In 2022, India overtook China as the world's most populous country and now has almost 1.46 billion people. China now has the second-largest population in the world, still with just over 1.4 billion inhabitants, however, its population went into decline in 2023. Global population As of 2025, the world's population stands at almost 8.2 billion people and is expected to reach around 10.3 billion people in the 2080s, when it will then go into decline. Due to improved healthcare, sanitation, and general living conditions, the global population continues to increase; mortality rates (particularly among infants and children) are decreasing and the median age of the world population has steadily increased for decades. As for the average life expectancy in industrial and developing countries, the gap has narrowed significantly since the mid-20th century. Asia is the most populous continent on Earth; 11 of the 20 largest countries are located there. It leads the ranking of the global population by continent by far, reporting four times as many inhabitants as Africa. The Demographic Transition The population explosion over the past two centuries is part of a phenomenon known as the demographic transition. Simply put, this transition results from a drastic reduction in mortality, which then leads to a reduction in fertility, and increase in life expectancy; this interim period where death rates are low and birth rates are high is where this population explosion occurs, and population growth can remain high as the population ages. In today's most-developed countries, the transition generally began with industrialization in the 1800s, and growth has now stabilized as birth and mortality rates have re-balanced. Across less-developed countries, the stage of this transition varies; for example, China is at a later stage than India, which accounts for the change in which country is more populous - understanding the demographic transition can help understand the reason why China's population is now going into decline. The least-developed region is Sub-Saharan Africa, where fertility rates remain close to pre-industrial levels in some countries. As these countries transition, they will undergo significant rates of population growth
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Economic growth and modernization of society are generally associated with fertility rate decreases but which forces trigger this is unclear. In this paper we assess how fertility changes with increased labor market participation of women in rural Senegal. Evidence from high-income countries suggests that higher female employment rates lead to reduced fertility rates but evidence from developing countries at an early stage of demographic transition is largely absent. We concentrate on a rural area in northern Senegal where a recent boom in horticultural exports has been associated with a sudden increase in female off-farm employment. Using survey data we show that employed women have a significantly higher age at marriage and at first childbirth, and significantly fewer children. As causal identification strategy we use instrumental variable and difference-in-differences estimations, combined with propensity score matching. We find that female employment reduces the number of children per woman by 25%, and that this fertility-reducing effect is as large for poor as for non-poor women and larger for illiterate than for literate women. Results imply that female employment is a strong instrument for empowering rural women, reducing fertility rates and accelerating the demographic transition in poor countries. The effectiveness of family planning programs can increase if targeted to areas where female employment is increasing or to female employees directly because of a higher likelihood to reach women with low-fertility preferences. Our results show that changes in fertility preferences not necessarily result from a cultural evolution but can also be driven by sudden and individual changes in economic opportunities.
In 2025, there are six countries, all in Sub-Saharan Africa, where the average woman of childbearing age can expect to have between 5-6 children throughout their lifetime. In fact, of the 20 countries in the world with the highest fertility rates, Afghanistan and Yemen are the only countries not found in Sub-Saharan Africa. High fertility rates in Africa With a fertility rate of almost six children per woman, Chad is the country with the highest fertility rate in the world. Population growth in Chad is among the highest in the world. Lack of healthcare access, as well as food instability, political instability, and climate change, are all exacerbating conditions that keep Chad's infant mortality rates high, which is generally the driver behind high fertility rates. This situation is common across much of the continent, and, although there has been considerable progress in recent decades, development in Sub-Saharan Africa is not moving as quickly as it did in other regions. Demographic transition While these countries have the highest fertility rates in the world, their rates are all on a generally downward trajectory due to a phenomenon known as the demographic transition. The third stage (of five) of this transition sees birth rates drop in response to decreased infant and child mortality, as families no longer feel the need to compensate for lost children. Eventually, fertility rates fall below replacement level (approximately 2.1 children per woman), which eventually leads to natural population decline once life expectancy plateaus. In some of the most developed countries today, low fertility rates are creating severe econoic and societal challenges as workforces are shrinking while aging populations are placin a greater burden on both public and personal resources.
This statistic shows the median age of the population in Brazil from 1950 to 2100. The median age is the age that divides a population into two numerically equal groups; that is, half the people are younger than this age and half are older. It is a single index that summarizes the age distribution of a population. In 2020, the median age of the Brazilian population was 32.7 years. Brazil as a developing nation The average age of the Brazil’s population has risen from a low of 16.8 years in 1965 to 32.4 years in 2020, a typical change in developing nations, and other demographic parameters support this trend: As of 2014, the share of children under 14 years of age stood at around 23.5 percent, a great improvement from earlier times. Since 2005, the fertility rate has also dropped significantly, but now it is even lower than the natural replacement rate at 1.78 children per woman. Over the same period of time, life expectancy has also risen to 74.4 years of age - higher than the average for developing nations. These changes typically happen as a result of developing countries becoming more modernized and economically diverse. Brazil’s economy had been getting significantly stronger and per capita GDP peaked in 2011 at a much higher value than the regional average for Latin America and the Caribbean. However, the Brazilian economy has reached a difficult point, and GDP per capita is expected to fall to as low as 7,447 U.S. dollars in 2016. As Brazil’s demographics are now similar to other developing countries, the economy has not been able to maintain a similar path to steady growth.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
By the middle of the 1990s, Indonesia had enjoyed over three decades of remarkable social, economic, and demographic change and was on the cusp of joining the middle-income countries. Per capita income had risen more than fifteenfold since the early 1960s, from around US$50 to more than US$800. Increases in educational attainment and decreases in fertility and infant mortality over the same period reflected impressive investments in infrastructure. In the late 1990s the economic outlook began to change as Indonesia was gripped by the economic crisis that affected much of Asia. In 1998 the rupiah collapsed, the economy went into a tailspin, and gross domestic product contracted by an estimated 12-15%-a decline rivaling the magnitude of the Great Depression. The general trend of several decades of economic progress followed by a few years of economic downturn masks considerable variation across the archipelago in the degree both of economic development and of economic setbacks related to the crisis. In part this heterogeneity reflects the great cultural and ethnic diversity of Indonesia, which in turn makes it a rich laboratory for research on a number of individual- and household-level behaviors and outcomes that interest social scientists. The Indonesia Family Life Survey is designed to provide data for studying behaviors and outcomes. The survey contains a wealth of information collected at the individual and household levels, including multiple indicators of economic and non-economic well-being: consumption, income, assets, education, migration, labor market outcomes, marriage, fertility, contraceptive use, health status, use of health care and health insurance, relationships among co-resident and non- resident family members, processes underlying household decision-making, transfers among family members and participation in community activities. In addition to individual- and household-level information, the IFLS provides detailed information from the communities in which IFLS households are located and from the facilities that serve residents of those communities. These data cover aspects of the physical and social environment, infrastructure, employment opportunities, food prices, access to health and educational facilities, and the quality and prices of services available at those facilities. By linking data from IFLS households to data from their communities, users can address many important questions regarding the impact of policies on the lives of the respondents, as well as document the effects of social, economic, and environmental change on the population. The Indonesia Family Life Survey complements and extends the existing survey data available for Indonesia, and for developing countries in general, in a number of ways. First, relatively few large-scale longitudinal surveys are available for developing countries. IFLS is the only large-scale longitudinal survey available for Indonesia. Because data are available for the same individuals from multiple points in time, IFLS affords an opportunity to understand the dynamics of behavior, at the individual, household and family and community levels. In IFLS1 7,224 households were interviewed, and detailed individual-level data were collected from over 22,000 individuals. In IFLS2, 94.4% of IFLS1 households were re-contacted (interviewed or died). In IFLS3 the re-contact rate was 95.3% of IFLS1 households. Indeed nearly 91% of IFLS1 households are complete panel households in that they were interviewed in all three waves, IFLS1, 2 and 3. These re-contact rates are as high as or higher than most longitudinal surveys in the United States and Europe. High re-interview rates were obtained in part because we were committed to tracking and interviewing individuals who had moved or split off from the origin IFLS1 households. High re-interview rates contribute significantly to data quality in a longitudinal survey because they lessen the risk of bias due to nonrandom attrition in studies using the data. Second, the multipurpose nature of IFLS instruments means that the data support analyses of interrelated issues not possible with single-purpose surveys. For example, the availability of data on household consumption together with detailed individual data on labor market outcomes, health outcomes and on health program availability and quality at the community level means that one can examine the impact of income on health outcomes, but also whether health in turn affects incomes. Third, IFLS collected both current and retrospective information on most topics. With data from multiple points of time on current status and an extensive array of retrospective information about the lives of respondents, analysts can relate dynamics to events that occurred in the past. For example, changes in labor outcomes in recent years can be explored as a function of earlier decisions about schooling and work. Fourth, IFLS collected extensive measures of health status, including self-reported measures of general health status, morbidity experience, and physical assessments conducted by a nurse (height, weight, head circumference, blood pressure, pulse, waist and hip circumference, hemoglobin level, lung capacity, and time required to repeatedly rise from a sitting position). These data provide a much richer picture of health status than is typically available in household surveys. For example, the data can be used to explore relationships between socioeconomic status and an array of health outcomes. Fifth, in all waves of the survey, detailed data were collected about respondents¹ communities and public and private facilities available for their health care and schooling. The facility data can be combined with household and individual data to examine the relationship between, for example, access to health services (or changes in access) and various aspects of health care use and health status. Sixth, because the waves of IFLS span the period from several years before the economic crisis hit Indonesia, to just prior to it hitting, to one year and then three years after, extensive research can be carried out regarding the living conditions of Indonesian households during this very tumultuous period. In sum, the breadth and depth of the longitudinal information on individuals, households, communities, and facilities make IFLS data a unique resource for scholars and policymakers interested in the processes of economic development.
This collection contains two datasets: one, data used in TI-City model to predict future urban expansion in Accra, Ghana; and two, residential electricity consumption data used to map intra-urban living standards in Karachi, Pakistan. The TI-City model data are ASCII files of infrastructure and amenities that affect location decisions of households and developers. The residential electricity consumption data consist of average kilowatt hours (kw/h) of electricity consumed per month by ~ 2 million households in Karachi. The electricity consumption data is aggregated into 30m grid cells (count = 193050), with centroids and consumption values provided. The values of the points (centroids), captured under the field "Avg_Avg_Cs", represents the median of average monthly consumption of households within the 30m grid cells.
Our project addresses a critical gap in social research methodology that has important implications for combating urban poverty and promoting sustainable development in low and middle-income countries. Simply put, we're creating a low-cost tool for gathering critical information about urban population dynamics in cities experiencing rapid spatial-demographic and socioeconomic change. Such information is vital to the success of urban planning and development initiatives, as well as disaster relief efforts. By improving the information base of the actors involved in such activities we aim to improve the lives of urban dwellers across the developing world, particularly the poorest and most vulnerable. The key output for the project will be a freely available 'City Sampling Toolkit' that provides detailed instructions and opensource software tools for replicating the approach at various spatial scales.
Our research is motivated by the growing recognition that cities are critical arenas for action in global efforts to tackle poverty and transition towards more environmentally sustainable economic growth. Between now and 2050 the global urban population is projected to grow by over 2 billion, with the overwhelming majority of this growth taking place in low and middle-income countries in Africa and Asia. Developing evidence-based policies for managing this growth is an urgent task. As UN Secretary General Ban Ki Moon has observed: "Cities are increasingly the home of humanity. They are central to climate action, global prosperity, peace and human rights...To transform our world, we must transform its cities."
Unfortunately, even basic data about urban populations are lacking in many of the fastest growing cities of the world. Existing methods for gathering vital information, including censuses and sample surveys, have critical limitations in urban areas experiencing rapid change. And 'big data' approaches are not an adequate substitute for representative population data when it comes to urban planning and policymaking. We will overcome these limitations through a combination of conceptual innovation and creative integration of novel tools and techniques that have been developed for sampling, surveying and estimating the characteristics of populations that are difficult to enumerate. This, in turn, will help us capture the large (and sometimes uniquely vulnerable) 'hidden populations' in cities missed by traditional approaches.
By using freely available satellite imagery, we can get an idea of the current shape of a rapidly changing city and create a 'sampling frame' from which we then identify respondents for our survey. Importantly, and in contrast with previous approaches, we aren't simply going to count official city residents. We are interested in understanding the characteristics of the actually present population, including recent migrants, temporary residents, and those living in informal or illegal settlements, who are often not considered formal residents in official enumeration exercises. In other words, our 'inclusion criterion' for the survey exercise is presence not residence. By adopting this approach, we hope to capture a more accurate picture of city populations. We will also limit the length of our survey questionnaire to maximise responses and then use novel statistical techniques to reconstruct a rich statistical portrait that reflects a wide range of demographic and socioeconomic information.
We will pilot our methodology in a city in Pakistan, which recently completed a national census exercise that has generated some controversy with regard to the accuracy of urban population counts. To our knowledge this would be the first project ever to pilot and validate a new sampling and survey methodology at the city scale in a developing country.
The 2012 GHI report focuses particularly on the issue of how to ensure sustainable food security under conditions of water, land, and energy stress. Demographic changes, rising incomes and associated consumption patterns, and climate change, alongside persistent poverty and inadequate policies and institutions, are all placing serious pressure on natural resources. In this report, IFPRI describes the evidence on land, water, and energy scarcity in developing countries and offers two visions of a future global food system—an unsustainable scenario in which current trends in resource use continue, and a sustainable scenario in which access to food, modern energy, and clean water improves significantly and ecosystem degradation is halted or reversed. Concern Worldwide and Welthungerhilfe provide on-the-ground perspectives on the issues of land tenure and title as well as the impacts of scarce land, water, and energy on poor people in Sierra Leone and Tanzania and describe the work of their organizations in helping to alleviate these impacts. See other formats of data here: Linked Open Data (LOD) -- [OWL Version] and [RDF Version] See visual data at: Data Visualization
In 2024, about 943.5 million people lived in urban regions in China and 464.8 million in rural. That year, the country had a total population of approximately 1.41 billion people. As of 2024, China was the second most populous country in the world. Urbanization in China Urbanization refers to the process by which people move from rural to urban areas and how a society adapts to the population shift. It is usually seen as a driving force in economic growth, accompanied by industrialization, modernization and the spread of education. Urbanization levels tend to be higher in industrial countries, whereas the degree of urbanization in developing countries remains relatively low. According to World Bank, a mere 19.4 percent of the Chinese population had been living in urban areas in 1980. Since then, China’s urban population has skyrocketed. By 2024, about 67 percent of the Chinese population lived in urban areas. Regional urbanization rates In the last decades, urbanization has progressed greatly in every region of China. Even in most of the more remote Chinese provinces, the urbanization rate surpassed 50 percent in recent years. However, the most urbanized areas are still to be found in the coastal eastern and southern regions of China. The population of Shanghai, the largest city in China and the world’s seventh largest city ranged at around 24 million people in 2023. China’s urban areas are characterized by a developing middle class. Per capita disposable income of Chinese urban households has more than doubled between 2010 and 2020. The emerging middle class is expected to become a significant driver for the continuing growth of the Chinese economy.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Pairwise comparison of criteria giving a higher weighting to land use.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Suitability criteria and scores.
In 2022, the urban population in Vietnam stood at approximately 37.4 million people. The six largest urban agglomerations include Hanoi, Hai Phong, Da Nang, Bien Hoa, Ho Chi Minh City, and Can Tho. On the other hand, Ben Tre, Thai Binh, and Bac Giang had the lowest rates of urbanization in the country.
Urbanization in Vietnam
The rapid urbanization in Vietnam results in a disproportionate population density between its urban and rural areas. For instance, in 2022, Ho Chi Minh City recorded a population density of 4,481 inhabitants per square kilometer, nearly 15 times the country's average population density in the same year. The urban population is consistently increasing due to the country’s economic reforms and infrastructure development, as well as higher living standards. For example, the monthly income per capita in urban areas is nearly half as much as that in rural areas. Nevertheless, the poverty rate in Vietnam has been consistently diminishing each year, roughly at 4.2 percent as of 2022.
Urban infrastructure in Vietnam
Vietnam has made significant progress in developing its urban infrastructure, especially in major cities like Hanoi and Ho Chi Minh City. The expansion of highways, seaports, and airports has enhanced domestic and international connectivity, as well as greatly contributed to the country’s logistic industry. For instance, Hanoi and Ho Chi Minh City are developing a metro system which is expected to be put into operation in 2024. The country has also invested in modern healthcare facilities, schools, and commercial centers. However, challenges such as traffic jams, limited public transportation services, and environmental pollution still require significant efforts to meet the growing demands of the Vietnamese urban population.
In 2023, agriculture contributed around 23.33 percent to the GDP of Pakistan, 20.68 percent came from the industry, and over half of the economy’s contribution to GDP came from the services sector. Divisions of the economy There are three main sectors of economy: The primary sector encompassed agriculture, fishing and mining. The secondary sector is the manufacturing sector, also known as the industry sector; and last but not least, the tertiary sector, alias the services sector, which includes services and intangible goods, like tourism, financial services, or telecommunications. Today, most developed countries have a well-established services sector that contributes the lion’s share to their GDP. On the other hand, economies that still need support and are still developing typically rely on agriculture to fuel their economy. If they transition to a developed nation, it is usually because their economy is now able to focus on services as an economic driver. Pakistan’s economic driver Although Pakistan is not considered a fully developed nation yet, over half of its annual GDP is now generated by the services sector. However, the primary sector plays an important role for the country: It is still responsible for almost a quarter of GDP contribution, and it employs almost half of Pakistan’s workforce. Pakistan is rich in arable land, which explains why the majority of the Pakistani population lives in rural areas, producing and selling sugarcane, wheat, cotton, and rice, which are also exported to other countries.
Not seeing a result you expected?
Learn how you can add new datasets to our index.
In 2022, India overtook China as the world's most populous country and now has almost 1.46 billion people. China now has the second-largest population in the world, still with just over 1.4 billion inhabitants, however, its population went into decline in 2023. Global population As of 2025, the world's population stands at almost 8.2 billion people and is expected to reach around 10.3 billion people in the 2080s, when it will then go into decline. Due to improved healthcare, sanitation, and general living conditions, the global population continues to increase; mortality rates (particularly among infants and children) are decreasing and the median age of the world population has steadily increased for decades. As for the average life expectancy in industrial and developing countries, the gap has narrowed significantly since the mid-20th century. Asia is the most populous continent on Earth; 11 of the 20 largest countries are located there. It leads the ranking of the global population by continent by far, reporting four times as many inhabitants as Africa. The Demographic Transition The population explosion over the past two centuries is part of a phenomenon known as the demographic transition. Simply put, this transition results from a drastic reduction in mortality, which then leads to a reduction in fertility, and increase in life expectancy; this interim period where death rates are low and birth rates are high is where this population explosion occurs, and population growth can remain high as the population ages. In today's most-developed countries, the transition generally began with industrialization in the 1800s, and growth has now stabilized as birth and mortality rates have re-balanced. Across less-developed countries, the stage of this transition varies; for example, China is at a later stage than India, which accounts for the change in which country is more populous - understanding the demographic transition can help understand the reason why China's population is now going into decline. The least-developed region is Sub-Saharan Africa, where fertility rates remain close to pre-industrial levels in some countries. As these countries transition, they will undergo significant rates of population growth