an individual and identifies the individual’s most likely current address. Equifax anonymizes the data before they are added to the CCP, removing names, addresses, and Social Security numbers (SSNs). In lieu of mailing addresses, the census block of the address is added to the CCP. Equifax creates a unique, anonymous identifier to enable researchers to build individuals’ panels. The panel nature of the data allows us to observe when someone has migrated and is living in a census block different from the one they lived in at the end of the preceding quarter. For more details about the CCP and its use in measuring migration, see Lee and Van der Klaauw (2010) and DeWaard, Johnson and Whitaker (2019). DefinitionsMetropolitan areaThe metropolitan areas in these data are combined statistical areas. This is the most aggregate definition of metro areas, and it combines Washington DC with Baltimore, San Jose with San Francisco, Akron with Cleveland, etc. Metro areas are combinations of counties that are tightly linked by worker commutes and other economic activity. All counties outside of metropolitan areas are tracked as parts of a rural commuting zone (CZ). CZs are also groups of counties linked by commuting, but CZ definitions cover all counties, both metropolitan and non-metropolitan. High-cost metropolitan areasHigh-cost metro areas are those where the median list price for a house was more than $200 per square foot on average between April 2017 and April 2022. These areas include San Francisco-San Jose, New York, San Diego, Los Angeles, Seattle, Boston, Miami, Sacramento, Denver, Salt Lake City, Portland, and Washington-Baltimore. Other Types of RegionsMetro areas with populations above 2 million and house price averages below $200 per square foot are categorized as affordable, large metros. Metro areas with populations between 500,000 and 2 million are categorized as mid-sized metros, regardless of house prices. All remaining counties are in the small metro and rural category.To obtain a metro area's total net migration, sum the four net migration values for the the four types of regions.Urban neighborhoodCensus tracts are designated as urban if they have a population density above 7,000 people per square mile. High density neighborhoods can support walkable retail districts and high-frequency public transportation. They are more likely to have the “street life” that people associate with living in an urban rather than a suburban area. The threshold of 7,000 people per square mile was selected because it was the average density in the largest US cities in the 1930 census. Before World War II, workplaces, shopping, schools and parks had to be accessible on foot. Tracts are also designated as urban if more than half of their housing units were built before WWII and they have a population density above 2,000 people per square mile. The lower population density threshold for the pre-war neighborhoods recognizes that many urban tracts have lost population since the 1960s. While the street grids usually remain, the area also needs su
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Includes the error tables, ESRI ArcMap document, accompanying ESRI Geodatabase, ESRI Toolkit and the Python scripts/codes used in the analysis. The error tables are by Census Block for each tested method as well as the calculated grouped error statistics.Our study area focuses on New York City, which provides a data-rich urban environment with extreme variations in local population density and diverse types of input data in which to construct multiple methods. In this study area we can then compare the efficacy of multiple methodologies, which employ a strong binary mask paired with a density variable directly derived from the binary mask. We test the following methodologies:1. Land areas binary mask2. Building footprint binary mask3. Building footprint binary mask and area density variable4. Building footprints binary mask and volume density variable5. Residential building footprint binary mask6. Residential building footprint binary mask and area density variable7. Residential building footprint binary mask and volume density variable
Facebook
TwitterThe EcoTrends project was established in 2004 by Dr. Debra Peters (Jornada Basin LTER, USDA-ARS Jornada Experimental Range) and Dr. Ariel Lugo (Luquillo LTER, USDA-FS Luquillo Experimental Forest) to support the collection and analysis of long-term ecological datasets. The project is a large synthesis effort focused on improving the accessibility and use of long-term data. At present, there are ~50 state and federally funded research sites that are participating and contributing to the EcoTrends project, including all 26 Long-Term Ecological Research (LTER) sites and sites funded by the USDA Agriculture Research Service (ARS), USDA Forest Service, US Department of Energy, US Geological Survey (USGS) and numerous universities. Data from the EcoTrends project are available through an exploratory web portal (http://www.ecotrends.info). This web portal enables the continuation of data compilation and accessibility by users through an interactive web application. Ongoing data compilation is updated through both manual and automatic processing as part of the LTER Provenance Aware Synthesis Tracking Architecture (PASTA). The web portal is a collaboration between the Jornada LTER and the LTER Network Office. The following dataset from Harvard Forest (HFR) contains percent urban population measurements in percent units and were aggregated to a yearly timescale.
Facebook
TwitterThis data set contains population densities of U.S. counties based on land area size and 2010 census data. I have not found a central repository for all U.S. counties, so I started with only Texas and New York counties. Data sources are shown in the file descriptions and in the provenance metadata.
There are many use cases for these data, but I specifically compiled them to be used with the UNCOVER COVID-19 Challenge data set. Population density will likely influence a given county's baseline contagion rate (i.e. the contagion rate before social distancing policies, PPE use, and other preventative measures are put in place).
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The features in the order shown under “Feature name” are: GDP, inter-state distance based on lat-long coordinates, gender, ethnicity, quality of health care facility, number of homeless people, total infected and death, population density, airport passenger traffic, age group, days for infection and death to peak, number of people tested for COVID-19, days elapsed between first reported infection and the imposition of lockdown measures at a given state.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
New York has become one of the worst-affected COVID-19 hotspots and a pandemic epicenter due to the ongoing crisis. This paper identifies the impact of the pandemic and the effectiveness of government policies on human mobility by analyzing multiple datasets available at both macro and micro levels for New York City. Using data sources related to population density, aggregated population mobility, public rail transit use, vehicle use, hotspot and non-hotspot movement patterns, and human activity agglomeration, we analyzed the inter-borough and intra-borough movement for New York City by aggregating the data at the borough level. We also assessed the internodal population movement amongst hotspot and non-hotspot points of interest for the month of March and April 2020. Results indicate a drop of about 80% in people’s mobility in the city, beginning in mid-March. The movement to and from Manhattan showed the most disruption for both public transit and road traffic. The city saw its first case on March 1, 2020, but disruptions in mobility can be seen only after the second week of March when the shelter in place orders was put in effect. Owing to people working from home and adhering to stay-at-home orders, Manhattan saw the largest disruption to both inter- and intra-borough movement. But the risk of spread of infection in Manhattan turned out to be high because of higher hotspot-linked movements. The stay-at-home restrictions also led to an increased population density in Brooklyn and Queens as people were not commuting to Manhattan. Insights obtained from this study would help policymakers better understand human behavior and their response to the news and governmental policies.
Facebook
TwitterIn 2023, the per capita personal income in New York was 82,323 U.S. dollars. Per capita personal income is calculated as the personal income of the residents of a given area divided by the resident population of the area.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Multiple linear regression table with R2, coefficient and p value for input features (population density, normalized busy airport, pre-infected count, pre-death count) and observed factors (post-infected count and post-death count).
Facebook
TwitterIn 2021, the per capita income in San Francisco city was at 80,383 U.S. dollars. San Francisco was followed in this regard by Seattle and Washington, D.C. The most populated cities in the U.S. are ranked by per capita income in this statistic. While New York, New York had the highest population, San Francisco had the highest per capita income in 2021. The median household income in San Francisco in 2020 was 119,136 dollars, the highest among the most populated cities in the United States.
Facebook
TwitterThe 2022 cartographic boundary shapefiles are simplified representations of selected geographic areas from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). These boundary files are specifically designed for small-scale thematic mapping. When possible, generalization is performed with the intent to maintain the hierarchical relationships among geographies and to maintain the alignment of geographies within a file set for a given year. Geographic areas may not align with the same areas from another year. Some geographies are available as nation-based files while others are available only as state-based files. Census tracts are small, relatively permanent statistical subdivisions of a county or equivalent entity, and were defined by local participants as part of the 2020 Census Participant Statistical Areas Program. The Census Bureau delineated the census tracts in situations where no local participant existed or where all the potential participants declined to participate. The primary purpose of census tracts is to provide a stable set of geographic units for the presentation of census data and comparison back to previous decennial censuses. Census tracts generally have a population size between 1,200 and 8,000 people, with an optimum size of 4,000 people. When first delineated, census tracts were designed to be homogeneous with respect to population characteristics, economic status, and living conditions. The spatial size of census tracts varies widely depending on the density of settlement. Physical changes in street patterns caused by highway construction, new development, and so forth, may require boundary revisions. In addition, census tracts occasionally are split due to population growth, or combined as a result of substantial population decline. Census tract boundaries generally follow visible and identifiable features. They may follow legal boundaries such as minor civil division (MCD) or incorporated place boundaries in some states and situations to allow for census tract-to-governmental unit relationships where the governmental boundaries tend to remain unchanged between censuses. State and county boundaries always are census tract boundaries in the standard census geographic hierarchy. In a few rare instances, a census tract may consist of noncontiguous areas. These noncontiguous areas may occur where the census tracts are coextensive with all or parts of legal entities that are themselves noncontiguous. For the 2010 Census and beyond, the census tract code range of 9400 through 9499 was enforced for census tracts that include a majority American Indian population according to Census 2000 data and/or their area was primarily covered by federally recognized American Indian reservations and/or off-reservation trust lands; the code range 9800 through 9899 was enforced for those census tracts that contained little or no population and represented a relatively large special land use area such as a National Park, military installation, or a business/industrial park; and the code range 9900 through 9998 was enforced for those census tracts that contained only water area, no land area.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The Corps Water Management System (CWMS) includes four interrelated models to assist with water management for the basin:
The Chemung River Basin is located within the states ofPennsylvania and New York. Of the 2,595 square miles that make up the basin, approximately 1,742 square miles or 67% of the basin is in New York with the remaining 853 square miles or 33% within Pennsylvania. The basin is characterized by rolling to flat-topped uplands with steep alluvial valleys.
The Chemung River extends for 46 miles from its headwaters near Painted Post in Steuben County, NY where it is formed by the confluence of the Cohocton and Tioga Rivers, to its confluence with the Susquehanna River in Pennsylvania. Besides the Tioga and Cohocton Rivers, its major tributaries include Canisteo and Cowanesque Rivers.
According to the 2010 census, the population of the Chemung River basin is approximately 223,450, which is about 5.4% of the total Susquehanna River Watershed population. Majority of the population (about 81%) resides in the portion of the watershed that lies within New York. The major population centers in New York include the cities of Hornell, Corning and Elmira. There are several levee systems within the Chemung River basin – Avoca, Addison, Bath, Corning, Painted Post, Gang Mills, Canisteo, and Elmira in New York and Athens, Elkland, Lawrenceville, and Tioga in Pennsylvania – providing protection to population centers such as the Village of Addison, City of Hornell, Village of Bath, Gang Mills in the Town of Erwin, City of Elmira, Village of Avoca, City of Corning, Villages of Painted Post, Riverside, South Corning, Village of Canisteo in New York, and Cities of Elkland, Lawrenceville, and Tioga in Pennsylvania.
There are five USACE dams in the Chemung River basin - Almond Dam located on Canacadea Creek, Arkport Dam located on Canisteo River, Cowanesque Dam located on the Cowanesque River, Tioga Dam located on the Tioga River, and Hammond Dam located on Crooked Creek.
Facebook
TwitterThis graph shows the population density in the federal state of New York from 1960 to 2018. In 2018, the population density of New York stood at 414.7 residents per square mile of land area.