Facebook
TwitterThe New York Times is releasing a series of data files with cumulative counts of coronavirus cases in the United States, at the state and county level, over time. We are compiling this time series data from state and local governments and health departments in an attempt to provide a complete record of the ongoing outbreak.
Since late January, The Times has tracked cases of coronavirus in real time as they were identified after testing. Because of the widespread shortage of testing, however, the data is necessarily limited in the picture it presents of the outbreak.
We have used this data to power our maps and reporting tracking the outbreak, and it is now being made available to the public in response to requests from researchers, scientists and government officials who would like access to the data to better understand the outbreak.
The data begins with the first reported coronavirus case in Washington State on Jan. 21, 2020. We will publish regular updates to the data in this repository.
Facebook
TwitterIn the week running from March 9 to 15, 2020, Fox News averaged **** million viewers in primetime, and CNN outperformed MSNBC with its primetime audience of **** million. Comparing these figures to the corresponding week of the previous year, primetime viewership is noticeably higher among all three of the major cable news networks. Cable news network viewership varies monthly, though Fox News generally comes out on top, but the TV industry as a whole will be keeping a close eye on developments and ratings in spring 2020 in light of the coronavirus outbreak. The pandemic which is driving people indoors as they self-isolate, contrary to normal spring behaviour which tends to send viewers outdoors and away from their television sets.
Important to note here is that on March 11, 2020, the World Health Organization announced that the coronavirus was a global pandemic, right in the middle of the week in March 2020 presented in the graph. In that week, Fox News averaged over *** million more primetime viewers than in the corresponding period in 2019, and CNN's primetime audience was around ***** times higher.
Facebook
TwitterAs the United States battles the coronavirus, news consumers across the country have been attempting to keep themselves updated with how the pandemic is progressing, and a survey held in March 2020 revealed that the most trusted news source for details on COVID-19 was the CDC, with ** percent of respondents saying that they trusted the centers to provide accurate information on the topic. Following closely behind was the World Health Organization and then the state government, but just ** percent of consumers said that they trusted social media sites to publish reliable and accurate news about the coronavirus outbreak.
Facebook
TwitterThe COVID Tracking Project collects information from 50 US states, the District of Columbia, and 5 other US territories to provide the most comprehensive testing data we can collect for the novel coronavirus, SARS-CoV-2. We attempt to include positive and negative results, pending tests, and total people tested for each state or district currently reporting that data.
Testing is a crucial part of any public health response, and sharing test data is essential to understanding this outbreak. The CDC is currently not publishing complete testing data, so we’re doing our best to collect it from each state and provide it to the public. The information is patchy and inconsistent, so we’re being transparent about what we find and how we handle it—the spreadsheet includes our live comments about changing data and how we’re working with incomplete information.
From here, you can also learn about our methodology, see who makes this, and find out what information states provide and how we handle it.
Facebook
TwitterNotice of data discontinuation: Since the start of the pandemic, AP has reported case and death counts from data provided by Johns Hopkins University. Johns Hopkins University has announced that they will stop their daily data collection efforts after March 10. As Johns Hopkins stops providing data, the AP will also stop collecting daily numbers for COVID cases and deaths. The HHS and CDC now collect and visualize key metrics for the pandemic. AP advises using those resources when reporting on the pandemic going forward.
April 9, 2020
April 20, 2020
April 29, 2020
September 1st, 2020
February 12, 2021
new_deaths column.February 16, 2021
The AP is using data collected by the Johns Hopkins University Center for Systems Science and Engineering as our source for outbreak caseloads and death counts for the United States and globally.
The Hopkins data is available at the county level in the United States. The AP has paired this data with population figures and county rural/urban designations, and has calculated caseload and death rates per 100,000 people. Be aware that caseloads may reflect the availability of tests -- and the ability to turn around test results quickly -- rather than actual disease spread or true infection rates.
This data is from the Hopkins dashboard that is updated regularly throughout the day. Like all organizations dealing with data, Hopkins is constantly refining and cleaning up their feed, so there may be brief moments where data does not appear correctly. At this link, you’ll find the Hopkins daily data reports, and a clean version of their feed.
The AP is updating this dataset hourly at 45 minutes past the hour.
To learn more about AP's data journalism capabilities for publishers, corporations and financial institutions, go here or email kromano@ap.org.
Use AP's queries to filter the data or to join to other datasets we've made available to help cover the coronavirus pandemic
Filter cases by state here
Rank states by their status as current hotspots. Calculates the 7-day rolling average of new cases per capita in each state: https://data.world/associatedpress/johns-hopkins-coronavirus-case-tracker/workspace/query?queryid=481e82a4-1b2f-41c2-9ea1-d91aa4b3b1ac
Find recent hotspots within your state by running a query to calculate the 7-day rolling average of new cases by capita in each county: https://data.world/associatedpress/johns-hopkins-coronavirus-case-tracker/workspace/query?queryid=b566f1db-3231-40fe-8099-311909b7b687&showTemplatePreview=true
Join county-level case data to an earlier dataset released by AP on local hospital capacity here. To find out more about the hospital capacity dataset, see the full details.
Pull the 100 counties with the highest per-capita confirmed cases here
Rank all the counties by the highest per-capita rate of new cases in the past 7 days here. Be aware that because this ranks per-capita caseloads, very small counties may rise to the very top, so take into account raw caseload figures as well.
The AP has designed an interactive map to track COVID-19 cases reported by Johns Hopkins.
@(https://datawrapper.dwcdn.net/nRyaf/15/)
<iframe title="USA counties (2018) choropleth map Mapping COVID-19 cases by county" aria-describedby="" id="datawrapper-chart-nRyaf" src="https://datawrapper.dwcdn.net/nRyaf/10/" scrolling="no" frameborder="0" style="width: 0; min-width: 100% !important;" height="400"></iframe><script type="text/javascript">(function() {'use strict';window.addEventListener('message', function(event) {if (typeof event.data['datawrapper-height'] !== 'undefined') {for (var chartId in event.data['datawrapper-height']) {var iframe = document.getElementById('datawrapper-chart-' + chartId) || document.querySelector("iframe[src*='" + chartId + "']");if (!iframe) {continue;}iframe.style.height = event.data['datawrapper-height'][chartId] + 'px';}}});})();</script>
Johns Hopkins timeseries data - Johns Hopkins pulls data regularly to update their dashboard. Once a day, around 8pm EDT, Johns Hopkins adds the counts for all areas they cover to the timeseries file. These counts are snapshots of the latest cumulative counts provided by the source on that day. This can lead to inconsistencies if a source updates their historical data for accuracy, either increasing or decreasing the latest cumulative count. - Johns Hopkins periodically edits their historical timeseries data for accuracy. They provide a file documenting all errors in their timeseries files that they have identified and fixed here
This data should be credited to Johns Hopkins University COVID-19 tracking project
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Introduction
There are several works based on Natural Language Processing on newspaper reports. Mining opinions from headlines [ 1 ] using Standford NLP and SVM by Rameshbhaiet. Al.compared several algorithms on a small and large dataset. Rubinet. al., in their paper [ 2 ], created a mechanism to differentiate fake news from real ones by building a set of characteristics of news according to their types. The purpose was to contribute to the low resource data available for training machine learning algorithms. Doumitet. al.in [ 3 ] have implemented LDA, a topic modeling approach to study bias present in online news media.
However, there are not many NLP research invested in studying COVID-19. Most applications include classification of chest X-rays and CT-scans to detect presence of pneumonia in lungs [ 4 ], a consequence of the virus. Other research areas include studying the genome sequence of the virus[ 5 ][ 6 ][ 7 ] and replicating its structure to fight and find a vaccine. This research is crucial in battling the pandemic. The few NLP based research publications are sentiment classification of online tweets by Samuel et el [ 8 ] to understand fear persisting in people due to the virus. Similar work has been done using the LSTM network to classify sentiments from online discussion forums by Jelodaret. al.[ 9 ]. NKK dataset is the first study on a comparatively larger dataset of a newspaper report on COVID-19, which contributed to the virus’s awareness to the best of our knowledge.
2 Data-set Introduction
2.1 Data Collection
We accumulated 1000 online newspaper report from United States of America (USA) on COVID-19. The newspaper includes The Washington Post (USA) and StarTribune (USA). We have named it as “Covid-News-USA-NNK”. We also accumulated 50 online newspaper report from Bangladesh on the issue and named it “Covid-News-BD-NNK”. The newspaper includes The Daily Star (BD) and Prothom Alo (BD). All these newspapers are from the top provider and top read in the respective countries. The collection was done manually by 10 human data-collectors of age group 23- with university degrees. This approach was suitable compared to automation to ensure the news were highly relevant to the subject. The newspaper online sites had dynamic content with advertisements in no particular order. Therefore there were high chances of online scrappers to collect inaccurate news reports. One of the challenges while collecting the data is the requirement of subscription. Each newspaper required $1 per subscriptions. Some criteria in collecting the news reports provided as guideline to the human data-collectors were as follows:
The headline must have one or more words directly or indirectly related to COVID-19.
The content of each news must have 5 or more keywords directly or indirectly related to COVID-19.
The genre of the news can be anything as long as it is relevant to the topic. Political, social, economical genres are to be more prioritized.
Avoid taking duplicate reports.
Maintain a time frame for the above mentioned newspapers.
To collect these data we used a google form for USA and BD. We have two human editor to go through each entry to check any spam or troll entry.
2.2 Data Pre-processing and Statistics
Some pre-processing steps performed on the newspaper report dataset are as follows:
Remove hyperlinks.
Remove non-English alphanumeric characters.
Remove stop words.
Lemmatize text.
While more pre-processing could have been applied, we tried to keep the data as much unchanged as possible since changing sentence structures could result us in valuable information loss. While this was done with help of a script, we also assigned same human collectors to cross check for any presence of the above mentioned criteria.
The primary data statistics of the two dataset are shown in Table 1 and 2.
Table 1: Covid-News-USA-NNK data statistics
No of words per headline
7 to 20
No of words per body content
150 to 2100
Table 2: Covid-News-BD-NNK data statistics No of words per headline
10 to 20
No of words per body content
100 to 1500
2.3 Dataset Repository
We used GitHub as our primary data repository in account name NKK^1. Here, we created two repositories USA-NKK^2 and BD-NNK^3. The dataset is available in both CSV and JSON format. We are regularly updating the CSV files and regenerating JSON using a py script. We provided a python script file for essential operation. We welcome all outside collaboration to enrich the dataset.
3 Literature Review
Natural Language Processing (NLP) deals with text (also known as categorical) data in computer science, utilizing numerous diverse methods like one-hot encoding, word embedding, etc., that transform text to machine language, which can be fed to multiple machine learning and deep learning algorithms.
Some well-known applications of NLP includes fraud detection on online media sites[ 10 ], using authorship attribution in fallback authentication systems[ 11 ], intelligent conversational agents or chatbots[ 12 ] and machine translations used by Google Translate[ 13 ]. While these are all downstream tasks, several exciting developments have been made in the algorithm solely for Natural Language Processing tasks. The two most trending ones are BERT[ 14 ], which uses bidirectional encoder-decoder architecture to create the transformer model, that can do near-perfect classification tasks and next-word predictions for next generations, and GPT-3 models released by OpenAI[ 15 ] that can generate texts almost human-like. However, these are all pre-trained models since they carry huge computation cost. Information Extraction is a generalized concept of retrieving information from a dataset. Information extraction from an image could be retrieving vital feature spaces or targeted portions of an image; information extraction from speech could be retrieving information about names, places, etc[ 16 ]. Information extraction in texts could be identifying named entities and locations or essential data. Topic modeling is a sub-task of NLP and also a process of information extraction. It clusters words and phrases of the same context together into groups. Topic modeling is an unsupervised learning method that gives us a brief idea about a set of text. One commonly used topic modeling is Latent Dirichlet Allocation or LDA[17].
Keyword extraction is a process of information extraction and sub-task of NLP to extract essential words and phrases from a text. TextRank [ 18 ] is an efficient keyword extraction technique that uses graphs to calculate the weight of each word and pick the words with more weight to it.
Word clouds are a great visualization technique to understand the overall ’talk of the topic’. The clustered words give us a quick understanding of the content.
4 Our experiments and Result analysis
We used the wordcloud library^4 to create the word clouds. Figure 1 and 3 presents the word cloud of Covid-News-USA- NNK dataset by month from February to May. From the figures 1,2,3, we can point few information:
In February, both the news paper have talked about China and source of the outbreak.
StarTribune emphasized on Minnesota as the most concerned state. In April, it seemed to have been concerned more.
Both the newspaper talked about the virus impacting the economy, i.e, bank, elections, administrations, markets.
Washington Post discussed global issues more than StarTribune.
StarTribune in February mentioned the first precautionary measurement: wearing masks, and the uncontrollable spread of the virus throughout the nation.
While both the newspaper mentioned the outbreak in China in February, the weight of the spread in the United States are more highlighted through out March till May, displaying the critical impact caused by the virus.
We used a script to extract all numbers related to certain keywords like ’Deaths’, ’Infected’, ’Died’ , ’Infections’, ’Quarantined’, Lock-down’, ’Diagnosed’ etc from the news reports and created a number of cases for both the newspaper. Figure 4 shows the statistics of this series. From this extraction technique, we can observe that April was the peak month for the covid cases as it gradually rose from February. Both the newspaper clearly shows us that the rise in covid cases from February to March was slower than the rise from March to April. This is an important indicator of possible recklessness in preparations to battle the virus. However, the steep fall from April to May also shows the positive response against the attack. We used Vader Sentiment Analysis to extract sentiment of the headlines and the body. On average, the sentiments were from -0.5 to -0.9. Vader Sentiment scale ranges from -1(highly negative to 1(highly positive). There were some cases
where the sentiment scores of the headline and body contradicted each other,i.e., the sentiment of the headline was negative but the sentiment of the body was slightly positive. Overall, sentiment analysis can assist us sort the most concerning (most negative) news from the positive ones, from which we can learn more about the indicators related to COVID-19 and the serious impact caused by it. Moreover, sentiment analysis can also provide us information about how a state or country is reacting to the pandemic. We used PageRank algorithm to extract keywords from headlines as well as the body content. PageRank efficiently highlights important relevant keywords in the text. Some frequently occurring important keywords extracted from both the datasets are: ’China’, Government’, ’Masks’, ’Economy’, ’Crisis’, ’Theft’ , ’Stock market’ , ’Jobs’ , ’Election’, ’Missteps’, ’Health’, ’Response’. Keywords extraction acts as a filter allowing quick searches for indicators in case of locating situations of the economy,
Facebook
TwitterThis data comes from the New York Times Coronavirus (Covid-19) Data in the United States GitHub repository. They use it to power their interactive page(s) on Covid-19, such as Coronavirus in the U.S.: Latest Map and Case Count.
The primary data published here are the daily cumulative number of cases and deaths reported in each county and state across the U.S. since the beginning of the pandemic. We have also published these additional data sets:
The cumulative & rolling averages for cases and deaths are continually updated, but the more specific data mentioned above for prisons, etc. is no longer being updated.
This includes data at the national, state, and county levels.
If you use this data, you must attribute it to “The New York Times” in any publication. If you would like a more expanded description of the data, you could say “Data from The New York Times, based on reports from state and local health agencies.”
Header Image: https://www.pexels.com/photo/n95-face-mask-3993241/
See the original New York Times source README which is also included in this dataset.
Facebook
Twitterhttps://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F5505749%2F2b83271d61e47e2523e10dc9c28e545c%2F600x200.jpg?generation=1599042483103679&alt=media" alt="">
State level daily COVID-19 data for United States, provided by Johns Hopkins University (JHU) Center for Systems Science and Engineering (CSSE). If you want to use the updated version of the data, you can use our daily updated data with the help of api key by entering it via Altadata.
In this data product, you may find the latest and historical daily data on the COVID-19 pandemic for United States with the states level breakdown.
The COVID‑19 pandemic, also known as the coronavirus pandemic, is an ongoing global pandemic of coronavirus disease 2019 (COVID‑19), caused by severe acute respiratory syndrome coronavirus 2 (SARS‑CoV‑2). The outbreak was first identified in December 2019 in Wuhan, China. The World Health Organization declared the outbreak a Public Health Emergency of International Concern on 30 January 2020 and a pandemic on 11 March. As of 12 August 2020, more than 20.2 million cases of COVID‑19 have been reported in more than 188 countries and territories, resulting in more than 741,000 deaths; more than 12.5 million people have recovered.
The Johns Hopkins Coronavirus Resource Center is a continuously updated source of COVID-19 data and expert guidance. They aggregate and analyze the best data available on COVID-19 - including cases, as well as testing, contact tracing and vaccine efforts - to help the public, policymakers and healthcare professionals worldwide respond to the pandemic.
Facebook
TwitterAccording to a survey conducted in March 2020, ** percent of U.S. news consumers said that they were seeking out the latest information about the coronavirus via news media in general, including TV news, radio news, online news, and newspapers. In fact, ** percent of adults aged 55 or above were getting most of their news about the virus this way, compared to just ** percent of ** to 24-year-olds who were more likely than their older peers to turn to websites or social media posts from government or health agencies.
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
From World Health Organization - On 31 December 2019, WHO was alerted to several cases of pneumonia in Wuhan City, Hubei Province of China. The virus did not match any other known virus. This raised concern because when a virus is new, we do not know how it affects people.
So daily level information on the affected people can give some interesting insights when it is made available to the broader data science community.
Johns Hopkins University has made an excellent dashboard using the affected cases data. Data is extracted from the google sheets associated and made available here.
Now data is available as csv files in the Johns Hopkins Github repository. Please refer to the github repository for the Terms of Use details. Uploading it here for using it in Kaggle kernels and getting insights from the broader DS community.
2019 Novel Coronavirus (2019-nCoV) is a virus (more specifically, a coronavirus) identified as the cause of an outbreak of respiratory illness first detected in Wuhan, China. Early on, many of the patients in the outbreak in Wuhan, China reportedly had some link to a large seafood and animal market, suggesting animal-to-person spread. However, a growing number of patients reportedly have not had exposure to animal markets, indicating person-to-person spread is occurring. At this time, it’s unclear how easily or sustainably this virus is spreading between people - CDC
This dataset has daily level information on the number of affected cases, deaths and recovery from 2019 novel coronavirus. Please note that this is a time series data and so the number of cases on any given day is the cumulative number.
The data is available from 22 Jan, 2020.
Here’s a polished version suitable for a professional Kaggle dataset description:
This dataset contains time-series and case-level records of the COVID-19 pandemic. The primary file is covid_19_data.csv, with supporting files for earlier records and individual-level line list data.
This is the primary dataset and contains aggregated COVID-19 statistics by location and date.
This file contains earlier COVID-19 records. It is no longer updated and is provided only for historical reference. For current analysis, please use covid_19_data.csv.
This file provides individual-level case information, obtained from an open data source. It includes patient demographics, travel history, and case outcomes.
Another individual-level case dataset, also obtained from public sources, with detailed patient-level information useful for micro-level epidemiological analysis.
✅ Use covid_19_data.csv for up-to-date aggregated global trends.
✅ Use the line list datasets for detailed, individual-level case analysis.
If you are interested in knowing country level data, please refer to the following Kaggle datasets:
India - https://www.kaggle.com/sudalairajkumar/covid19-in-india
South Korea - https://www.kaggle.com/kimjihoo/coronavirusdataset
Italy - https://www.kaggle.com/sudalairajkumar/covid19-in-italy
Brazil - https://www.kaggle.com/unanimad/corona-virus-brazil
USA - https://www.kaggle.com/sudalairajkumar/covid19-in-usa
Switzerland - https://www.kaggle.com/daenuprobst/covid19-cases-switzerland
Indonesia - https://www.kaggle.com/ardisragen/indonesia-coronavirus-cases
Johns Hopkins University for making the data available for educational and academic research purposes
MoBS lab - https://www.mobs-lab.org/2019ncov.html
World Health Organization (WHO): https://www.who.int/
DXY.cn. Pneumonia. 2020. http://3g.dxy.cn/newh5/view/pneumonia.
BNO News: https://bnonews.com/index.php/2020/02/the-latest-coronavirus-cases/
National Health Commission of the People’s Republic of China (NHC): http://www.nhc.gov.cn/xcs/yqtb/list_gzbd.shtml
China CDC (CCDC): http://weekly.chinacdc.cn/news/TrackingtheEpidemic.htm
Hong Kong Department of Health: https://www.chp.gov.hk/en/features/102465.html
Macau Government: https://www.ssm.gov.mo/portal/
Taiwan CDC: https://sites.google....
Facebook
TwitterData is obtained from COVID-19 Tracking project and NYTimes. Sincere thanks to them for making it available to the public.
Coronaviruses are a large family of viruses which may cause illness in animals or humans. In humans, several coronaviruses are known to cause respiratory infections ranging from the common cold to more severe diseases such as Middle East Respiratory Syndrome (MERS) and Severe Acute Respiratory Syndrome (SARS). The most recently discovered coronavirus causes coronavirus disease COVID-19 - World Health Organization
The number of new cases are increasing day by day around the world. This dataset has information from 50 US states and the District of Columbia at daily level.
LICENSE:
Please refer here
Apache License 2.0
A permissive license whose main conditions require preservation of copyright and license notices. Contributors provide an express grant of patent rights. Licensed works, modifications, and larger works may be distributed under different terms and without source code.
For counties dataset, please refer here
us_states_covid19_daily.csv
This dataset has number of tests conducted in each state at daily level. Column descriptions are
date - date of observation state - US state 2 digit code positive - number of tests with positive results negative - number of tests with negative results pending - number of test with pending results death - number of deaths total - total number of tests
Sincere thanks to COVID-19 Tracking project from which the data is obtained.
Sincere thanks to NYTimes for the counties dataset
There is a nice tableau public dashboard on the data. Images for this dataset is obtained from the same. Thank you.
Some of the questions that could be answered are 1. How is the spread over time to various states 2. Change in number of people tested over time
Facebook
Twitterhttp://www.gnu.org/licenses/old-licenses/gpl-2.0.en.htmlhttp://www.gnu.org/licenses/old-licenses/gpl-2.0.en.html
date,cases,deaths 2020-01-21,1,0
The New York Times data
The data is the product of dozens of journalists working across several time zones to monitor news conferences, analyze data releases and seek clarification from public officials on how they categorize cases.
Facebook
TwitterEach workbook contains daily COVID-19 stats by each country affected. Additional sheets have also been added for more specific breakdown by different locations within Australia, Canada, China, and USA. Worked with BNO News to put this together. Additional credits include: Michael Van Poppel and Carlos Robles. Github updated every 24 hrs can be found here: https://github.com/jamesvalles/CORONAVIUS-COVID-19-DAILYSTATS
Facebook
TwitterAs the coronavirus has spread throughout the United States and across the globe, consumers have turned to the media to inform about them how the pandemic is progressing and have been seeking news from sources they trust, and ** percent of respondents to a U.S. survey said that they did not trust social media to provide correct information about the outbreak. Social media was by far the least trusted news outlet for coronavirus updates, followed by podcasts and online-only news sites. Conversely, traditional media outlets like newspapers and radio fared better in terms of consumer trust, along with cable and network news.
Facebook
TwitterThis dataset was created by WildGrok
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Project Overview This portion of the COVID DIARIES project provides full bibliographic information (including original and permanent links) to media items related to the COVID-19 vaccination program, published on the official websites of 20 major U.S. news outlets, including television networks, magazines, and newspapers. It spans the period from December 2020, when states began implementing Phase 1a of the vaccine allocation plan, through September 2021, when vaccines became widely available to all adults and were frequently mandated. News items were collected to preserve a contemporaneous record of how the vaccination effort was discussed across national media. The dataset enables researchers to analyze media communication strategies during a nationwide public health emergency, with the broader aim of informing more effective public health messaging through mass media. This project represents a collaborative effort between the Yale School of Medicine and the Tobin Center for Economic Policy. Data and Data Collection Overview This collection comprises 5,383 unique publication links from 20 major news outlets—including television networks, magazines, and newspapers—published between December 1, 2020, and September 30, 2021. Only articles that were freely accessible online without subscription or paywall restrictions were included. Articles were collected by the research team (specifically AM) between August 2021 and November 2023 and in April 2024 (by AM and AG). These 20 news outlets were selected based on a 2020–2021 survey of 511 U.S. adults, which identified the outlets most commonly used to obtain information about the COVID-19 vaccination program. A full list of news outlets, along with their reported usage and perceived trustworthiness, is provided in Sources_Selection.docx. Online publications were identified using Google search with a custom date range in week-long increments (e.g., 12/01/2020–12/07/2020), using the keyword “vaccine” in combination with the link to the respective news outlet’s website. Search results were manually reviewed by AM according to the following inclusion and exclusion criteria. Inclusion criteria: Articles published on the selected U.S. news outlets websites ending in “.com” or “.co” that relate to the COVID-19 vaccination program; Articles from the selected international news outlets that serve both their country of origin and the U.S. audience (e.g., BBC, The Daily Mail). Exclusion criteria: Articles published on the international news outlets websites that exclusively serve their country of origin (e.g., domains ending in .uk, .ca, etc. without .com, .co); Publications from universities, government agencies, or other organizations not affiliated with major U.S. news outlets (e.g., domains ending in .edu, .gov, .org); Videos without accompanying transcripts; Publications without textual content; Articles referencing vaccines unrelated to COVID-19; Non-English language publications. Selection and Organization of Shared Data The full list of publications is provided in the data file named "News_Outlets_Publications_Full_List." Entries are organized by news outlet (one per tab), then by publication year, month, week, and article title within each tab. For each entry, the list includes the article’s original download date by the research team, file format (e.g., PDF), original link to the publication, and a permanent link record. The list was verified by MC, CA, AV, AG, and AM, with final quality control performed by AM. Each article was assigned a unique identifier in the format: "Article Title – News Outlet Name", ensuring that each entry appears only once in the final dataset. Additional documentation includes this Data Narrative, a document explaining the source selection and an administrative README file.
Facebook
Twitterhttps://choosealicense.com/licenses/cc0-1.0/https://choosealicense.com/licenses/cc0-1.0/
Dataset Card for COVID News Articles (2020 - 2022)
Dataset Summary
The dataset encapsulates approximately half a million news articles collected over a period of 2 years during the Coronavirus pandemic onset and surge. It consists of 3 columns - title, content and category. title refers to the headline of the news article. content refers to the article in itself and category denotes the overall context of the news article at a high level. The dataset encapsulates… See the full description on the dataset page: https://huggingface.co/datasets/osanseviero/covid_news.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
There are mounting concerns about the adverse effects of social media on the public understanding of the COVID-19 pandemic and its potential effects on vaccination coverage. Yet early studies have focused on generic social media use and been based on cross-sectional data limiting any causal inferences. This study is among the first to provide causal support for the speculation that social media news use leads to vaccine hesitancy among US citizens. This two-wave survey study was conducted in the US using Qualtrics online panel-based recruitment. We employ mediation and moderated mediation analyses to test our assumptions. The results suggest that using social media to consume news content can translate into vaccine hesitancy by increasing citizens’ skepticism regarding the efficacy of vaccines. However, these effects are contingent upon the news literacy of users, as the effects on vaccine hesitancy are more substantial among those with lower news literacy. The current study recommends to public policymakers and vaccine communication strategists that any attempt to reduce vaccine hesitancy in society should factor in the adverse effects of social media news use that can increase vaccine safety concerns.
Facebook
Twitterhttps://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html
The COVID Tracking Project was a volunteer organization launched from The Atlantic and dedicated to collecting and publishing the data required to understand the COVID-19 outbreak in the United States. Our dataset was in use by national and local news organizations across the United States and by research projects and agencies worldwide.
Every day, we collected data on COVID-19 testing and patient outcomes from all 50 states, 5 territories, and the District of Columbia by visiting official public health websites for those jurisdictions and entering reported values in a spreadsheet. The files in this dataset represent the entirety of our COVID-19 testing and outcomes data collection from March 7, 2020 to March 7, 2021. This dataset includes official values reported by each state on each day of antigen, antibody, and PCR test result totals; the total number of probable and confirmed cases of COVID-19; the number of people currently hospitalized, in intensive care, and on a ventilator; the total number of confirmed and probable COVID-19 deaths; and more.
Methods This dataset was compiled by about 300 volunteers with The COVID Tracking Project from official sources of state-level COVID-19 data such as websites and press conferences. Every day, a team of about a dozen available volunteers visited these official sources and recorded the publicly reported values in a shared Google Sheet, which was used as a data source to publish the full dataset each day between about 5:30pm and 7pm Eastern time. All our data came from state and territory public health authorities or official statements from state officials. We did not automatically scrape data or attempt to offer a live feed. Our data was gathered and double-checked by humans, and we emphasized accuracy and context over speed. Some data was corrected or backfilled from structured data provided by public health authorities. Additional information about our methods can be found in a series of posts at http://covidtracking.com/analysis-updates.
We offer thanks and heartfelt gratitude for the labor and sacrifice of our volunteers. Volunteers on the Data Entry, Data Quality, and Data Infrastructure teams who granted us permission to use their name publicly are listed in VOLUNTEERS.md.
Facebook
TwitterAccording to the most recently available data, around ********* of Americans feel very confident in their ability to check the accuracy of news stories regarding coronavirus. In an online survey conducted in **********, ** percent of respondents stated they would know how to confirm the accuracy of news and information regarding the COVID-19 pandemic. The majority of participants expressed a moderate level of self confidence in their capacity to fact check, with ** percent somewhat confident.
Facebook
TwitterThe New York Times is releasing a series of data files with cumulative counts of coronavirus cases in the United States, at the state and county level, over time. We are compiling this time series data from state and local governments and health departments in an attempt to provide a complete record of the ongoing outbreak.
Since late January, The Times has tracked cases of coronavirus in real time as they were identified after testing. Because of the widespread shortage of testing, however, the data is necessarily limited in the picture it presents of the outbreak.
We have used this data to power our maps and reporting tracking the outbreak, and it is now being made available to the public in response to requests from researchers, scientists and government officials who would like access to the data to better understand the outbreak.
The data begins with the first reported coronavirus case in Washington State on Jan. 21, 2020. We will publish regular updates to the data in this repository.