This statistic shows the biggest cities in New Zealand in 2022. In 2022, approximately 1.44 million people lived in Auckland, making it the biggest city in New Zealand.
This statistic depicts the distribution of the major cities to the national GDP in New Zealand in 2015. According to the source, in this year, Auckland contributed with 37 percent to the national GDP in New Zealand.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Refer to the current geographies boundaries table for a list of all current geographies and recent updates. This dataset is the definitive version of the annually released statistical area 2 (SA2) boundaries as at 1 January 2025 as defined by Stats NZ. This version contains 2,395 SA2s (2,379 digitised and 16 with empty or null geometries (non-digitised)). SA2 is an output geography that provides higher aggregations of population data than can be provided at the statistical area 1 (SA1) level. The SA2 geography aims to reflect communities that interact together socially and economically. In populated areas, SA2s generally contain similar sized populations. The SA2 should: form a contiguous cluster of one or more SA1s, excluding exceptions below, allow the release of multivariate statistics with minimal data suppression, capture a similar type of area, such as a high-density urban area, farmland, wilderness area, and water area, be socially homogeneous and capture a community of interest. It may have, for example: a shared road network, shared community facilities, shared historical or social links, or socio-economic similarity, form a nested hierarchy with statistical output geographies and administrative boundaries. It must: be built from SA1s, either define or aggregate to define SA3s, urban areas, territorial authorities, and regional councils. SA2s in city council areas generally have a population of 2,000–4,000 residents while SA2s in district council areas generally have a population of 1,000–3,000 residents. In major urban areas, an SA2 or a group of SA2s often approximates a single suburb. In rural areas, rural settlements are included in their respective SA2 with the surrounding rural area. SA2s in urban areas where there is significant business and industrial activity, for example ports, airports, industrial, commercial, and retail areas, often have fewer than 1,000 residents. These SA2s are useful for analysing business demographics, labour markets, and commuting patterns. In rural areas, some SA2s have fewer than 1,000 residents because they are in conservation areas or contain sparse populations that cover a large area. To minimise suppression of population data, small islands with zero or low populations close to the mainland, and marinas are generally included in their adjacent land-based SA2. Zero or nominal population SA2s To ensure that the SA2 geography covers all of New Zealand and aligns with New Zealand’s topography and local government boundaries, some SA2s have zero or nominal populations. These include: SA2s where territorial authority boundaries straddle regional council boundaries. These SA2s each have fewer than 200 residents and are: Arahiwi, Tiroa, Rangataiki, Kaimanawa, Taharua, Te More, Ngamatea, Whangamomona, and Mara. SA2s created for single islands or groups of islands that are some distance from the mainland or to separate large unpopulated islands from urban areas SA2s that represent inland water, inlets or oceanic areas including: inland lakes larger than 50 square kilometres, harbours larger than 40 square kilometres, major ports, other non-contiguous inlets and harbours defined by territorial authority, and contiguous oceanic areas defined by regional council. SA2s for non-digitised oceanic areas, offshore oil rigs, islands, and the Ross Dependency. Each SA2 is represented by a single meshblock. The following 16 SA2s are held in non-digitised form (SA2 code; SA2 name): 400001; New Zealand Economic Zone, 400002; Oceanic Kermadec Islands, 400003; Kermadec Islands, 400004; Oceanic Oil Rig Taranaki, 400005; Oceanic Campbell Island, 400006; Campbell Island, 400007; Oceanic Oil Rig Southland, 400008; Oceanic Auckland Islands, 400009; Auckland Islands, 400010 ; Oceanic Bounty Islands, 400011; Bounty Islands, 400012; Oceanic Snares Islands, 400013; Snares Islands, 400014; Oceanic Antipodes Islands, 400015; Antipodes Islands, 400016; Ross Dependency. SA2 numbering and naming Each SA2 is a single geographic entity with a name and a numeric code. The name refers to a geographic feature or a recognised place name or suburb. In some instances where place names are the same or very similar, the SA2s are differentiated by their territorial authority name, for example, Gladstone (Carterton District) and Gladstone (Invercargill City). SA2 codes have six digits. North Island SA2 codes start with a 1 or 2, South Island SA2 codes start with a 3 and non-digitised SA2 codes start with a 4. They are numbered approximately north to south within their respective territorial authorities. To ensure the north–south code pattern is maintained, the SA2 codes were given 00 for the last two digits when the geography was created in 2018. When SA2 names or boundaries change only the last two digits of the code will change. High-definition version This high definition (HD) version is the most detailed geometry, suitable for use in GIS for geometric analysis operations and for the computation of areas, centroids and other metrics. The HD version is aligned to the LINZ cadastre. Macrons Names are provided with and without tohutō/macrons. The column name for those without macrons is suffixed ‘ascii’. Digital data Digital boundary data became freely available on 1 July 2007. Further information To download geographic classifications in table formats such as CSV please use Ariā For more information please refer to the Statistical standard for geographic areas 2023. Contact: geography@stats.govt.nz
In 2024, the main center in New Zealand with the highest number of sunshine hours was Tauranga, with 2,734 hours. The average temperature for Tauranga was 15.6 degrees Celsius in that year.
https://datafinder.stats.govt.nz/license/attribution-4-0-international/https://datafinder.stats.govt.nz/license/attribution-4-0-international/
Dataset contains ethnic group census usually resident population counts from the 2013, 2018, and 2023 Censuses, as well as the percentage change in the ethnic group population count between the 2013 and 2018 Censuses, and between the 2018 and 2023 Censuses. Data is available by regional council.
The ethnic groups are:
Map shows percentage change in the census usually resident population count for ethnic groups between the 2018 and 2023 Censuses.
Download lookup file from Stats NZ ArcGIS Online or embedded attachment in Stats NZ geographic data service. Download data table (excluding the geometry column for CSV files) using the instructions in the Koordinates help guide.
Footnotes
Geographical boundaries
Statistical standard for geographic areas 2023 (updated December 2023) has information about geographic boundaries as of 1 January 2023. Address data from 2013 and 2018 Censuses was updated to be consistent with the 2023 areas. Due to the changes in area boundaries and coding methodologies, 2013 and 2018 counts published in 2023 may be slightly different to those published in 2013 or 2018.
Subnational census usually resident population
The census usually resident population count of an area (subnational count) is a count of all people who usually live in that area and were present in New Zealand on census night. It excludes visitors from overseas, visitors from elsewhere in New Zealand, and residents temporarily overseas on census night. For example, a person who usually lives in Christchurch city and is visiting Wellington city on census night will be included in the census usually resident population count of Christchurch city.
Caution using time series
Time series data should be interpreted with care due to changes in census methodology and differences in response rates between censuses. The 2023 and 2018 Censuses used a combined census methodology (using census responses and administrative data), while the 2013 Census used a full-field enumeration methodology (with no use of administrative data).
About the 2023 Census dataset
For information on the 2023 dataset see Using a combined census model for the 2023 Census. We combined data from the census forms with administrative data to create the 2023 Census dataset, which meets Stats NZ's quality criteria for population structure information. We added real data about real people to the dataset where we were confident the people who hadn’t completed a census form (which is known as admin enumeration) will be counted. We also used data from the 2018 and 2013 Censuses, administrative data sources, and statistical imputation methods to fill in some missing characteristics of people and dwellings.
Data quality
The quality of data in the 2023 Census is assessed using the quality rating scale and the quality assurance framework to determine whether data is fit for purpose and suitable for release. Data quality assurance in the 2023 Census has more information.
Quality rating of a variable
The quality rating of a variable provides an overall evaluation of data quality for that variable, usually at the highest levels of classification. The quality ratings shown are for the 2023 Census unless stated. There is variability in the quality of data at smaller geographies. Data quality may also vary between censuses, for subpopulations, or when cross tabulated with other variables or at lower levels of the classification. Data quality ratings for 2023 Census variables has more information on quality ratings by variable.
Ethnicity concept quality rating
Ethnicity is rated as high quality.
Ethnicity – 2023 Census: Information by concept has more information, for example, definitions and data quality.
Using data for good
Stats NZ expects that, when working with census data, it is done so with a positive purpose, as outlined in the Māori Data Governance Model (Data Iwi Leaders Group, 2023). This model states that "data should support transformative outcomes and should uplift and strengthen our relationships with each other and with our environments. The avoidance of harm is the minimum expectation for data use. Māori data should also contribute to iwi and hapū tino rangatiratanga”.
Confidentiality
The 2023 Census confidentiality rules have been applied to 2013, 2018, and 2023 data. These rules protect the confidentiality of individuals, families, households, dwellings, and undertakings in 2023 Census data. Counts are calculated using fixed random rounding to base 3 (FRR3) and suppression of ‘sensitive’ counts less than six, where tables report multiple geographic variables and/or small populations. Individual figures may not always sum to stated totals. Applying confidentiality rules to 2023 Census data and summary of changes since 2018 and 2013 Censuses has more information about 2023 Census confidentiality rules.
Symbol
-998 Not applicable
Percentages
To calculate percentages, divide the figure for the category of interest by the figure for ‘Total stated’ where this applies.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
In 2023, the share of urban population in New Zealand remained nearly unchanged at around 86.98 percent. Nevertheless, 2023 still represents a peak in the share in New Zealand with 86.98 percent. A population may be defined as urban depending on the size (population or area) or population density of the village, town, or city. The urbanization rate then refers to the share of the total population who live in an urban setting. International comparisons may be inconsistent due to differing parameters for what constitutes an urban center.Find more key insights for the share of urban population in countries like Micronesia and Tonga.
ps-places-metadata-v1.01
This dataset comprises a pair of layers, (points and polys) which attempt to better locate "populated places" in NZ. Populated places are defined here as settled areas, either urban or rural where densitys of around 20 persons per hectare exist, and something is able to be seen from the air.
The only liberally licensed placename dataset is currently LINZ geographic placenames, which has the following drawbacks: - coordinates are not place centers but left most label on 260 series map - the attributes are outdated
This dataset necessarily involves cleaving the linz placenames set into two, those places that are poplulated, and those unpopulated. Work was carried out in four steps. First placenames were shortlisted according to the following criterion:
- all places that rated at least POPL in the linz geographic places layer, ie POPL, METR or TOWN or USAT were adopted.
- Then many additional points were added from a statnz meshblock density analysis.
- Finally remaining points were added from a check against linz residential polys, and zenbu poi clusters.
Spelling is broadly as per linz placenames, but there are differences for no particular reason. Instances of LINZ all upper case have been converted to sentance case. Some places not presently in the linz dataset are included in this set, usually new places, or those otherwise unnamed. They appear with no linz id, and are not authoritative, in some cases just wild guesses.
Density was derived from the 06 meshblock boundarys (level 2, geometry fixed), multipart conversion, merging in 06 usually resident MB population then using the formula pop/area*10000. An initial urban/rural threshold level of 0.6 persons per hectare was used.
Step two was to trace the approx extent of each populated place. The main purpose of this step was to determine the relative area of each place, and to create an intersection with meshblocks for population. Step 3 involved determining the political center of each place, broadly defined as the commercial center.
Tracing was carried out at 1:9000 for small places, and 1:18000 for large places using either bing or google satellite views. No attempt was made to relate to actual town 'boundarys'. For example large parks or raceways on the urban fringe were not generally included. Outlying industrial areas were included somewhat erratically depending on their connection to urban areas.
Step 3 involved determining the centers of each place. Points were overlaid over the following layers by way of a base reference:
a. original linz placenames b. OSM nz-locations points layer c. zenbu pois, latest set as of 5/4/11 d. zenbu AllSuburbsRegions dataset (a heavily hand modified) LINZ BDE extract derived dataset courtesy Zenbu. e. LINZ road-centerlines, sealed and highway f. LINZ residential areas, g. LINZ building-locations and building footprints h. Olivier and Co nz-urban-north and south
Therefore in practice, sources c and e, form the effective basis of the point coordinates in this dataset. Be aware that e, f and g are referenced to the LINZ topo data, while c and d are likely referenced to whatever roading dataset google possesses. As such minor discrepencys may occur when moving from one to the other.
Regardless of the above, this place centers dataset was created using the following criteria, in order of priority:
To be clear the coordinates are manually produced by eye without any kind of computation. As such the points are placed approximately perhaps plus or minus 10m, but given that the roads layers are not that flash, no attempt was made to actually snap the coordinates to the road junctions themselves.
The final step involved merging in population from SNZ meshblocks (merge+sum by location) of popl polys). Be aware that due to the inconsistent way that meshblocks are defined this will result in inaccurate populations, particular small places will collect population from their surrounding area. In any case the population will generally always overestimate by including meshblocks that just nicked the place poly. Also there are a couple of dozen cases of overlapping meshblocks between two place polys and these will double count. Which i have so far made no attempt to fix.
Merged in also tla and regions from SNZ shapes, a few of the original linz atrributes, and lastly grading the size of urban areas according to SNZ 'urban areas" criteria. Ie: class codes:
Note that while this terminology is shared with SNZ the actual places differ owing to different decisions being made about where one area ends an another starts, and what constiutes a suburb or satellite. I expect some discussion around this issue. For example i have included tinwald and washdyke as part of ashburton and timaru, but not richmond or waikawa as part of nelson and picton. Im open to discussion on these.
No attempt has or will likely ever be made to locate the entire LOC and SBRB data subsets. We will just have to wait for NZFS to release what is thought to be an authoritative set.
Shapefiles are all nztm. Orig data from SNZ and LINZ was all sourced in nztm, via koordinates, or SNZ. Satellite tracings were in spherical mercator/wgs84 and converted to nztm by Qgis. Zenbu POIS were also similarly converted.
Shapefile: Points id : integer unique to dataset name : name of popl place, string class : urban area size as above. integer tcode : SNZ tla code, integer rcode : SNZ region code, 1-16, integer area : area of poly place features, integer in square meters. pop : 2006 usually resident popluation, being the sum of meshblocks that intersect the place poly features. Integer lid : linz geog places id desc_code : linz geog places place type code
Shapefile: Polygons gid : integer unique to dataset, shared by points and polys name : name of popl place, string, where spelling conflicts occur points wins area : place poly area, m2 Integer
Clarification about the minorly derived nature of LINZ and google data needs to be sought. But pending these copyright complications, the actual points data is essentially an original work, released as public domain. I retain no copyright, nor any responsibility for data accuracy, either as is, or regardless of any changes that are subsequently made to it.
Peter Scott 16/6/2011
v1.01 minor spelling and grammar edits 17/6/11
LiDAR was captured for Nelson City Council, Tasman District Council, Waka Kotahi and National Emergency Management Agency by Aerial Surveys Ltd from 23 August 2022 to 6 September 2022, in response to a severe weather emergency event. The dataset was generated by Aerial Surveys and their subcontractors. Data management and distribution is by Toitū Te Whenua Land Information New Zealand.
The average price of residential property in North Shore City, New Zealand, was the highest in the Auckland region in December 2024, with an average sale price of around 1.21 million New Zealand dollars. In the same month, the regional median house price was around one million New Zealand dollars across Auckland. Housing costs The average sale price of residential property in Auckland has fluctuated over the past months. While housing affordability has improved slightly as the median house price has begun to stabilize, Auckland still has one of the least affordable housing markets in the developed world. The average weekly rent in the city has been over 500 New Zealand dollars a week since 2016, with the Auckland region having one of the highest mean rents for residential housing across the country. Residential housing construction New Zealand's new residential dwelling consents hit a five-year low in 2024. The number of building consents granted for new homes in the Auckland region declined that same year, following a trend of year-on-year decreases since 2021. Nonetheless, a stronger pipeline of residential housing development is expected between late 2025 and 2029, hopefully providing some relief from the supply and demand imbalance.
https://datafinder.stats.govt.nz/license/attribution-4-0-international/https://datafinder.stats.govt.nz/license/attribution-4-0-international/
This dataset is the definitive set of statistical area 2 (SA2) boundaries for 2022 as defined by Stats NZ (the custodian). This version contains 2,260 SA2 features.
SA2s were introduced as part of the Statistical Standard for Geographic Areas 2018 (SSGA2018) which replaced the New Zealand Standard Areas Classification (NZSAC1992). The SA2 geography replaces the (NZSAC1992) area unit geography.
SA2 is an output geography that provides higher aggregations of population data than can be provided at the statistical area 1 (SA1) level. The SA2 geography aims to reflect communities that interact together socially and economically. In populated areas, SA2s generally contain similar sized populations.
SA2s are built from SA1s and either define or aggregate to define urban rural areas, territorial authorities, and regional councils. SA2s in city council areas generally have a population of 2,000–4,000 residents while SA2s in district council areas generally have a population of 1,000–3,000 residents. In rural areas, many SA2s have fewer than 1,000 residents because they are in conservation areas or contain sparse populations that cover a large area.
Names are provided with and without tohutō/macrons. The name field without macrons is suffixed ‘ascii’.
This generalised version has been simplified for rapid drawing and is designed for thematic or web mapping purposes.
Digital boundary data became freely available on 1 July 2007.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
NZ:最大城市人口在12-01-2017达1,377,309.000人,相较于12-01-2016的1,360,422.000人有所增长。NZ:最大城市人口数据按年更新,12-01-1960至12-01-2017期间平均值为851,045.500人,共58份观测结果。该数据的历史最高值出现于12-01-2017,达1,377,309.000人,而历史最低值则出现于12-01-1960,为440,164.000人。CEIC提供的NZ:最大城市人口数据处于定期更新的状态,数据来源于World Bank,数据归类于Global Database的新西兰 – 表 NZ.世界银行:人口和城市化进程统计。
https://datafinder.stats.govt.nz/license/attribution-4-0-international/https://datafinder.stats.govt.nz/license/attribution-4-0-international/
Statistical Area 2 2023 update
SA2 2023 is the first major update of the geography since it was first created in 2018. The update is to ensure SA2s are relevant and meet criteria before each five-yearly population and dwelling census. SA2 2023 contains 135 new SA2s. Updates were made to reflect real world change ofpopulation and dwelling growthmainly in urban areas, and to make some improvements to their delineation of communities of interest.
Description
This dataset is the definitive version of the annually released statistical area 2 (SA2) boundaries as at 1 January 2023 as defined by Stats NZ (the custodian), clipped to the coastline. This clipped version has been created for cartographic purposes and so does not fully represent the official full extent boundaries. This clipped version contains 2,311 SA2 areas.
SA2 is an output geography that provides higher aggregations of population data than can be provided at the statistical area 1 (SA1) level. The SA2 geography aims to reflect communities that interact together socially and economically. In populated areas, SA2s generally contain similar sized populations.
The SA2 should:
form a contiguous cluster of one or more SA1s,
excluding exceptions below, allow the release of multivariate statistics with minimal data suppression,
capture a similar type of area, such as a high-density urban area, farmland, wilderness area, and water area,
be socially homogeneous and capture a community of interest. It may have, for example:
· a shared road network,
· shared community facilities,
· shared historical or social links, or
· socio-economic similarity,
form a nested hierarchy with statistical output geographies and administrative boundaries. It must:
· be built from SA1s,
· either define or aggregate to define SA3s, urban areas, territorial authorities, and regional councils.
SA2s in city council areas generally have a population of 2,000–4,000 residents while SA2s in district council areas generally have a population of 1,000–3,000 residents.
In major urban areas, an SA2 or a group of SA2s often approximates a single suburb. In rural areas, rural settlements are included in their respective SA2 with the surrounding rural area.
SA2s in urban areas where there is significant business and industrial activity, for example ports, airports, industrial, commercial, and retail areas, often have fewer than 1,000 residents. These SA2s are useful for analysing business demographics, labour markets, and commuting patterns.
In rural areas, some SA2s have fewer than 1,000 residents because they are in conservation areas or contain sparse populations that cover a large area.
To minimise suppression of population data, small islands with zero or low populations close to the mainland, and marinas are generally included in their adjacent land-based SA2.
Zero or nominal population SA2s
To ensure that the SA2 geography covers all of New Zealand and aligns with New Zealand’s topography and local government boundaries, some SA2s have zero or nominal populations. These include:
· SA2s where territorial authority boundaries straddle regional council boundaries. These SA2s each have fewer than 200 residents and are: Arahiwi, Tiroa, Rangataiki, Kaimanawa, Taharua, Te More, Ngamatea, Whangamomona, and Mara.
· SA2s created for single islands or groups of islands that are some distance from the mainland or to separate large unpopulated islands from urban areas
· SA2s that represent inland water, inlets or oceanic areas including: inland lakes larger than 50 square kilometres, harbours larger than 40 square kilometres, major ports, other non-contiguous inlets and harbours defined by territorial authority, and contiguous oceanic areas defined by regional council.
· SA2s for non-digitised oceanic areas, offshore oil rigs, islands, and the Ross Dependency. Each SA2 is represented by a single meshblock. The following 16 SA2s are held in non-digitised form (SA2 code; SA2 name):
400001; New Zealand Economic Zone, 400002; Oceanic Kermadec Islands, 400003; Kermadec Islands, 400004; Oceanic Oil Rig Taranaki, 400005; Oceanic Campbell Island, 400006; Campbell Island, 400007; Oceanic Oil Rig Southland, 400008; Oceanic Auckland Islands, 400009; Auckland Islands, 400010 ; Oceanic Bounty Islands, 400011; Bounty Islands, 400012; Oceanic Snares Islands, 400013; Snares Islands, 400014; Oceanic Antipodes Islands, 400015; Antipodes Islands, 400016; Ross Dependency.
SA2 numbering and naming
Each SA2 is a single geographic entity with a name and a numeric code. The name refers to a geographic feature or a recognised place name or suburb. In some instances where place names are the same or very similar, the SA2s are differentiated by their territorial authority name, for example, Gladstone (Carterton District) and Gladstone (Invercargill City).
SA2 codes have six digits. North Island SA2 codes start with a 1 or 2, South Island SA2 codes start with a 3 and non-digitised SA2 codes start with a 4. They are numbered approximately north to south within their respective territorial authorities. To ensure the north–south code pattern is maintained, the SA2 codes were given 00 for the last two digits when the geography was created in 2018. When SA2 names or boundaries change only the last two digits of the code will change.
For more information please refer to the Statistical standard for geographic areas 2023.
Macrons
Names are provided with and without tohutō/macrons. The column name for those without macrons is suffixed ‘ascii’.
Digital data
Digital boundary data became freely available on 1 July 2007.
To download geographic classifications in table formats such as CSV please use Ariā
https://data.linz.govt.nz/license/attribution-4-0-international/https://data.linz.govt.nz/license/attribution-4-0-international/
NZ Suburbs and Localities describes the spatial extent and name of communities in urban areas (suburbs) and rural areas (localities) for navigation and location purposes.
The suburb and locality boundaries cover New Zealand including North Island, South Island, Stewart Island/Rakiura, Chatham Islands, and nearby offshore islands.
Each suburb and locality is assigned a name, major name, Territorial Authority and, if appropriate, additional in use names. A population estimate is provided for each suburb and locality by Stats NZ.
For more information please refer to the NZ Suburbs and Localities Data Dictionary and the LINZ Website
Changes to NZ Suburbs and Localities can be requested by emailing addresses@linz.govt.nz
Change Request Guidance Documents: - Change Request Process - Change Request Principles, Requirements and Rules
APIs and web services
This dataset is available via ArcGIS Online and ArcGIS REST services, as well as our standard APIs. LDS APIs and OGC web services ArcGIS Online map services
In 2019, there was approximately 10.5 billion New Zealand dollars worth of building work in Auckland, New Zealand. This was almost double the value of building work in Auckland, New Zealand in 2015, in which there was approximately 5.3 billion New Zealand dollars worth of building work. Auckland has become a popular tourist destination over the past few years, with increasing numbers of international tourists visiting the major New Zealand city.
As of June 2024, the largest number of Shopify e-commerce stores in New Zealand operated from Auckland, with 9,239 Shopify stores based in New Zealand's largest city. Just under two thousand Shopify stores were based in New Zealand's capital, Wellington.
Most cities in New Zealand experienced a decrease in hotel occupancy in 2022. Hotels in Wellington had the highest occupancy rate, amounting to 59 percent, and in Christchurch occupancy decreased from 61 percent to 53 percent.
Based on a comparison of coronavirus deaths in 210 countries relative to their population, Peru had the most losses to COVID-19 up until July 13, 2022. As of the same date, the virus had infected over 557.8 million people worldwide, and the number of deaths had totaled more than 6.3 million. Note, however, that COVID-19 test rates can vary per country. Additionally, big differences show up between countries when combining the number of deaths against confirmed COVID-19 cases. The source seemingly does not differentiate between "the Wuhan strain" (2019-nCOV) of COVID-19, "the Kent mutation" (B.1.1.7) that appeared in the UK in late 2020, the 2021 Delta variant (B.1.617.2) from India or the Omicron variant (B.1.1.529) from South Africa.
The difficulties of death figures
This table aims to provide a complete picture on the topic, but it very much relies on data that has become more difficult to compare. As the coronavirus pandemic developed across the world, countries already used different methods to count fatalities, and they sometimes changed them during the course of the pandemic. On April 16, for example, the Chinese city of Wuhan added a 50 percent increase in their death figures to account for community deaths. These deaths occurred outside of hospitals and went unaccounted for so far. The state of New York did something similar two days before, revising their figures with 3,700 new deaths as they started to include “assumed” coronavirus victims. The United Kingdom started counting deaths in care homes and private households on April 29, adjusting their number with about 5,000 new deaths (which were corrected lowered again by the same amount on August 18). This makes an already difficult comparison even more difficult. Belgium, for example, counts suspected coronavirus deaths in their figures, whereas other countries have not done that (yet). This means two things. First, it could have a big impact on both current as well as future figures. On April 16 already, UK health experts stated that if their numbers were corrected for community deaths like in Wuhan, the UK number would change from 205 to “above 300”. This is exactly what happened two weeks later. Second, it is difficult to pinpoint exactly which countries already have “revised” numbers (like Belgium, Wuhan or New York) and which ones do not. One work-around could be to look at (freely accessible) timelines that track the reported daily increase of deaths in certain countries. Several of these are available on our platform, such as for Belgium, Italy and Sweden. A sudden large increase might be an indicator that the domestic sources changed their methodology.
Where are these numbers coming from?
The numbers shown here were collected by Johns Hopkins University, a source that manually checks the data with domestic health authorities. For the majority of countries, this is from national authorities. In some cases, like China, the United States, Canada or Australia, city reports or other various state authorities were consulted. In this statistic, these separately reported numbers were put together. For more information or other freely accessible content, please visit our dedicated Facts and Figures page.
As of the third quarter of 2023, 95.1 percent of the population in Singapore were owners of some sort of mobile phone. Laptops and desktop computers followed as the most widely owned digital devices. Compared with neighboring Malaysia and Indonesia, Singapore also has the highest rate of tablet users.
Mobile phone ownership and usage in Singapore
Singapore's mobile phone penetration rate makes it an attractive market for foreign vendors. In 2024, Apple held a market share of around 33 percent among mobile vendors in the country. With smartphones having been integrated into all daily activities, network coverage is particularly crucial. Favored by the size of its territory, Singapore was the first country in the world to benefit from nationwide 5G coverage. As a result, the user experience is one of the best in the region, with the best 5G gaming experience.
Smart devices in Singapore
Smart devices are being increasingly used in the city-state, particularly smartwatches and smart home devices. In fact, the country has one of the highest smartwatch usage penetration rates in the Asia Pacific, just behind New Zealand and South Korea. When it comes to smart homes, the leading devices owned in the country are smart TVs and home appliances.
Not seeing a result you expected?
Learn how you can add new datasets to our index.
This statistic shows the biggest cities in New Zealand in 2022. In 2022, approximately 1.44 million people lived in Auckland, making it the biggest city in New Zealand.