As of September 5, 2022, the number of 30 to 39 year olds diagnosed with COVID-19 in New Zealand had reached over three hundred thousand people. At the time, the over 90 age group had the least number of active cases.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
New Zealand recorded 2282861 Coronavirus Cases since the epidemic began, according to the World Health Organization (WHO). In addition, New Zealand reported 2792 Coronavirus Deaths. This dataset includes a chart with historical data for New Zealand Coronavirus Cases.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Total Covid cases, end of month in New Zealand, March, 2023 The most recent value is 2206394 total Covid cases as of March 2023, an increase compared to the previous value of 2166470 total Covid cases. Historically, the average for New Zealand from February 2020 to March 2023 is 570900 total Covid cases. The minimum of 1 total Covid cases was recorded in February 2020, while the maximum of 2206394 total Covid cases was reached in March 2023. | TheGlobalEconomy.com
As of November 16, 2020, 43 percent of COVID-19 infection cases in New Zealand were contracted through contact with a person who had recently travelled overseas. Less than five percent of cases were attributed to locally acquired cases where the infection source was unknown.
https://github.com/disease-sh/API/blob/master/LICENSEhttps://github.com/disease-sh/API/blob/master/LICENSE
In past 24 hours, New Zealand, Australia-Oceania had N/A new cases, N/A deaths and N/A recoveries.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
With the arrival of the COVID19 virus in New Zealand, the ministry of health is tracking new cases and releasing daily updates on the situation on their webpage: https://www.health.govt.nz/our-work/diseases-and-conditions/covid-19-novel-coronavirus/covid-19-current-cases and https://www.health.govt.nz/our-work/diseases-and-conditions/covid-19-novel-coronavirus/covid-19-current-cases/covid-19-current-cases-details. Much of the information given in these updates are not in a machine-friendly format. The objective of this dataset is to provide NZ Minstry of Health COVID19 data in easy-to-use format.
All data in this dataset has been acquired from the New Zealand Minstry of Health's 'COVID19 current cases' webpage, located here: https://www.health.govt.nz/our-work/diseases-and-conditions/covid-19-novel-coronavirus/covid-19-current-cases. The Ministry of Health updates their page daily, that will be the targeted update frequency for this dataset for the Daily Count of Cases
dataset. The Case Details
dataset which
includes travel details on each case will be updated weekly.
The mission of this project is to reliably convey data that the Ministry of Health has reported in the most digestable format. Enrichment of data is currently out of scope.
If you find any discrepancies between the Ministry of Health's data and this dataset, please provide your feedback as an issue on the git repo for this dataset: https://github.com/2kruman/COVID19-NZ-known-cases/issues.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Summary statistics for the New Zealand epidemic by age and type of case.
Based on a comparison of coronavirus deaths in 210 countries relative to their population, Peru had the most losses to COVID-19 up until July 13, 2022. As of the same date, the virus had infected over 557.8 million people worldwide, and the number of deaths had totaled more than 6.3 million. Note, however, that COVID-19 test rates can vary per country. Additionally, big differences show up between countries when combining the number of deaths against confirmed COVID-19 cases. The source seemingly does not differentiate between "the Wuhan strain" (2019-nCOV) of COVID-19, "the Kent mutation" (B.1.1.7) that appeared in the UK in late 2020, the 2021 Delta variant (B.1.617.2) from India or the Omicron variant (B.1.1.529) from South Africa.
The difficulties of death figures
This table aims to provide a complete picture on the topic, but it very much relies on data that has become more difficult to compare. As the coronavirus pandemic developed across the world, countries already used different methods to count fatalities, and they sometimes changed them during the course of the pandemic. On April 16, for example, the Chinese city of Wuhan added a 50 percent increase in their death figures to account for community deaths. These deaths occurred outside of hospitals and went unaccounted for so far. The state of New York did something similar two days before, revising their figures with 3,700 new deaths as they started to include “assumed” coronavirus victims. The United Kingdom started counting deaths in care homes and private households on April 29, adjusting their number with about 5,000 new deaths (which were corrected lowered again by the same amount on August 18). This makes an already difficult comparison even more difficult. Belgium, for example, counts suspected coronavirus deaths in their figures, whereas other countries have not done that (yet). This means two things. First, it could have a big impact on both current as well as future figures. On April 16 already, UK health experts stated that if their numbers were corrected for community deaths like in Wuhan, the UK number would change from 205 to “above 300”. This is exactly what happened two weeks later. Second, it is difficult to pinpoint exactly which countries already have “revised” numbers (like Belgium, Wuhan or New York) and which ones do not. One work-around could be to look at (freely accessible) timelines that track the reported daily increase of deaths in certain countries. Several of these are available on our platform, such as for Belgium, Italy and Sweden. A sudden large increase might be an indicator that the domestic sources changed their methodology.
Where are these numbers coming from?
The numbers shown here were collected by Johns Hopkins University, a source that manually checks the data with domestic health authorities. For the majority of countries, this is from national authorities. In some cases, like China, the United States, Canada or Australia, city reports or other various state authorities were consulted. In this statistic, these separately reported numbers were put together. For more information or other freely accessible content, please visit our dedicated Facts and Figures page.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Project Tycho datasets contain case counts for reported disease conditions for countries around the world. The Project Tycho data curation team extracts these case counts from various reputable sources, typically from national or international health authorities, such as the US Centers for Disease Control or the World Health Organization. These original data sources include both open- and restricted-access sources. For restricted-access sources, the Project Tycho team has obtained permission for redistribution from data contributors. All datasets contain case count data that are identical to counts published in the original source and no counts have been modified in any way by the Project Tycho team, except for aggregation of individual case count data into daily counts when that was the best data available for a disease and location. The Project Tycho team has pre-processed datasets by adding new variables, such as standard disease and location identifiers, that improve data interpretability. We also formatted the data into a standard data format. All geographic locations at the country and admin1 level have been represented at the same geographic level as in the data source, provided an ISO code or codes could be identified, unless the data source specifies that the location is listed at an inaccurate geographical level. For more information about decisions made by the curation team, recommended data processing steps, and the data sources used, please see the README that is included in the dataset download ZIP file.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Near-term forecasting of infectious disease incidence and consequent demand for acute healthcare services can support capacity planning and public health responses. Despite well-developed scenario modelling to support the Covid-19 response, Aotearoa New Zealand lacks advanced infectious disease forecasting capacity. We develop a model using Aotearoa New Zealand’s unique Covid-19 data streams to predict reported Covid-19 cases, hospital admissions and hospital occupancy. The method combines a semi-mechanistic model for disease transmission to predict cases with Gaussian process regression models to predict the fraction of reported cases that will require hospital treatment. We evaluate forecast performance against out-of-sample data over the period from 2 October 2022 to 23 July 2023. Our results show that forecast performance is reasonably good over a 1-3 week time horizon, although generally deteriorates as the time horizon is lengthened. The model has been operationalised to provide weekly national and regional forecasts in real-time. This study is an important step towards development of more sophisticated situational awareness and infectious disease forecasting tools in Aotearoa New Zealand.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This 6MB download is a zip file containing 5 pdf documents and 2 xlsx spreadsheets. Presentation on COVID-19 and the potential impacts on employment
May 2020Waka Kotahi wants to better understand the potential implications of the COVID-19 downturn on the land transport system, particularly the potential impacts on regional economies and communities.
To do this, in May 2020 Waka Kotahi commissioned Martin Jenkins and Infometrics to consider the potential impacts of COVID-19 on New Zealand’s economy and demographics, as these are two key drivers of transport demand. In addition to providing a scan of national and international COVID-19 trends, the research involved modelling the economic impacts of three of the Treasury’s COVID-19 scenarios, to a regional scale, to help us understand where the impacts might be greatest.
Waka Kotahi studied this modelling by comparing the percentage difference in employment forecasts from the Treasury’s three COVID-19 scenarios compared to the business as usual scenario.
The source tables from the modelling (Tables 1-40), and the percentage difference in employment forecasts (Tables 41-43), are available as spreadsheets.
Arataki - potential impacts of COVID-19 Final Report
Employment modelling - interactive dashboard
The modelling produced employment forecasts for each region and district over three time periods – 2021, 2025 and 2031. In May 2020, the forecasts for 2021 carried greater certainty as they reflected the impacts of current events, such as border restrictions, reduction in international visitors and students etc. The 2025 and 2031 forecasts were less certain because of the potential for significant shifts in the socio-economic situation over the intervening years. While these later forecasts were useful in helping to understand the relative scale and duration of potential COVID-19 related impacts around the country, they needed to be treated with care recognising the higher levels of uncertainty.
The May 2020 research suggested that the ‘slow recovery scenario’ (Treasury’s scenario 5) was the most likely due to continuing high levels of uncertainty regarding global efforts to manage the pandemic (and the duration and scale of the resulting economic downturn).
The updates to Arataki V2 were framed around the ‘Slower Recovery Scenario’, as that scenario remained the most closely aligned with the unfolding impacts of COVID-19 in New Zealand and globally at that time.
Find out more about Arataki, our 10-year plan for the land transport system
May 2021The May 2021 update to employment modelling used to inform Arataki Version 2 is now available. Employment modelling dashboard - updated 2021Arataki used the May 2020 information to compare how various regions and industries might be impacted by COVID-19. Almost a year later, it is clear that New Zealand fared better than forecast in May 2020.Waka Kotahi therefore commissioned an update to the projections through a high-level review of:the original projections for 2020/21 against performancethe implications of the most recent global (eg International monetary fund world economic Outlook) and national economic forecasts (eg Treasury half year economic and fiscal update)The treasury updated its scenarios in its December half year fiscal and economic update (HYEFU) and these new scenarios have been used for the revised projections.Considerable uncertainty remains about the potential scale and duration of the COVID-19 downturn, for example with regards to the duration of border restrictions, update of immunisation programmes. The updated analysis provides us with additional information regarding which sectors and parts of the country are likely to be most impacted. We continue to monitor the situation and keep up to date with other cross-Government scenario development and COVID-19 related work. The updated modelling has produced employment forecasts for each region and district over three time periods - 2022, 2025, 2031.The 2022 forecasts carry greater certainty as they reflect the impacts of current events. The 2025 and 2031 forecasts are less certain because of the potential for significant shifts over that time.
Data reuse caveats: as per license.
Additionally, please read / use this data in conjunction with the Infometrics and Martin Jenkins reports, to understand the uncertainties and assumptions involved in modelling the potential impacts of COVID-19.
COVID-19’s effect on industry and regional economic outcomes for NZ Transport Agency [PDF 620 KB]
Data quality statement: while the modelling undertaken is high quality, it represents two point-in-time analyses undertaken during a period of considerable uncertainty. This uncertainty comes from several factors relating to the COVID-19 pandemic, including:
a lack of clarity about the size of the global downturn and how quickly the international economy might recover differing views about the ability of the New Zealand economy to bounce back from the significant job losses that are occurring and how much of a structural change in the economy is required the possibility of a further wave of COVID-19 cases within New Zealand that might require a return to Alert Levels 3 or 4.
While high levels of uncertainty remain around the scale of impacts from the pandemic, particularly in coming years, the modelling is useful in indicating the direction of travel and the relative scale of impacts in different parts of the country.
Data quality caveats: as noted above, there is considerable uncertainty about the potential scale and duration of the COVID-19 downturn. Please treat the specific results of the modelling carefully, particularly in the forecasts to later years (2025, 2031), given the potential for significant shifts in New Zealand's socio-economic situation before then.
As such, please use the modelling results as a guide to the potential scale of the impacts of the downturn in different locations, rather than as a precise assessment of impacts over the coming decade.
Learning outcomes:Students will gain an understanding of the global patterns of COVID-19 cases, and how this information changes over time.Students will also compare the COVID-19 data with the World Health Organisations health statistics.Other New Zealand GeoInquiry instructional material freely available at https://arcg.is/1GPDXe
2019 Novel Coronavirus COVID-19 (2019-nCoV) Visual Dashboard and Map:
https://www.arcgis.com/apps/opsdashboard/index.html#/bda7594740fd40299423467b48e9ecf6
Downloadable data:
https://github.com/CSSEGISandData/COVID-19
Additional Information about the Visual Dashboard:
https://systems.jhu.edu/research/public-health/ncov
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The duration of the infectious period is shorter than the duration of severe illness, accounting for self-isolation and less severe illnesses. The quarantine parameter q reflects approximately 1/5 of severe cases either ceasing to transmit due to hospitalization or completely self-isolating. The model depends on the combination ur/(ur + ud), the fraction engaged in physical distancing, estimated from the survey data cited above. The testing patterns have changed over time, with laboratories increasing the numbers of tests on approximately March 14 (motivating our change in ψr).
As of January 23, 2021, Vermont had the highest Rt value of any U.S. state. The Rt value indicates the average number of people that one person with COVID-19 is expected to infect. A number higher than one means each infected person is passing the virus to more than one other person.
Which are the hardest-hit states? The U.S. reported its first confirmed coronavirus case toward the end of January 2020. More than 28 million positive cases have since been recorded as of February 24, 2021 – California and Texas are the states with the highest number of coronavirus cases in the United States. When figures are adjusted to reflect each state’s population, North Dakota has the highest rate of coronavirus cases. The vaccine rollout has provided Americans with a significant morale boost, and California is the state with the highest number of COVID-19 vaccine doses administered.
How have other nations responded? Countries around the world have responded to the pandemic in varied ways. The United Kingdom has approved three vaccines for emergency use and ranks among the countries with the highest number of COVID-19 vaccine doses administered worldwide. In the Asia-Pacific region, the outbreak has been brought under control in New Zealand, and the country’s response to the pandemic has been widely praised.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Throughout 2020 and the first part of 2021, Australia and New Zealand have followed a COVID-19 elimination strategy. Both countries require overseas arrivals to quarantine in government-managed facilities at the border. In both countries, community outbreaks of COVID-19 have been started via infection of a border worker. This workforce is rightly being prioritized for vaccination. However, although vaccines are highly effective in preventing disease, their effectiveness in preventing infection with and transmission of SARS-CoV-2 is less certain. There is a danger that vaccination could prevent symptoms of COVID-19 but not prevent transmission. Here, we use a stochastic model of SARS-CoV-2 transmission and testing to investigate the effect that vaccination of border workers has on the risk of an outbreak in an unvaccinated community. We simulate the model starting with a single infected border worker and measure the number of people who are infected before the first case is detected by testing. We show that if a vaccine reduces transmission by 50%, vaccination of border workers increases the risk of a major outbreak from around 7% per seed case to around 9% per seed case. The lower the vaccine effectiveness against transmission, the higher the risk. The increase in risk as a result of vaccination can be mitigated by increasing the frequency of routine testing for high-exposure vaccinated groups.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Vaccination is indeed one of the interventional strategies available to combat coronavirus disease (COVID-19). This study emphasizes the relevance of citizens' acceptance of the COVID-19 vaccine in assisting global recovery from the pandemic and aiding the tourism industries to return to normalcy. This study further presented the impact of COVID-19 on the tourism industry in China. Also, the study confirmed the past performance of tourism in China to the current tourism-related COVID-19 effects from a global perspective by employing Australia's outbound tourism data from 2008 to 2020 on top 6 destinations, including China, Indonesia, New Zealand, Thailand, the United Kingdom, and the United States.
Health loss (in HALYs) results for the base case (most likely unemployment scenario) (3% discount rate for the remaining life of the NZ population alive in 2011) for various COVID-19 pandemic-induced unemployment scenarios from the NZ Treasury.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
To report bilateral relentless placoid chorioretinitis following Pfizer–BioNTech coronavirus disease 2019 (COVID-19) vaccine administration. A 55-year-old Caucasian New Zealand-born woman presented with progressive left eye vision loss and bilateral photopsias and floaters occurring 10 days after receiving the Pfizer–BioNTech COVID-19 vaccination. She had a similar self-limiting episode of photopsias and floaters without vision loss 1 year prior after receiving the influenza vaccine. Snellen visual acuity (VA) was 20/25 in the right eye, and count fingers at 2 m in the left eye. Bilateral, active, creamy, plaque-like lesions were present at the level of the retinal pigment epithelium and choroid, suggestive of relentless placoid chorioretinitis. Commencement of 100 mg oral prednisolone and 3 g mycophenolate daily resulted in recovery of the foveal ellipsoid layer with VA of 20/25 in each eye after 8 weeks. Subsequent activations occurred following COVID-19 infection and respiratory infection. This is the first reported case of relentless placoid chorioretinitis occurring as a potential side-effect of the Pfizer–BioNTech COVID-19 vaccine. Vaccination, and not infection, could be assumed to be the likely trigger. Subsequent flares following COVID-19 and a nonspecific respiratory infection during periods of inadequate immunosuppression suggest that a COVID-19 antigen or general immune activation could also be the trigger.
The continuous evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants poses a challenge to determine the optimal updated composition of the coronavirus disease 2019 (COVID-19) vaccine. The present study aimed to investigate the immunogenicity of the Delta monovalent vaccine, the Omicron monovalent vaccine, and the Delta and Omicron BA.1 bivalent vaccine. Three COVID-19 vaccines were designed using the heterologous DNA prime-protein boost strategy, with each vaccine containing either Delta receptor-binding domain (RBD) of the spike protein, Omicron RBD, or both Delta and Omicron antigens. Temporal serum antibody binding titers and neutralizing antibody titers induced by the three vaccines in New Zealand White rabbits were analyzed. To further dissect the vaccine elicited antibodies (mAb) responses at the molecular level, a panel of rabbit monoclonal antibodies (RmAbs) was generated by a high-throughput single B cell sorting and discovery pipeline and further comprehensively characterized. The Omicron monovalent vaccine induced higher antibody binding titers and neutralization activities than the Delta and Omicron bivalent vaccine. Four RmAbs with robust neutralization capacity were isolated from rabbits immunized with the Omicron or Delta monovalent vaccine. Notably, 9E11 isolated from the Omicron monovalent vaccine group neutralized all the Omicron subvariants with an IC50 value ranging from 1.5 to 503.6 ng/mL; thus, this vaccine could serve as a prophylactic and therapeutic intervention. Given the increasing incidence of COVID-19 cases due to the Omicron variant, RBD from the Omicron strain could serve as a candidate immunogen that can induce higher neutralization activities against the SARS-CoV-2 Omicron sublineages.
As of September 5, 2022, the number of 30 to 39 year olds diagnosed with COVID-19 in New Zealand had reached over three hundred thousand people. At the time, the over 90 age group had the least number of active cases.