U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
The USGS National Hydrography Dataset (NHD) downloadable data collection from The National Map (TNM) is a comprehensive set of digital spatial data that encodes information about naturally occurring and constructed bodies of surface water (lakes, ponds, and reservoirs), paths through which water flows (canals, ditches, streams, and rivers), and related entities such as point features (springs, wells, stream gages, and dams). The information encoded about these features includes classification and other characteristics, delineation, geographic name, position and related measures, a "reach code" through which other information can be related to the NHD, and the direction of water flow. The network of reach codes delineating water and transported material flow allows users to trace movement in upstream and downstream directions. In addition to this geographic information, the dataset contains metadata that supports the exchange of future updates and improvements to the data. The NHD supports many applications, such as making maps, geocoding observations, flow modeling, data maintenance, and stewardship. For additional information on NHD, go to https://www.usgs.gov/core-science-systems/ngp/national-hydrography.
DWR was the steward for NHD and Watershed Boundary Dataset (WBD) in California. We worked with other organizations to edit and improve NHD and WBD, using the business rules for California. California's NHD improvements were sent to USGS for incorporation into the national database. The most up-to-date products are accessible from the USGS website. Please note that the California portion of the National Hydrography Dataset is appropriate for use at the 1:24,000 scale.
For additional derivative products and resources, including the major features in geopackage format, please go to this page: https://data.cnra.ca.gov/dataset/nhd-major-features Archives of previous statewide extracts of the NHD going back to 2018 may be found at https://data.cnra.ca.gov/dataset/nhd-archive.
In September 2022, USGS officially notified DWR that the NHD would become static as USGS resources will be devoted to the transition to the new 3D Hydrography Program (3DHP). 3DHP will consist of LiDAR-derived hydrography at a higher resolution than NHD. Upon completion, 3DHP data will be easier to maintain, based on a modern data model and architecture, and better meet the requirements of users that were documented in the Hydrography Requirements and Benefits Study (2016). The initial releases of 3DHP include NHD data cross-walked into the 3DHP data model. It will take several years for the 3DHP to be built out for California. Please refer to the resources on this page for more information.
The FINAL,STATIC version of the National Hydrography Dataset for California was published for download by USGS on December 27, 2023. This dataset can no longer be edited by the state stewards. The next generation of national hydrography data is the USGS 3D Hydrography Program (3DHP).
Questions about the California stewardship of these datasets may be directed to nhd_stewardship@water.ca.gov.
The National Hydrography Dataset Plus High Resolution (NHDplus High Resolution) maps the lakes, ponds, streams, rivers and other surface waters of the United States. Created by the US Geological Survey, NHDPlus High Resolution provides mean annual flow and velocity estimates for rivers and streams. Additional attributes provide connections between features facilitating complicated analyses.For more information on the NHDPlus High Resolution dataset see the User’s Guide for the National Hydrography Dataset Plus (NHDPlus) High Resolution.Dataset SummaryPhenomenon Mapped: Surface waters and related features of the United States and associated territoriesGeographic Extent: The Contiguous United States, Hawaii, portions of Alaska, Puerto Rico, Guam, US Virgin Islands, Northern Marianas Islands, and American SamoaProjection: Web Mercator Auxiliary Sphere Visible Scale: Visible at all scales but layer draws best at scales larger than 1:1,000,000Source: USGSUpdate Frequency: AnnualPublication Date: July 2022This layer was symbolized in the ArcGIS Map Viewer and while the features will draw in the Classic Map Viewer the advanced symbology will not. Prior to publication, the network and non-network flowline feature classes were combined into a single flowline layer. Similarly, the Area and Waterbody feature classes were merged under a single schema.Attribute fields were added to the flowline and waterbody layers to simplify symbology and enhance the layer's pop-ups. Fields added include Pop-up Title, Pop-up Subtitle, Esri Symbology (waterbodies only), and Feature Code Description. All other attributes are from the original dataset. No data values -9999 and -9998 were converted to Null values.What can you do with this layer?Feature layers work throughout the ArcGIS system. Generally your work flow with feature layers will begin in ArcGIS Online or ArcGIS Pro. Below are just a few of the things you can do with a feature service in Online and Pro.ArcGIS OnlineAdd this layer to a map in the map viewer. The layer or a map containing it can be used in an application. Change the layer’s transparency and set its visibility rangeOpen the layer’s attribute table and make selections. Selections made in the map or table are reflected in the other. Center on selection allows you to zoom to features selected in the map or table and show selected records allows you to view the selected records in the table.Apply filters. For example you can set a filter to show larger streams and rivers using the mean annual flow attribute or the stream order attribute.Change the layer’s style and symbologyAdd labels and set their propertiesCustomize the pop-upUse as an input to the ArcGIS Online analysis tools. This layer works well as a reference layer with the trace downstream and watershed tools. The buffer tool can be used to draw protective boundaries around streams and the extract data tool can be used to create copies of portions of the data.ArcGIS ProAdd this layer to a 2d or 3d map.Use as an input to geoprocessing. For example, copy features allows you to select then export portions of the data to a new feature class.Change the symbology and the attribute field used to symbolize the dataOpen table and make interactive selections with the mapModify the pop-upsApply Definition Queries to create sub-sets of the layerThis layer is part of the ArcGIS Living Atlas of the World that provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.Questions?Please leave a comment below if you have a question about this layer, and we will get back to you as soon as possible.
The National Hydrography Dataset (NHD) is a feature-based database that interconnects and uniquely identifies the stream segments or reaches that make up the nation's surface water drainage system. NHD data was originally developed at 1:100,000 scale and exists at that scale for the whole country. High resolution NHD adds detail to the original 1:100,000-scale NHD. (Data for Alaska, Puerto Rico and the Virgin Islands was developed at high-resolution, not 1:100,000 scale.) Like the 1:100,000-scale NHD, high resolution NHD contains reach codes for networked features and isolated lakes, flow direction, names, stream level, and centerline representations for areal water bodies. Reaches are also defined to represent waterbodies and the approximate shorelines of the Great Lakes, the Atlantic and Pacific Oceans and the Gulf of Mexico. The NHD also incorporates the National Spatial Data Infrastructure framework criteria set out by the Federal Geographic Data Committee.
This is a simple map that uses map services of the National Hydrography Dataset (NHD) and Watershed Boundaries Dataset (WBD) from The National Map (TNM). Additional layers of the current US Topo and older USA Topo service from Esri are included, but turned off by default. This map is useful as a simple viewer to see the content of the NHD and WBD. In the Search tool pulldown, the “nhd - Flowline - Large Scale” and “nhd - Waterbody - Large Scale” choices search based on ReachCode. The “wbd - 8-digit HU (Subbasin)” and “wbd - 12-digit HU (Subwatershed)” choices search based on the HU code (HUC).
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
The Watershed Boundary Dataset (WBD) from The National Map (TNM) defines the perimeter of drainage areas formed by the terrain and other landscape characteristics. The drainage areas are nested within each other so that a large drainage area, such as the Upper Mississippi River, will be composed of multiple smaller drainage areas, such as the Wisconsin River. Each of these smaller areas can further be subdivided into smaller and smaller drainage areas. The WBD uses six different levels in this hierarchy, with the smallest averaging about 30,000 acres. The WBD is made up of polygons nested into six levels of data respectively defined by Regions, Subregions, Basins, Subbasins, Watersheds, and Subwatersheds. For additional information on the WBD, go to https://nhd.usgs.gov/wbd.html. The USGS National Hydrography Dataset (NHD) service is a companion dataset to the WBD. The NHD is a comprehensive set of digital spatial data that encodes information about naturally occurring and constructed bodies of surface water (lakes, ponds, and reservoirs), paths through which water flows (canals, ditches, streams, and rivers), and related entities such as point features (springs, wells, stream gages, and dams). The information encoded about these features includes classification and other characteristics, delineation, geographic name, position and related measures, a "reach code" through which other information can be related to the NHD, and the direction of water flow. The network of reach codes delineating water and transported material flow allows users to trace movement in upstream and downstream directions. In addition to this geographic information, the dataset contains metadata that supports the exchange of future updates and improvements to the data. The NHD is available nationwide in two seamless datasets, one based on 1:24,000-scale maps and referred to as high resolution NHD, and the other based on 1:100,000-scale maps and referred to as medium resolution NHD. Additional selected areas in the United States are available based on larger scales, such as 1:5,000-scale or greater, and referred to as local resolution NHD. For more information on the NHD, go to https://nhd.usgs.gov/index.html. Hydrography data from The National Map supports many applications, such as making maps, geocoding observations, flow modeling, data maintenance, and stewardship. Hydrography data is commonly combined with other data themes, such as boundaries, elevation, structures, and transportation, to produce general reference base maps. The National Map viewer allows free downloads of public domain WBD and NHD data in either Esri File or Personal Geodatabase, or Shapefile formats.
Please use 3DHP for updated data The USGS National Hydrography Dataset (NHD) service from The National Map is a comprehensive set of digital spatial data that encodes information about naturally occurring and constructed bodies of surface water (lakes, ponds, and reservoirs), paths through which water flows (canals, ditches, streams, and rivers), and related entities such as point features (springs, wells, stream gages, and dams). The information encoded about these features includes classification and other characteristics, delineation, geographic name, position and related measures, a "reach code" through which other information can be related to the NHD, and the direction of water flow. The network of reach codes delineating water and transported material flow allows users to trace movement in upstream and downstream directions. In addition to this geographic information, the dataset contains metadata that supports the exchange of future updates and improvements to the data. The NHD is available nationwide in two seamless datasets, one based on 1:24,000 (or larger) scale and referred to as high resolution NHD, and the other based on 1:100,000 scale and referred to as medium resolution NHD. The NHD from The National Map supports many applications, such as making maps, geocoding observations, flow modeling, data maintenance, and stewardship. The NHD is commonly combined with other data themes, such as boundaries, elevation, structures, and transportation, to produce general reference base maps. The National Map download client allows free downloads of public domain NHD data in either Esri File Geodatabase or Shapefile formats. For additional information on the NHD, go to https://www.usgs.gov/national-hydrography/national-hydrography-dataset. See https://apps.nationalmap.gov/help/ for assistance with The National Map viewer, download client, services, or metadata. Data Refreshed January, 2024.
The National Hydrography Dataset (NHD) and Watershed Boundary Dataset (WBD) are used to portray surface water on The National Map. The NHD represents the drainage network with features such as rivers, streams, canals, lakes, ponds, coastline, dams, and streamgages. The WBD represents drainage basins as enclosed areas in eight different size categories. Both datasets represent the real world at a nominal scale of 1:24,000-scale, which means that one inch of The National Map data equals 2,000 feet on the ground. To maintain mapping clarity not all water features are represented and those that are use a moderate level of detail. The NHD and WBD are digital vector datasets used by geographic information systems (GIS). These data are designed to be used in general mapping and in the analysis of surface water systems. In order to make a map these data must be used by a GIS to render the data and then print a map or make an image. The NHD is portrayed on the US Topo map product produced by the USGS and the NHD and WBD can be viewed on the Hydrography Viewer or the general mapping oriented The National Map Viewer. In mapping, the NHD and WBD are used with other data themes such as elevation, boundaries, transportation, and structures to produce general reference maps. The NHD and WBD are often used by scientists using GIS. GIS technologies take advantage of a rich set of attributes imbedded in the data to generate specialized information. These analyses are possible because the NHD contains a flow network that allows for tracing water downstream or upstream. The NHD and WBD use an addressing system based on reach codes and linear referencing to link specific information about the water such as water discharge rates, water quality, and fish population. The WBD exists in six levels of a nested hierarchy permitting the analysis to determine which drainage basin a particular location is enclosed in. This makes it possible to determine which rivers and lakes could be affected by an event such as a toxic spill. Using basic NHD features like flow network, linked information, and other characteristics, along with one of the six levels of WBD areas, it is possible to study cause and effect relationships, such as how a source of poor water quality upstream might affect a fish population downstream.
Open Data Commons Attribution License (ODC-By) v1.0https://www.opendatacommons.org/licenses/by/1.0/
License information was derived automatically
These two shapefiles represent New Mexico NHD High Resolution stream segments and waterbodies, merged and clipped to the state boundary. RAW NHD High Resolution data, including additional layer files, is available from: https://viewer.nationalmap.gov/basic/
URL from idinfo/citation in CSDGM metadata.
This file contains Hydrologic Unit boundaries and codes for the United States, Puerto Rico, and the U.S. Virgin Islands. The data is a seamless National representation of Hydrologic Unit Code (HUC) boundaries at HUC2 to HUC12 levels compiled from U.S. Geological Survey (USGS) National Hydrography Dataset (NHD) and U.S. Department of Agricultural (USDA) National Resources Conservation Services (NRCS) Watershed Boundary Dataset (WBD) sources. Mohawk River Watershed Processing: The original files were clipped to the Mohawk watershed. The data was re-projected to UTM 18N, NAD 83. NHDArea, NHDFlowline, NHDLine, and NHDPoint feature classes were buffered 150 feet using the Buffer Tool in ArcGIS v.10. The individual buffer files were merged and dissolved.View Dataset on the Gateway
The USGS 3D Hydrography Program (3DHP) ArcGIS REST service (3DHP_all) from The National Map is the first of several data services that will be delivered by the 3D Hydrography Program. The 3DHP_all comprises a national network of flowlines, hydrolocations, and water bodies, and will include catchments, drainage areas, and flow network derivatives as they are populated in the future. The 3DHP_all service will provide access to a 3D-enabled geospatial hydrography vector dataset built from 3DHP data and intended to provide the most comprehensive but general rendering of 3DHP data. 3DHP data is derived from elevation-derived hydrography (EDH) Elevation-Derived Hydrography Specifications | U.S. Geological Survey (usgs.gov) where available. Where EDH has not been collected, 3DHP data will be supplemented by data from the National Hydrography Dataset (NHD) National Hydrography Dataset | U.S. Geological Survey (usgs.gov). As further EDH data is collected, the EDH data will replace the NHD data in that data collection area. 3DHP data ingested from EDH sources will include catchments, drainage areas derived from catchments, and flowline network attribute derivatives.Use Constraints: _ None. All data are open and non-proprietary. However, users should be aware that temporal changes may have occurred since this dataset was collected and that some parts of this data may no longer represent actual conditions. Users should not use this data for critical applications without a full awareness of its limitations. This dataset is not intended to be used for site-specific regulatory determinations. Acknowledgment of the U.S. Geological Survey would be appreciated for products derived from these data.For additional information on the 3DHP, go to https://www.usgs.gov/3dhp.See https://apps.nationalmap.gov/help/ for assistance with The National Map viewer, download client, services, or metadata.
The National Hydrography Dataset (NHD) is a feature-based database that interconnects and uniquely identifies the stream segments or reaches that make up the nation's surface water drainage system. NHD data was originally developed at 1:100,000-scale and exists at that scale for the whole country. This high-resolution NHD, generally developed at 1:24,000/1:12,000 scale, adds detail to the original 1:100,000-scale NHD. (Data for Alaska, Puerto Rico and the Virgin Islands was developed at high-resolution, not 1:100,000 scale.) Local resolution NHD is being developed where partners and data exist. The NHD contains reach codes for networked features, flow direction, names, and centerline representations for areal water bodies. Reaches are also defined on waterbodies and the approximate shorelines of the Great Lakes, the Atlantic and Pacific Oceans and the Gulf of Mexico. The NHD also incorporates the National Spatial Data Infrastructure framework criteria established by the Federal Geographic Data Committee. Mohawk River Watershed Processing: The original files were clipped to the Mohawk watershed. The data was re-projected to UTM 18N, NAD 83. NHDArea, NHDFlowline, NHDLine, and NHDPoint feature classes were buffered 50 feet using the Buffer Tool in ArcGIS v.10. The individual buffer files were merged and dissolved. View Dataset on the Gateway
Under the 2023 Supreme Court decision for Sackett vs USEPA, wetlands are jurisdictional to Waters of the United States (WOTUS) if 1) a continuous surface connection is present with an existing WOTUS, and 2) the wetland is practically indistinguishable from an ocean, river, stream, or lake where the continuous surface water connection is identified. A national-scale assessment for the United States was conducted to identify potential geographically isolated wetlands. The National Wetland Inventory (NWI, https://www.fws.gov/program/national-wetlands-inventory) maintained by the US Fish and Wildlife Service and the National Hydrograpy Dataset (NHD, https://www.usgs.gov/national-hydrography/national-hydrography-dataset) maintained by the US Geological Survey were used for the assessment. A custom workflow (https://github.com/tbep-tech/wetlands-eval) was developed to iteratively download the NWI and NHD spatial layers for each state to identify isolated wetlands based on the Euclidean distance of each wetland centroid to NHD features. These data files represent all NWI wetlands in the United States and the distance (meters) to the closest NHD feature. The rows in each file represent individual wetlands, with columns for the wetland attribute, acreage of the wetland, latitude and longitude (WGS 1984) of the wetland centroid, distance of the wetland in meters to the nearest NHD feature, the state abbreviation, and wetland type.
The intent of defining Hydrologic Units (HU) within the Watershed Boundary Dataset is to establish a base-line drainage boundary framework, accounting for all land and surface areas. Hydrologic units are intended to be used as a tool for water-resource management and planning activities particularly for site-specific and localized studies requiring a level of detail provided by large-scale map information. The WBD complements the National Hydrography Dataset (NHD) and supports numerous programmatic missions and activities including: watershed management, rehabilitation and enhancement, aquatic species conservation strategies, flood plain management and flood prevention, water-quality initiatives and programs, dam safety programs, fire assessment and management, resource inventory and assessment, water data analysis and water census. This file contains Hydrologic Unit (HU) polygon boundaries for the United States, Puerto Rico, and the U.S. Virgin Islands. The data is a seamless National representation of HU boundaries from 2 to 14 digits compiled from U.S. Geological Survey (USGS) National Hydrography Dataset (NHD) and U.S. Department of Agriculture (USDA) National Resources Conservation Service (NRCS) Watershed Boundary Dataset (WBD) sources. Purpose: This data is intended primarily for geographic display and analysis of regional and national data, and can also be used for illustration purposes at intermediate or small scales (1:250,000 to 1:2,000,000).View Dataset on the Gateway
The USGS 3D Hydrography Program (3DHP) ArcGIS REST service (3DHP_all) from The National Map is the first of several data services that will be delivered by the 3D Hydrography Program. The 3DHP_all comprises a national network of flowlines, hydrolocations, and water bodies, and will include catchments, drainage areas, and flow network derivatives as they are populated in the future. The 3DHP_all service will provide access to a 3D-enabled geospatial hydrography vector dataset built from 3DHP data and intended to provide the most comprehensive but general rendering of 3DHP data. 3DHP data is derived from elevation-derived hydrography (EDH) Elevation-Derived Hydrography Specifications | U.S. Geological Survey (usgs.gov) where available. Where EDH has not been collected, 3DHP data will be supplemented by data from the National Hydrography Dataset (NHD) National Hydrography Dataset | U.S. Geological Survey (usgs.gov). As further EDH data is collected, the EDH data will replace the NHD data in that data collection area. 3DHP data ingested from EDH sources will include catchments, drainage areas derived from catchments, and flowline network attribute derivatives.Use Constraints: _ None. All data are open and non-proprietary. However, users should be aware that temporal changes may have occurred since this dataset was collected and that some parts of this data may no longer represent actual conditions. Users should not use this data for critical applications without a full awareness of its limitations. This dataset is not intended to be used for site-specific regulatory determinations. Acknowledgment of the U.S. Geological Survey would be appreciated for products derived from these data.For additional information on the 3DHP, go to https://www.usgs.gov/3dhp.See https://apps.nationalmap.gov/help/ for assistance with The National Map viewer, download client, services, or metadata.
The USGS 3D Hydrography Program (3DHP) ArcGIS REST service (3DHP_all) from The National Map is the first of several data services that will be delivered by the 3D Hydrography Program. The 3DHP_all comprises a national network of flowlines, hydrolocations, and water bodies, and will include catchments, drainage areas, and flow network derivatives as they are populated in the future. The 3DHP_all service will provide access to a 3D-enabled geospatial hydrography vector dataset built from 3DHP data and intended to provide the most comprehensive but general rendering of 3DHP data. 3DHP data is derived from elevation-derived hydrography (EDH) Elevation-Derived Hydrography Specifications | U.S. Geological Survey (usgs.gov) where available. Where EDH has not been collected, 3DHP data will be supplemented by data from the National Hydrography Dataset (NHD) National Hydrography Dataset | U.S. Geological Survey (usgs.gov). As further EDH data is collected, the EDH data will replace the NHD data in that data collection area. 3DHP data ingested from EDH sources will include catchments, drainage areas derived from catchments, and flowline network attribute derivatives.Use Constraints: _ None. All data are open and non-proprietary. However, users should be aware that temporal changes may have occurred since this dataset was collected and that some parts of this data may no longer represent actual conditions. Users should not use this data for critical applications without a full awareness of its limitations. This dataset is not intended to be used for site-specific regulatory determinations. Acknowledgment of the U.S. Geological Survey would be appreciated for products derived from these data.For additional information on the 3DHP, go to https://www.usgs.gov/3dhp.See https://apps.nationalmap.gov/help/ for assistance with The National Map viewer, download client, services, or metadata.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Data Contains:
ISGS_geological survey of IL - This zip file includes several ArcGIS map from ISGS. Glacial boundary, Loess thickness, moraine boundary, bedrock topogrpahy, drift thickness, etc.
Soil_data_USRB_CCW - The original data is from USDA web soil survey (http://websoilsurvey.sc.egov.usda.gov/App/HomePage.htm). The uploaded files here are erosion factor and soil texture, which are converted from the soil survey index.
Previous measurement station - These sensor locations are previously installed inside USRB, including precipitation stations, sediment station, USGS stream station, Ameriflux tower, ISWS Stream and nutrient station, etc.
USLandcover in 2014 - Spatial and GIS Data.
GIS survey of Hydrology in USRB - This zip folder includes several files: 1. Major tributaries 2. NHD Flowlines 3. Stream order of major streams 4. Waterbody 5. Watershed boundary.
USstreams - This dataset contains the streams from NHD (USGS national map viewer) and from ISGS (major tributaries).
USBoundaries - This dataset contains county , watershed , glacial, and moraine boundaries.
This geospatial dataset is based on the National Hydrographic Dataset (NHD) Model (v2.2) for Alaska published on May 27 2014. For each waterbody, we established a unique ID and calculated fetch distance in meters (m) using the lakemorpho package in R. Fetch is the maximum distance or the longest open water distance across a body of water. We used 200 points along the waterbody shore to determine the fetch. The dataset also contains information on the elevation of each waterbody. A 60m digital elevation model (DEM) was used to calculate the maximum elevation point within the water body using zonal statistics in ArcMap 10.7. This dataset was used to form a risk domain for potential introductions of aquatic invasive species via floatplanes. A survey with floatplane pilots was used to identify waterbodies certain aircraft types on floats can access. One of the determining factors for access is fetch, the largest distance between two points on the perimeter of a waterbody. Here, we used the National Hydrography Dataset (NHD) to calculate the fetch distance for each waterbody identified in the NHD.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
This layer shows California flowlines and their status with respect to stream gage coverage. The Gage Gap Analysis is part of the Senate Bill 19 Stream Gaging Plan, which seeks to identify and prioritize areas for additional stream gaging efforts. The stream gage dataset is a snapshot of gages from the fall of 2020, consisting only of USGS and CDEC gages. The flowlines dataset is based on the National Hydrography Dataset (NHD) Medium Resolution Version 2.1 and associated Value-Added Attributes. Modifications include adding and removing attributes from the base dataset and filtering to remove flowlines that lack information on upstream drainage area, nearly all infrastructure and coastline flowlines, and flowlines under large waterbodies. Finally, attributes that designate the gage coverage and gap status (Gage Gap Analysis) were added to every flowline. A flowline is considered covered (or gaged) if its upstream drainage area is greater than 50% and less than 150% of a stream gage as a stream gage directly downstream or upstream.Data Dictionary: Field Name Range Description
comid
Common identifier of an NHDFlowline feature
gagegap_status
indicates if the stream segment is well-gaged, almost well-gaged, inactive gage, or never gaged
gage_comid
comid of the gage that covers this steam segment (if any)
site_id
site_id of the gage that covers this steam segment (if any)
drainage_area_sqkm
drainage area upstream of this stream segment, in sqkm
stream order 0 - 9 Modified Strahler Stream Order
*This dataset is authored by ESRI and is being shared as a direct link to the feature service by Pend Oreille County. NHD is a primary hydrologic reference used by our organization.The National Hydrography Dataset Plus High Resolution (NHDplus High Resolution) maps the lakes, ponds, streams, rivers and other surface waters of the United States. Created by the US Geological Survey, NHDPlus High Resolution provides mean annual flow and velocity estimates for rivers and streams. Additional attributes provide connections between features facilitating complicated analyses.For more information on the NHDPlus High Resolution dataset see the User’s Guide for the National Hydrography Dataset Plus (NHDPlus) High Resolution.Dataset SummaryPhenomenon Mapped: Surface waters and related features of the United States and associated territoriesCoordinate System: Web Mercator Auxiliary Sphere Extent: The Contiguous United States, Hawaii, portions of Alaska, Puerto Rico, Guam, US Virgin Islands, Northern Marianas Islands, and American Samoa Visible Scale: Visible at all scales but layer draws best at scales larger than 1:1,000,000Source: USGSPublication Date: July 2022This layer was symbolized in the ArcGIS Map Viewer and while the features will draw in the Classic Map Viewer the advanced symbology will not.Prior to publication, the network and non-network flowline feature classes were combined into a single flowline layer. Similarly, the Area and Waterbody feature classes were merged under a single schema.Attribute fields were added to the flowline and waterbody layers to simplify symbology and enhance the layer's pop-ups. Fields added include Pop-up Title, Pop-up Subtitle, Esri Symbology (waterbodies only), and Feature Code Description. All other attributes are from the original dataset. No data values -9999 and -9998 were converted to Null values.What can you do with this Feature Layer?Feature layers work throughout the ArcGIS system. Generally your work flow with feature layers will begin in ArcGIS Online or ArcGIS Pro. Below are just a few of the things you can do with a feature service in Online and Pro.ArcGIS OnlineAdd this layer to a map in the map viewer. The layer or a map containing it can be used in an application. Change the layer’s transparency and set its visibility rangeOpen the layer’s attribute table and make selections. Selections made in the map or table are reflected in the other. Center on selection allows you to zoom to features selected in the map or table and show selected records allows you to view the selected records in the table.Apply filters. For example you can set a filter to show larger streams and rivers using the mean annual flow attribute or the stream order attribute.Change the layer’s style and symbologyAdd labels and set their propertiesCustomize the pop-upUse as an input to the ArcGIS Online analysis tools. This layer works well as a reference layer with the trace downstream and watershed tools. The buffer tool can be used to draw protective boundaries around streams and the extract data tool can be used to create copies of portions of the data.ArcGIS ProAdd this layer to a 2d or 3d map.Use as an input to geoprocessing. For example, copy features allows you to select then export portions of the data to a new feature class.Change the symbology and the attribute field used to symbolize the dataOpen table and make interactive selections with the mapModify the pop-upsApply Definition Queries to create sub-sets of the layerThis layer is part of the ArcGIS Living Atlas of the World that provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
The USGS National Hydrography Dataset (NHD) downloadable data collection from The National Map (TNM) is a comprehensive set of digital spatial data that encodes information about naturally occurring and constructed bodies of surface water (lakes, ponds, and reservoirs), paths through which water flows (canals, ditches, streams, and rivers), and related entities such as point features (springs, wells, stream gages, and dams). The information encoded about these features includes classification and other characteristics, delineation, geographic name, position and related measures, a "reach code" through which other information can be related to the NHD, and the direction of water flow. The network of reach codes delineating water and transported material flow allows users to trace movement in upstream and downstream directions. In addition to this geographic information, the dataset contains metadata that supports the exchange of future updates and improvements to the data. The NHD supports many applications, such as making maps, geocoding observations, flow modeling, data maintenance, and stewardship. For additional information on NHD, go to https://www.usgs.gov/core-science-systems/ngp/national-hydrography.
DWR was the steward for NHD and Watershed Boundary Dataset (WBD) in California. We worked with other organizations to edit and improve NHD and WBD, using the business rules for California. California's NHD improvements were sent to USGS for incorporation into the national database. The most up-to-date products are accessible from the USGS website. Please note that the California portion of the National Hydrography Dataset is appropriate for use at the 1:24,000 scale.
For additional derivative products and resources, including the major features in geopackage format, please go to this page: https://data.cnra.ca.gov/dataset/nhd-major-features Archives of previous statewide extracts of the NHD going back to 2018 may be found at https://data.cnra.ca.gov/dataset/nhd-archive.
In September 2022, USGS officially notified DWR that the NHD would become static as USGS resources will be devoted to the transition to the new 3D Hydrography Program (3DHP). 3DHP will consist of LiDAR-derived hydrography at a higher resolution than NHD. Upon completion, 3DHP data will be easier to maintain, based on a modern data model and architecture, and better meet the requirements of users that were documented in the Hydrography Requirements and Benefits Study (2016). The initial releases of 3DHP include NHD data cross-walked into the 3DHP data model. It will take several years for the 3DHP to be built out for California. Please refer to the resources on this page for more information.
The FINAL,STATIC version of the National Hydrography Dataset for California was published for download by USGS on December 27, 2023. This dataset can no longer be edited by the state stewards. The next generation of national hydrography data is the USGS 3D Hydrography Program (3DHP).
Questions about the California stewardship of these datasets may be directed to nhd_stewardship@water.ca.gov.