32 datasets found
  1. Population density in New York 1960-2018

    • statista.com
    Updated Aug 9, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Population density in New York 1960-2018 [Dataset]. https://www.statista.com/statistics/304695/new-york-population-density/
    Explore at:
    Dataset updated
    Aug 9, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    This graph shows the population density in the federal state of New York from 1960 to 2018. In 2018, the population density of New York stood at 414.7 residents per square mile of land area.

  2. d

    New York City Population By Neighborhood Tabulation Areas

    • catalog.data.gov
    • data.cityofnewyork.us
    • +4more
    Updated Sep 2, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.cityofnewyork.us (2023). New York City Population By Neighborhood Tabulation Areas [Dataset]. https://catalog.data.gov/dataset/new-york-city-population-by-neighborhood-tabulation-areas
    Explore at:
    Dataset updated
    Sep 2, 2023
    Dataset provided by
    data.cityofnewyork.us
    Area covered
    New York
    Description

    Population Numbers By New York City Neighborhood Tabulation Areas The data was collected from Census Bureaus' Decennial data dissemination (SF1). Neighborhood Tabulation Areas (NTAs), are aggregations of census tracts that are subsets of New York City's 55 Public Use Microdata Areas (PUMAs). Primarily due to these constraints, NTA boundaries and their associated names may not definitively represent neighborhoods. This report shows change in population from 2000 to 2010 for each NTA. Compiled by the Population Division – New York City Department of City Planning.

  3. Population density in the U.S. 2023, by state

    • statista.com
    Updated Dec 3, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Population density in the U.S. 2023, by state [Dataset]. https://www.statista.com/statistics/183588/population-density-in-the-federal-states-of-the-us/
    Explore at:
    Dataset updated
    Dec 3, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2023
    Area covered
    United States
    Description

    In 2023, Washington, D.C. had the highest population density in the United States, with 11,130.69 people per square mile. As a whole, there were about 94.83 residents per square mile in the U.S., and Alaska was the state with the lowest population density, with 1.29 residents per square mile. The problem of population density Simply put, population density is the population of a country divided by the area of the country. While this can be an interesting measure of how many people live in a country and how large the country is, it does not account for the degree of urbanization, or the share of people who live in urban centers. For example, Russia is the largest country in the world and has a comparatively low population, so its population density is very low. However, much of the country is uninhabited, so cities in Russia are much more densely populated than the rest of the country. Urbanization in the United States While the United States is not very densely populated compared to other countries, its population density has increased significantly over the past few decades. The degree of urbanization has also increased, and well over half of the population lives in urban centers.

  4. TIGER/Line Shapefile, 2022, State, New York, NY, Census Tract

    • catalog.data.gov
    Updated Jan 28, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Department of Commerce, U.S. Census Bureau, Geography Division, Spatial Data Collection and Products Branch (Point of Contact) (2024). TIGER/Line Shapefile, 2022, State, New York, NY, Census Tract [Dataset]. https://catalog.data.gov/dataset/tiger-line-shapefile-2022-state-new-york-ny-census-tract
    Explore at:
    Dataset updated
    Jan 28, 2024
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Area covered
    New York
    Description

    The TIGER/Line shapefiles and related database files (.dbf) are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line shapefile is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. Census tracts are small, relatively permanent statistical subdivisions of a county or equivalent entity, and were defined by local participants as part of the 2020 Census Participant Statistical Areas Program. The Census Bureau delineated the census tracts in situations where no local participant existed or where all the potential participants declined to participate. The primary purpose of census tracts is to provide a stable set of geographic units for the presentation of census data and comparison back to previous decennial censuses. Census tracts generally have a population size between 1,200 and 8,000 people, with an optimum size of 4,000 people. When first delineated, census tracts were designed to be homogeneous with respect to population characteristics, economic status, and living conditions. The spatial size of census tracts varies widely depending on the density of settlement. Physical changes in street patterns caused by highway construction, new development, and so forth, may require boundary revisions. In addition, census tracts occasionally are split due to population growth, or combined as a result of substantial population decline. Census tract boundaries generally follow visible and identifiable features. They may follow legal boundaries such as minor civil division (MCD) or incorporated place boundaries in some States and situations to allow for census tract-to-governmental unit relationships where the governmental boundaries tend to remain unchanged between censuses. State and county boundaries always are census tract boundaries in the standard census geographic hierarchy. In a few rare instances, a census tract may consist of noncontiguous areas. These noncontiguous areas may occur where the census tracts are coextensive with all or parts of legal entities that are themselves noncontiguous. For the 2010 Census, the census tract code range of 9400 through 9499 was enforced for census tracts that include a majority American Indian population according to Census 2000 data and/or their area was primarily covered by federally recognized American Indian reservations and/or off-reservation trust lands; the code range 9800 through 9899 was enforced for those census tracts that contained little or no population and represented a relatively large special land use area such as a National Park, military installation, or a business/industrial park; and the code range 9900 through 9998 was enforced for those census tracts that contained only water area, no land area.

  5. M

    New York City Metro Area Population 1950-2025

    • macrotrends.net
    csv
    Updated Feb 28, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    MACROTRENDS (2025). New York City Metro Area Population 1950-2025 [Dataset]. https://www.macrotrends.net/global-metrics/cities/23083/new-york-city/population
    Explore at:
    csvAvailable download formats
    Dataset updated
    Feb 28, 2025
    Dataset authored and provided by
    MACROTRENDS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 31, 1950 - Mar 17, 2025
    Area covered
    New York Metropolitan Area, United States
    Description

    Chart and table of population level and growth rate for the New York City metro area from 1950 to 2025. United Nations population projections are also included through the year 2035.

  6. 2022 Cartographic Boundary File (KML), Current Census Tract for New York,...

    • catalog.data.gov
    Updated Dec 14, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Department of Commerce, U.S. Census Bureau, Geography Division, Customer Engagement Branch (Point of Contact) (2023). 2022 Cartographic Boundary File (KML), Current Census Tract for New York, 1:500,000 [Dataset]. https://catalog.data.gov/dataset/2022-cartographic-boundary-file-kml-current-census-tract-for-new-york-1-500000
    Explore at:
    Dataset updated
    Dec 14, 2023
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Area covered
    New York
    Description

    The 2022 cartographic boundary KMLs are simplified representations of selected geographic areas from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). These boundary files are specifically designed for small-scale thematic mapping. When possible, generalization is performed with the intent to maintain the hierarchical relationships among geographies and to maintain the alignment of geographies within a file set for a given year. Geographic areas may not align with the same areas from another year. Some geographies are available as nation-based files while others are available only as state-based files. Census tracts are small, relatively permanent statistical subdivisions of a county or equivalent entity, and were defined by local participants as part of the 2020 Census Participant Statistical Areas Program. The Census Bureau delineated the census tracts in situations where no local participant existed or where all the potential participants declined to participate. The primary purpose of census tracts is to provide a stable set of geographic units for the presentation of census data and comparison back to previous decennial censuses. Census tracts generally have a population size between 1,200 and 8,000 people, with an optimum size of 4,000 people. When first delineated, census tracts were designed to be homogeneous with respect to population characteristics, economic status, and living conditions. The spatial size of census tracts varies widely depending on the density of settlement. Physical changes in street patterns caused by highway construction, new development, and so forth, may require boundary revisions. In addition, census tracts occasionally are split due to population growth, or combined as a result of substantial population decline. Census tract boundaries generally follow visible and identifiable features. They may follow legal boundaries such as minor civil division (MCD) or incorporated place boundaries in some states and situations to allow for census tract-to-governmental unit relationships where the governmental boundaries tend to remain unchanged between censuses. State and county boundaries always are census tract boundaries in the standard census geographic hierarchy. In a few rare instances, a census tract may consist of noncontiguous areas. These noncontiguous areas may occur where the census tracts are coextensive with all or parts of legal entities that are themselves noncontiguous. For the 2010 Census and beyond, the census tract code range of 9400 through 9499 was enforced for census tracts that include a majority American Indian population according to Census 2000 data and/or their area was primarily covered by federally recognized American Indian reservations and/or off-reservation trust lands; the code range 9800 through 9899 was enforced for those census tracts that contained little or no population and represented a relatively large special land use area such as a National Park, military installation, or a business/industrial park; and the code range 9900 through 9998 was enforced for those census tracts that contained only water area, no land area.

  7. N

    2020 Census Tracts

    • data.cityofnewyork.us
    • catalog.data.gov
    Updated Dec 18, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of City Planning (DCP) (2024). 2020 Census Tracts [Dataset]. https://data.cityofnewyork.us/City-Government/2020-Census-Tracts/63ge-mke6
    Explore at:
    csv, application/rssxml, tsv, kml, kmz, xml, application/rdfxml, application/geo+jsonAvailable download formats
    Dataset updated
    Dec 18, 2024
    Dataset authored and provided by
    Department of City Planning (DCP)
    Description

    2020 Census Tracts from the US Census for New York City. These boundary files are derived from the US Census Bureau's TIGER data products and have been geographically modified to fit the New York City base map. All previously released versions of this data are available at BYTES of the BIG APPLE- Archive.

  8. Codes

    • figshare.com
    zip
    Updated Jan 2, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Steven Rubinyi (2020). Codes [Dataset]. http://doi.org/10.6084/m9.figshare.10262501.v2
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jan 2, 2020
    Dataset provided by
    figshare
    Authors
    Steven Rubinyi
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The codes attached are used to support our study. Each of these codes is exported from ArcMap where they were constructed using ModelBuilder.Our study area focuses on New York City, which provides a data-rich urban environment with extreme variations in local population density and diverse types of input data in which to construct multiple methods. In this study area we can then compare the efficacy of multiple methodologies, which employ a strong binary mask paired with a density variable directly derived from the binary mask. We test the following methodologies:

    1. Land areas binary mask

    2. Building footprint binary mask

    3. Building footprint binary mask and area density variable

    4. Building footprints binary mask and volume density variable

    5. Residential building footprint binary mask

    6. Residential building footprint binary mask and area density variable

    7. Residential building footprint binary mask and volume density variable

  9. Population of the United States in 1900, by state and ethnic status

    • statista.com
    Updated Oct 2, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2023). Population of the United States in 1900, by state and ethnic status [Dataset]. https://www.statista.com/statistics/1067122/united-states-population-state-ethnicity-1900/
    Explore at:
    Dataset updated
    Oct 2, 2023
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    1900
    Area covered
    United States
    Description

    New York was the most populous state in the union in the year 1900. It had the largest white population, for both native born and foreign born persons, and together these groups made up over 7.1 million of New York's 7.2 million inhabitants at this time. The United States' industrial centers to the north and northeast were one of the most important economic draws during this period, and states in these regions had the largest foreign born white populations. Ethnic minorities Immigration into the agricultural southern states was much lower than the north, and these states had the largest Black populations due to the legacy of slavery - this balance would begin to shift in the following decades as a large share of the Black population migrated to urban centers to the north during the Great Migration. The Japanese and Chinese populations at this time were more concentrated in the West, as these states were the most common point of entry for Asians into the country. The states with the largest Native American populations were to the west and southwest, due to the legacy of forced displacement - this included the Indian Territory, an unorganized and independent territory assigned to the Native American population in the early 1800s, although this was incorporated into Oklahoma when it was admitted into the union in 1907. Additionally, non-taxpaying Native Americans were historically omitted from the U.S. Census, as they usually lived in separate communities and could not vote or hold office - more of an effort was made to count all Native Americans from 1890 onward, although there are likely inaccuracies in the figures given here. Changing distribution Internal migration in the 20th century greatly changed population distribution across the country, with California and Florida now ranking among the three most populous states in the U.S. today, while they were outside the top 20 in 1900. The growth of Western states' populations was largely due to the wave of internal migration during the Great Depression, where unemployment in the east saw many emigrate to "newer" states in search of opportunity, as well as significant immigration from Latin America (especially Mexico) and Asia since the mid-1900s.

  10. Population in the states of the U.S. 2024

    • statista.com
    Updated Jan 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Population in the states of the U.S. 2024 [Dataset]. https://www.statista.com/statistics/183497/population-in-the-federal-states-of-the-us/
    Explore at:
    Dataset updated
    Jan 3, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2024
    Area covered
    United States
    Description

    California was the state with the highest resident population in the United States in 2024, with 39.43 million people. Wyoming had the lowest population with about 590,000 residents. Living the American Dream Ever since the opening of the West in the United States, California has represented the American Dream for both Americans and immigrants to the U.S. The warm weather, appeal of Hollywood and Silicon Valley, as well as cities that stick in the imagination such as San Francisco and Los Angeles, help to encourage people to move to California. Californian demographics California is an extremely diverse state, as no one ethnicity is in the majority. Additionally, it has the highest percentage of foreign-born residents in the United States. By 2040, the population of California is expected to increase by almost 10 million residents, which goes to show that its appeal, both in reality and the imagination, is going nowhere fast.

  11. Population density and basic reproductive number of COVID-19 across United...

    • figshare.com
    application/gzip
    Updated Aug 24, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Karla Therese Sy; Laura F. White; Brooke E. Nichols (2020). Population density and basic reproductive number of COVID-19 across United States counties (Data and Code) [Dataset]. http://doi.org/10.6084/m9.figshare.12858062.v5
    Explore at:
    application/gzipAvailable download formats
    Dataset updated
    Aug 24, 2020
    Dataset provided by
    Figsharehttp://figshare.com/
    figshare
    Authors
    Karla Therese Sy; Laura F. White; Brooke E. Nichols
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    United States
    Description

    This repository includes:1. RData file that includes two data sets: (a) Data with all United State counties (n=3,221) (b) Data with United State counties with greater than 25 COVID-19 cases at the end of the exponential growth period (n=1,151)2. R code script to run the main and sensitivity analysis of the studyWork described in:Sy KTL, White LF, Nichols BE. Population density and basic reproductive number of COVID-19 across United States counties. Under Review, 2020.Original Data Sources:New York Times. Coronavirus (Covid-19) Data in the United States - https://github.com/nytimes/covid-19-data/blob/master/us-counties.csv

  12. f

    Table_3_Genomic profiling and spatial SEIR modeling of COVID-19 transmission...

    • figshare.com
    • frontiersin.figshare.com
    xlsx
    Updated Sep 27, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jonathan E. Bard; Na Jiang; Jamaal Emerson; Madeleine Bartz; Natalie A. Lamb; Brandon J. Marzullo; Alyssa Pohlman; Amanda Boccolucci; Norma J. Nowak; Donald A. Yergeau; Andrew T. Crooks; Jennifer A. Surtees (2024). Table_3_Genomic profiling and spatial SEIR modeling of COVID-19 transmission in Western New York.XLSX [Dataset]. http://doi.org/10.3389/fmicb.2024.1416580.s004
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Sep 27, 2024
    Dataset provided by
    Frontiers
    Authors
    Jonathan E. Bard; Na Jiang; Jamaal Emerson; Madeleine Bartz; Natalie A. Lamb; Brandon J. Marzullo; Alyssa Pohlman; Amanda Boccolucci; Norma J. Nowak; Donald A. Yergeau; Andrew T. Crooks; Jennifer A. Surtees
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    New York
    Description

    The COVID-19 pandemic has prompted an unprecedented global effort to understand and mitigate the spread of the SARS-CoV-2 virus. In this study, we present a comprehensive analysis of COVID-19 in Western New York (WNY), integrating individual patient-level genomic sequencing data with a spatially informed agent-based disease Susceptible-Exposed-Infectious-Recovered (SEIR) computational model. The integration of genomic and spatial data enables a multi-faceted exploration of the factors influencing the transmission patterns of COVID-19, including genetic variations in the viral genomes, population density, and movement dynamics in New York State (NYS). Our genomic analyses provide insights into the genetic heterogeneity of SARS-CoV-2 within a single lineage, at region-specific resolutions, while our population analyses provide models for SARS-CoV-2 lineage transmission. Together, our findings shed light on localized dynamics of the pandemic, revealing potential cross-county transmission networks. This interdisciplinary approach, bridging genomics and spatial modeling, contributes to a more comprehensive understanding of COVID-19 dynamics. The results of this study have implications for future public health strategies, including guiding targeted interventions and resource allocations to control the spread of similar viruses.

  13. f

    Table_1_Genomic profiling and spatial SEIR modeling of COVID-19 transmission...

    • frontiersin.figshare.com
    xlsx
    Updated Sep 27, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jonathan E. Bard; Na Jiang; Jamaal Emerson; Madeleine Bartz; Natalie A. Lamb; Brandon J. Marzullo; Alyssa Pohlman; Amanda Boccolucci; Norma J. Nowak; Donald A. Yergeau; Andrew T. Crooks; Jennifer A. Surtees (2024). Table_1_Genomic profiling and spatial SEIR modeling of COVID-19 transmission in Western New York.XLSX [Dataset]. http://doi.org/10.3389/fmicb.2024.1416580.s002
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Sep 27, 2024
    Dataset provided by
    Frontiers
    Authors
    Jonathan E. Bard; Na Jiang; Jamaal Emerson; Madeleine Bartz; Natalie A. Lamb; Brandon J. Marzullo; Alyssa Pohlman; Amanda Boccolucci; Norma J. Nowak; Donald A. Yergeau; Andrew T. Crooks; Jennifer A. Surtees
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    New York
    Description

    The COVID-19 pandemic has prompted an unprecedented global effort to understand and mitigate the spread of the SARS-CoV-2 virus. In this study, we present a comprehensive analysis of COVID-19 in Western New York (WNY), integrating individual patient-level genomic sequencing data with a spatially informed agent-based disease Susceptible-Exposed-Infectious-Recovered (SEIR) computational model. The integration of genomic and spatial data enables a multi-faceted exploration of the factors influencing the transmission patterns of COVID-19, including genetic variations in the viral genomes, population density, and movement dynamics in New York State (NYS). Our genomic analyses provide insights into the genetic heterogeneity of SARS-CoV-2 within a single lineage, at region-specific resolutions, while our population analyses provide models for SARS-CoV-2 lineage transmission. Together, our findings shed light on localized dynamics of the pandemic, revealing potential cross-county transmission networks. This interdisciplinary approach, bridging genomics and spatial modeling, contributes to a more comprehensive understanding of COVID-19 dynamics. The results of this study have implications for future public health strategies, including guiding targeted interventions and resource allocations to control the spread of similar viruses.

  14. f

    Table_2_Genomic profiling and spatial SEIR modeling of COVID-19 transmission...

    • figshare.com
    xlsx
    Updated Sep 27, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jonathan E. Bard; Na Jiang; Jamaal Emerson; Madeleine Bartz; Natalie A. Lamb; Brandon J. Marzullo; Alyssa Pohlman; Amanda Boccolucci; Norma J. Nowak; Donald A. Yergeau; Andrew T. Crooks; Jennifer A. Surtees (2024). Table_2_Genomic profiling and spatial SEIR modeling of COVID-19 transmission in Western New York.XLSX [Dataset]. http://doi.org/10.3389/fmicb.2024.1416580.s003
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Sep 27, 2024
    Dataset provided by
    Frontiers
    Authors
    Jonathan E. Bard; Na Jiang; Jamaal Emerson; Madeleine Bartz; Natalie A. Lamb; Brandon J. Marzullo; Alyssa Pohlman; Amanda Boccolucci; Norma J. Nowak; Donald A. Yergeau; Andrew T. Crooks; Jennifer A. Surtees
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    New York
    Description

    The COVID-19 pandemic has prompted an unprecedented global effort to understand and mitigate the spread of the SARS-CoV-2 virus. In this study, we present a comprehensive analysis of COVID-19 in Western New York (WNY), integrating individual patient-level genomic sequencing data with a spatially informed agent-based disease Susceptible-Exposed-Infectious-Recovered (SEIR) computational model. The integration of genomic and spatial data enables a multi-faceted exploration of the factors influencing the transmission patterns of COVID-19, including genetic variations in the viral genomes, population density, and movement dynamics in New York State (NYS). Our genomic analyses provide insights into the genetic heterogeneity of SARS-CoV-2 within a single lineage, at region-specific resolutions, while our population analyses provide models for SARS-CoV-2 lineage transmission. Together, our findings shed light on localized dynamics of the pandemic, revealing potential cross-county transmission networks. This interdisciplinary approach, bridging genomics and spatial modeling, contributes to a more comprehensive understanding of COVID-19 dynamics. The results of this study have implications for future public health strategies, including guiding targeted interventions and resource allocations to control the spread of similar viruses.

  15. American Civil War: population of the Union states 1860-1870

    • statista.com
    Updated Aug 7, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). American Civil War: population of the Union states 1860-1870 [Dataset]. https://www.statista.com/statistics/1010460/population-union-states-1860-1870-thousands/
    Explore at:
    Dataset updated
    Aug 7, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    Prior to the American Civil War, New York, Pennsylvania, and Ohio were the most populous states in the Union, each with between two and four million inhabitants. Industrialization in the north was one of the key drivers of population growth during this period, through both internal and external migration, and Illinois saw the largest population growth during the 1860s largely due to the expansion of industry around Chicago. The gradual industrialization of the north in the early 1800s also contributed to the decline of slavery in the Union states, and the economic differences between the Union and Confederacy was a key factor in both the build-up to the Civil War, as well as the Union's eventual victory in 1865.

  16. 2016 Cartographic Boundary File, 2010 Urban Areas (UA) within 2010 County...

    • data.wu.ac.at
    html, zip
    Updated Jun 5, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    US Census Bureau, Department of Commerce (2017). 2016 Cartographic Boundary File, 2010 Urban Areas (UA) within 2010 County and Equivalent for New York, 1:500,000 [Dataset]. https://data.wu.ac.at/schema/data_gov/OGJiZGQxM2QtMWUyNC00YTI0LTkwZjgtZWI5OWM3Nzg2MjVk
    Explore at:
    html, zipAvailable download formats
    Dataset updated
    Jun 5, 2017
    Dataset provided by
    United States Department of Commercehttp://www.commerce.gov/
    United States Census Bureauhttp://census.gov/
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Area covered
    6cf00c20256364ac47eaf794d2daf7f342cfd739
    Description

    The 2016 cartographic boundary KMLs are simplified representations of selected geographic areas from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). These boundary files are specifically designed for small-scale thematic mapping. When possible, generalization is performed with the intent to maintain the hierarchical relationships among geographies and to maintain the alignment of geographies within a file set for a given year. Geographic areas may not align with the same areas from another year. Some geographies are available as nation-based files while others are available only as state-based files.

    The records in this file allow users to map the parts of Urban Areas that overlap a particular county.

    After each decennial census, the Census Bureau delineates urban areas that represent densely developed territory, encompassing residential, commercial, and other nonresidential urban land uses. In general, this territory consists of areas of high population density and urban land use resulting in a representation of the ""urban footprint."" There are two types of urban areas: urbanized areas (UAs) that contain 50,000 or more people and urban clusters (UCs) that contain at least 2,500 people, but fewer than 50,000 people (except in the U.S. Virgin Islands and Guam which each contain urban clusters with populations greater than 50,000). Each urban area is identified by a 5-character numeric census code that may contain leading zeroes.

    The primary legal divisions of most states are termed counties. In Louisiana, these divisions are known as parishes. In Alaska, which has no counties, the equivalent entities are the organized boroughs, city and boroughs, municipalities, and for the unorganized area, census areas. The latter are delineated cooperatively for statistical purposes by the State of Alaska and the Census Bureau. In four states (Maryland, Missouri, Nevada, and Virginia), there are one or more incorporated places that are independent of any county organization and thus constitute primary divisions of their states. These incorporated places are known as independent cities and are treated as equivalent entities for purposes of data presentation. The District of Columbia and Guam have no primary divisions, and each area is considered an equivalent entity for purposes of data presentation. The Census Bureau treats the following entities as equivalents of counties for purposes of data presentation: Municipios in Puerto Rico, Districts and Islands in American Samoa, Municipalities in the Commonwealth of the Northern Mariana Islands, and Islands in the U.S. Virgin Islands. The entire area of the United States, Puerto Rico, and the Island Areas is covered by counties or equivalent entities.

    The generalized boundaries for counties and equivalent entities are as of January 1, 2010.

  17. a

    Surging Seas: Risk Zone Map

    • amerigeo.org
    • data.amerigeoss.org
    Updated Feb 18, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    AmeriGEOSS (2019). Surging Seas: Risk Zone Map [Dataset]. https://www.amerigeo.org/datasets/8a4ffc7b7ab3404a8cd4e4576fae7c1d
    Explore at:
    Dataset updated
    Feb 18, 2019
    Dataset authored and provided by
    AmeriGEOSS
    Description

    IntroductionClimate Central’s Surging Seas: Risk Zone map shows areas vulnerable to near-term flooding from different combinations of sea level rise, storm surge, tides, and tsunamis, or to permanent submersion by long-term sea level rise. Within the U.S., it incorporates the latest, high-resolution, high-accuracy lidar elevation data supplied by NOAA (exceptions: see Sources), displays points of interest, and contains layers displaying social vulnerability, population density, and property value. Outside the U.S., it utilizes satellite-based elevation data from NASA in some locations, and Climate Central’s more accurate CoastalDEM in others (see Methods and Qualifiers). It provides the ability to search by location name or postal code.The accompanying Risk Finder is an interactive data toolkit available for some countries that provides local projections and assessments of exposure to sea level rise and coastal flooding tabulated for many sub-national districts, down to cities and postal codes in the U.S. Exposure assessments always include land and population, and in the U.S. extend to over 100 demographic, economic, infrastructure and environmental variables using data drawn mainly from federal sources, including NOAA, USGS, FEMA, DOT, DOE, DOI, EPA, FCC and the Census.This web tool was highlighted at the launch of The White House's Climate Data Initiative in March 2014. Climate Central's original Surging Seas was featured on NBC, CBS, and PBS U.S. national news, the cover of The New York Times, in hundreds of other stories, and in testimony for the U.S. Senate. The Atlantic Cities named it the most important map of 2012. Both the Risk Zone map and the Risk Finder are grounded in peer-reviewed science.Back to topMethods and QualifiersThis map is based on analysis of digital elevation models mosaicked together for near-total coverage of the global coast. Details and sources for U.S. and international data are below. Elevations are transformed so they are expressed relative to local high tide lines (Mean Higher High Water, or MHHW). A simple elevation threshold-based “bathtub method” is then applied to determine areas below different water levels, relative to MHHW. Within the U.S., areas below the selected water level but apparently not connected to the ocean at that level are shown in a stippled green (as opposed to solid blue) on the map. Outside the U.S., due to data quality issues and data limitations, all areas below the selected level are shown as solid blue, unless separated from the ocean by a ridge at least 20 meters (66 feet) above MHHW, in which case they are shown as not affected (no blue).Areas using lidar-based elevation data: U.S. coastal states except AlaskaElevation data used for parts of this map within the U.S. come almost entirely from ~5-meter horizontal resolution digital elevation models curated and distributed by NOAA in its Coastal Lidar collection, derived from high-accuracy laser-rangefinding measurements. The same data are used in NOAA’s Sea Level Rise Viewer. (High-resolution elevation data for Louisiana, southeast Virginia, and limited other areas comes from the U.S. Geological Survey (USGS)). Areas using CoastalDEM™ elevation data: Antigua and Barbuda, Barbados, Corn Island (Nicaragua), Dominica, Dominican Republic, Grenada, Guyana, Haiti, Jamaica, Saint Kitts and Nevis, Saint Lucia, Saint Vincent and the Grenadines, San Blas (Panama), Suriname, The Bahamas, Trinidad and Tobago. CoastalDEM™ is a proprietary high-accuracy bare earth elevation dataset developed especially for low-lying coastal areas by Climate Central. Use our contact form to request more information.Warning for areas using other elevation data (all other areas)Areas of this map not listed above use elevation data on a roughly 90-meter horizontal resolution grid derived from NASA’s Shuttle Radar Topography Mission (SRTM). SRTM provides surface elevations, not bare earth elevations, causing it to commonly overestimate elevations, especially in areas with dense and tall buildings or vegetation. Therefore, the map under-portrays areas that could be submerged at each water level, and exposure is greater than shown (Kulp and Strauss, 2016). However, SRTM includes error in both directions, so some areas showing exposure may not be at risk.SRTM data do not cover latitudes farther north than 60 degrees or farther south than 56 degrees, meaning that sparsely populated parts of Arctic Circle nations are not mapped here, and may show visual artifacts.Areas of this map in Alaska use elevation data on a roughly 60-meter horizontal resolution grid supplied by the U.S. Geological Survey (USGS). This data is referenced to a vertical reference frame from 1929, based on historic sea levels, and with no established conversion to modern reference frames. The data also do not take into account subsequent land uplift and subsidence, widespread in the state. As a consequence, low confidence should be placed in Alaska map portions.Flood control structures (U.S.)Levees, walls, dams or other features may protect some areas, especially at lower elevations. Levees and other flood control structures are included in this map within but not outside of the U.S., due to poor and missing data. Within the U.S., data limitations, such as an incomplete inventory of levees, and a lack of levee height data, still make assessing protection difficult. For this map, levees are assumed high and strong enough for flood protection. However, it is important to note that only 8% of monitored levees in the U.S. are rated in “Acceptable” condition (ASCE). Also note that the map implicitly includes unmapped levees and their heights, if broad enough to be effectively captured directly by the elevation data.For more information on how Surging Seas incorporates levees and elevation data in Louisiana, view our Louisiana levees and DEMs methods PDF. For more information on how Surging Seas incorporates dams in Massachusetts, view the Surging Seas column of the web tools comparison matrix for Massachusetts.ErrorErrors or omissions in elevation or levee data may lead to areas being misclassified. Furthermore, this analysis does not account for future erosion, marsh migration, or construction. As is general best practice, local detail should be verified with a site visit. Sites located in zones below a given water level may or may not be subject to flooding at that level, and sites shown as isolated may or may not be be so. Areas may be connected to water via porous bedrock geology, and also may also be connected via channels, holes, or passages for drainage that the elevation data fails to or cannot pick up. In addition, sea level rise may cause problems even in isolated low zones during rainstorms by inhibiting drainage.ConnectivityAt any water height, there will be isolated, low-lying areas whose elevation falls below the water level, but are protected from coastal flooding by either man-made flood control structures (such as levees), or the natural topography of the surrounding land. In areas using lidar-based elevation data or CoastalDEM (see above), elevation data is accurate enough that non-connected areas can be clearly identified and treated separately in analysis (these areas are colored green on the map). In the U.S., levee data are complete enough to factor levees into determining connectivity as well.However, in other areas, elevation data is much less accurate, and noisy error often produces “speckled” artifacts in the flood maps, commonly in areas that should show complete inundation. Removing non-connected areas in these places could greatly underestimate the potential for flood exposure. For this reason, in these regions, the only areas removed from the map and excluded from analysis are separated from the ocean by a ridge of at least 20 meters (66 feet) above the local high tide line, according to the data, so coastal flooding would almost certainly be impossible (e.g., the Caspian Sea region).Back to topData LayersWater Level | Projections | Legend | Social Vulnerability | Population | Ethnicity | Income | Property | LandmarksWater LevelWater level means feet or meters above the local high tide line (“Mean Higher High Water”) instead of standard elevation. Methods described above explain how each map is generated based on a selected water level. Water can reach different levels in different time frames through combinations of sea level rise, tide and storm surge. Tide gauges shown on the map show related projections (see just below).The highest water levels on this map (10, 20 and 30 meters) provide reference points for possible flood risk from tsunamis, in regions prone to them.

  18. Data from: Victims' Ratings of Police Services in New York and Texas,...

    • catalog.data.gov
    • s.cnmilf.com
    • +1more
    Updated Mar 12, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Institute of Justice (2025). Victims' Ratings of Police Services in New York and Texas, 1994-1995 Survey [Dataset]. https://catalog.data.gov/dataset/victims-ratings-of-police-services-in-new-york-and-texas-1994-1995-survey-ac5ab
    Explore at:
    Dataset updated
    Mar 12, 2025
    Dataset provided by
    National Institute of Justicehttp://nij.ojp.gov/
    Area covered
    Texas, New York
    Description

    The Family Violence Prevention and Services Act of 1984 (FVPSA) provided funding, through the Office of Victims of Crime in the United States Department of Justice, for 23 law enforcement training projects across the nation from 1986 to 1992. FVPSA was enacted to assist states in (1) developing and maintaining programs for the prevention of family violence and for the provision of shelter to victims and their dependents and (2) providing training and technical assistance for personnel who provide services for victims of family violence. The National Institute of Justice awarded a grant to the Urban Institute in late 1992 to evaluate the police training projects. One of the program evaluation methods the Urban Institute used was to conduct surveys of victims in New York and Texas. The primary objectives of the survey were to find out, from victims who had contact with law enforcement officers in the pre-training period and/or in the post-training period, what their experiences and evaluations of law enforcement services were, how police interventions had changed over time, and how the quality of services and changes related to the police training funded under the FVPSA. Following the conclusion of training, victims of domestic assault in New York and Texas were surveyed through victim service programs across each state. Similar, but not identical, instruments were used at the two sites. Service providers were asked to distribute the questionnaires to victims of physical or sexual abuse who had contact with law enforcement officers. The survey instruments were developed to obtain information and victim perceptions of the following key subject areas: history of abuse, characteristics of the victim-abuser relationship, demographic characteristics of the abuser and the victim, history of law enforcement contacts, services received from law enforcement officers, and victims' evaluations of these services. Variables on history of abuse include types of abuse experienced, first and last time physically or sexually abused, and frequency of abuse. Characteristics of the victim-abuser relationship include length of involvement with the abuser, living arrangement and relationship status at time of last abuse, number of children the victim had, and number of children at home at the time of last abuse. Demographic variables provide age, race/ethnicity, employment status, and education level of the abuser and the victim. Variables on the history of law enforcement contacts and services received include number of times law enforcement officers were called because of assaults on the victim, number of times law enforcement officers actually came to the scene, first and last time officers came to the scene, number of times officers were involved because of assaults on the victim, number of times officers were involved in the last 12 months, and type of law enforcement agencies the officers were from. Data are also included on city size by population, city median household income, county population density, county crime rate, and region of state of the responding law enforcement agencies. Over 30 variables record the victims' evaluations of the officers' responsiveness, helpfulness, and attitudes.

  19. U.S. population of metropolitan areas in 2023

    • statista.com
    Updated Jul 26, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). U.S. population of metropolitan areas in 2023 [Dataset]. https://www.statista.com/statistics/183600/population-of-metropolitan-areas-in-the-us/
    Explore at:
    Dataset updated
    Jul 26, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2023
    Area covered
    United States
    Description

    In 2023, the metropolitan area of New York-Newark-Jersey City had the biggest population in the United States. Based on annual estimates from the census, the metropolitan area had around 19.5 million inhabitants, which was a slight decrease from the previous year. The Los Angeles and Chicago metro areas rounded out the top three. What is a metropolitan statistical area? In general, a metropolitan statistical area (MSA) is a core urbanized area with a population of at least 50,000 inhabitants – the smallest MSA is Carson City, with an estimated population of nearly 56,000. The urban area is made bigger by adjacent communities that are socially and economically linked to the center. MSAs are particularly helpful in tracking demographic change over time in large communities and allow officials to see where the largest pockets of inhabitants are in the country. How many MSAs are in the United States? There were 421 metropolitan statistical areas across the U.S. as of July 2021. The largest city in each MSA is designated the principal city and will be the first name in the title. An additional two cities can be added to the title, and these will be listed in population order based on the most recent census. So, in the example of New York-Newark-Jersey City, New York has the highest population, while Jersey City has the lowest. The U.S. Census Bureau conducts an official population count every ten years, and the new count is expected to be announced by the end of 2030.

  20. d

    The influence of environmental factors on the distribution and density of...

    • dataone.org
    • portal.edirepository.org
    • +1more
    Updated Aug 3, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Morodoluwa Akin-Fajiye; Jessica Gurevitch (2020). The influence of environmental factors on the distribution and density of invasive Centaurea stoebe across Northeastern USA, 2013 - 2018 [Dataset]. https://dataone.org/datasets/https%3A%2F%2Fpasta.lternet.edu%2Fpackage%2Fmetadata%2Feml%2Fedi%2F584%2F1
    Explore at:
    Dataset updated
    Aug 3, 2020
    Dataset provided by
    Environmental Data Initiative
    Authors
    Morodoluwa Akin-Fajiye; Jessica Gurevitch
    Time period covered
    Jan 1, 2013 - Jan 1, 2018
    Area covered
    Variables measured
    id, Lat, Lon, lat, lon, nlcd, pres, sand, site, soilph, and 18 more
    Description

    Centaurea stoebe (Asteraceae; spotted knapweed) is an emerging invader in northeast US, and is a major invasive plant in the northern Midwest and western USA. Although it has been present in New York State (NYS) for over 100 years, its apparent recent population increases and spread provide a rare opportunity to study a plant in the early stages of invasion. Therefore, a study was carried out understand how distinct environmental factors influence the distribution, density and change in density C. stoebe at different spatial scales within its novel range in the northeastern USA. First, we collected field data on the occurrence, density and change in density of this species in North Eastern United States, from 2013 to 2014. Then, using species distribution models, we assessed the potential influence of environmental factors on the invasion of spotted knapweed in northeast US. Within different parts of C. stoebe‘s range, different factors explained its occurrence, density and change in density over 2 years. Across northeast US, climate and soil factors were the most influential predictors explaining C. stoebe‘s distribution, while within Long Island in southeastern NYS and the Adirondack Mountains in northern NYS, precipitation and disturbance respectively were the most important. These results are published in the paper titled The influence of environmental factors on the distribution and density of invasive Centaurea stoebe across Northeastern USA (Akin-Fajiye and Gurevitch, 2018).

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Population density in New York 1960-2018 [Dataset]. https://www.statista.com/statistics/304695/new-york-population-density/
Organization logo

Population density in New York 1960-2018

Explore at:
Dataset updated
Aug 9, 2024
Dataset authored and provided by
Statistahttp://statista.com/
Area covered
United States
Description

This graph shows the population density in the federal state of New York from 1960 to 2018. In 2018, the population density of New York stood at 414.7 residents per square mile of land area.

Search
Clear search
Close search
Google apps
Main menu