NOTE: This is not a regularly updated version of this data. It is a static dataset for use within PA DEP purposes. Waterbodies such as lake/pond features are represented in NHDWaterbody. They portray the spatial geometry and the attributes of the feature. These water polygons may have NHDFlowline artificial paths drawn through them to allow the representation of water flow direction. Other NHDWaterbody features are swamp/marsh, reservoir, playa, estuary, and ice mass.
The National Hydrography Dataset (NHD) is a feature-based database that interconnects and uniquely identifies the stream segments or reaches that make up the nation's surface water drainage system. NHD data was originally developed at 1:100,000 scale and exists at that scale for the whole country. High resolution NHD adds detail to the original 1:100,000-scale NHD. (Data for Alaska, Puerto Rico and the Virgin Islands was developed at high-resolution, not 1:100,000 scale.) Like the 1:100,000-scale NHD, high resolution NHD contains reach codes for networked features and isolated lakes, flow direction, names, stream level, and centerline representations for areal water bodies. Reaches are also defined to represent waterbodies and the approximate shorelines of the Great Lakes, the Atlantic and Pacific Oceans and the Gulf of Mexico. The NHD also incorporates the National Spatial Data Infrastructure framework criteria set out by the Federal Geographic Data Committee.
Shapefile (NJ State Plane NAD 1983) download: Click "Open" or Click hereFile Geodatabase (NJ State Plane NAD 1983) download: Click hereNOTE: This metadata file contains information for Waterbody features delineated for NJ from 2002 color infrared (CIR) imagery with attributes extracted from the National Hydrography Dataset (NHD). Digitizing of this data was initally done by Aerial Information Systems, Inc., Redlands, CA, under direction of the New Jersey Department of Environmental Protection (NJDEP), Bureau of Geographic Information System (BGIS). Conflation of USGS 1:24,000 High resolution NHD attributes was done by Data Enhancement Services, LLC (DES) partenered with Civil Solutions. This statewide conflation of NHD High resolution information was completed in 2010. All QA/QC was done by NJDEP, Bureau of GIS and USGS. This represents a subset of the statewide extract for NJ dated August 25, 2010.
The National Hydrography Dataset (NHD) is a feature-based database that interconnects and uniquely identifies the stream segments or reaches that make up the nation's surface water drainage system. NHD data was originally developed at 1:100,000-scale and exists at that scale for the whole country. This high-resolution NHD, generally developed at 1:24,000/1:12,000 scale, adds detail to the original 1:100,000-scale NHD. (Data for Alaska, Puerto Rico and the Virgin Islands was developed at high-resolution, not 1:100,000 scale.) Local resolution NHD is being developed where partners and data exist. The NHD contains reach codes for networked features, flow direction, names, and centerline representations for areal water bodies. Reaches are also defined on waterbodies and the approximate shorelines of the Great Lakes, the Atlantic and Pacific Oceans and the Gulf of Mexico. The NHD also incorporates the National Spatial Data Infrastructure framework criteria established by the Federal Geographic Data Committee. For additional information on NHD, go to https://www.usgs.gov/national-hydrography.
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
The USGS National Hydrography Dataset (NHD) downloadable data collection from The National Map (TNM) is a comprehensive set of digital spatial data that encodes information about naturally occurring and constructed bodies of surface water (lakes, ponds, and reservoirs), paths through which water flows (canals, ditches, streams, and rivers), and related entities such as point features (springs, wells, stream gages, and dams). The information encoded about these features includes classification and other characteristics, delineation, geographic name, position and related measures, a "reach code" through which other information can be related to the NHD, and the direction of water flow. The network of reach codes delineating water and transported material flow allows users to trace movement in upstream and downstream directions. In addition to this geographic information, the dataset contains metadata that supports the exchange of future updates and improvements to the data. The NHD supports many applications, such as making maps, geocoding observations, flow modeling, data maintenance, and stewardship. For additional information on NHD, go to https://www.usgs.gov/core-science-systems/ngp/national-hydrography.
DWR was the steward for NHD and Watershed Boundary Dataset (WBD) in California. We worked with other organizations to edit and improve NHD and WBD, using the business rules for California. California's NHD improvements were sent to USGS for incorporation into the national database. The most up-to-date products are accessible from the USGS website. Please note that the California portion of the National Hydrography Dataset is appropriate for use at the 1:24,000 scale.
For additional derivative products and resources, including the major features in geopackage format, please go to this page: https://data.cnra.ca.gov/dataset/nhd-major-features Archives of previous statewide extracts of the NHD going back to 2018 may be found at https://data.cnra.ca.gov/dataset/nhd-archive.
In September 2022, USGS officially notified DWR that the NHD would become static as USGS resources will be devoted to the transition to the new 3D Hydrography Program (3DHP). 3DHP will consist of LiDAR-derived hydrography at a higher resolution than NHD. Upon completion, 3DHP data will be easier to maintain, based on a modern data model and architecture, and better meet the requirements of users that were documented in the Hydrography Requirements and Benefits Study (2016). The initial releases of 3DHP include NHD data cross-walked into the 3DHP data model. It will take several years for the 3DHP to be built out for California. Please refer to the resources on this page for more information.
The FINAL,STATIC version of the National Hydrography Dataset for California was published for download by USGS on December 27, 2023. This dataset can no longer be edited by the state stewards. The next generation of national hydrography data is the USGS 3D Hydrography Program (3DHP).
Questions about the California stewardship of these datasets may be directed to nhd_stewardship@water.ca.gov.
The National Hydrography Dataset (NHD) is a feature-based database that interconnects and uniquely identifies the stream segments or reaches that make up the nation's surface water drainage system. NHD data was originally developed at 1:100,000-scale and exists at that scale for the whole country. This high-resolution NHD, generally developed at 1:24,000/1:12,000 scale, adds detail to the original 1:100,000-scale NHD. (Data for Alaska, Puerto Rico and the Virgin Islands was developed at high-resolution, not 1:100,000 scale.) Local resolution NHD is being developed where partners and data exist. The NHD contains reach codes for networked features, flow direction, names, and centerline representations for areal water bodies. Reaches are also defined on waterbodies and the approximate shorelines of the Great Lakes, the Atlantic and Pacific Oceans and the Gulf of Mexico. The NHD also incorporates the National Spatial Data Infrastructure framework criteria established by the Federal Geographic Data Committee.
Homeland Infrastructure Foundation-Level Data (HIFLD) geospatial data sets containing information on National Hydrography Dataset (NHD) Waterbodies - Small Scale.
[Metadata] Description: National Hydrography Dataset (NHD) Waterbody features as of October, 2022.
Fredericksburg VA Public data for download.
Open Data Commons Attribution License (ODC-By) v1.0https://www.opendatacommons.org/licenses/by/1.0/
License information was derived automatically
These two shapefiles represent New Mexico NHD High Resolution stream segments and waterbodies, merged and clipped to the state boundary. RAW NHD High Resolution data, including additional layer files, is available from: https://viewer.nationalmap.gov/basic/
The National Hydrography Dataset (NHD) is a feature-based database that interconnects and uniquely identifies the stream segments or reaches that make up the nation's surface water drainage system. NHD data was originally developed at 1:100,000 scale and exists at that scale for the whole country. High resolution NHD adds detail to the original 1:100,000-scale NHD. (Data for Alaska, Puerto Rico and the Virgin Islands was developed at high-resolution, not 1:100,000 scale.) Like the 1:100,000-scale NHD, high resolution NHD contains reach codes for networked features and isolated lakes, flow direction, names, stream level, and centerline representations for areal water bodies. Reaches are also defined to represent waterbodies and the approximate shorelines of the Great Lakes, the Atlantic and Pacific Oceans and the Gulf of Mexico. The NHD also incorporates the National Spatial Data Infrastructure framework criteria set out by the Federal Geographic Data Committee.
This tabular data set represents the presence of six National Hydrography Dataset (NHD) high resolution waterbody types compiled for two spatial components of the NHDPlus version 2 data suite (NHDPlusv2) for the conterminous United States; 1) individual reach catchments and 2) reach catchments accumulated upstream through the river network. The six types of waterbodies presented here are: playa, ice mass, lake/pond, reservoir, swamp/marsh, and estuary. This dataset can be linked to the NHDPlus version 2 data suite by the unique identifier COMID. The source data is the NHDPlus high resolution waterbodies produced by USGS , 2015. Units are percent. Reach catchment information characterizes data at the local scale. Reach catchments accumulated upstream through the river network characterizes cumulative upstream conditions. Network-accumulated values are computed using two methods, 1) divergence-routed and 2) total cumulative drainage area. Both approaches use a modified routing database to navigate the NHDPlus reach network to aggregate (accumulate) the metrics derived from the reach catchment scale. (Schwarz and Wieczorek, 2018).
This data set contains regions representing areal NHD hydrographic waterbody features. The National Hydrography Dataset (NHD) is a feature-based database that interconnects and uniquely identifies the stream segments or reaches that make up the nation's surface water drainage system. NHD data was originally developed at 1:100,000-scale and exists at that scale for the whole country. This high-resolution NHD, generally developed at 1:24,000/1:12,000 scale, adds detail to the original 1:100,000-scale NHD. (Data for Alaska, Puerto Rico and the Virgin Islands was developed at high-resolution, not 1:100,000 scale.) Local resolution NHD is being developed where partners and data exist. The NHD contains reach codes for networked features, flow direction, names, and centerline representations for areal water bodies. Reaches are also defined on water bodies and the approximate shorelines of the Great Lakes, the Atlantic and Pacific Oceans and the Gulf of Mexico. The NHD also incorporates the National Spatial Data Infrastructure framework criteria established by the Federal Geographic Data Committee.
The National Hydrography Dataset (NHD) - link to USGS website - is a feature-based database that interconnects and uniquely identifies the stream segments or reaches that make up the nation's surface water drainage system. NHD data was originally developed at 1:100,000 scale and exists at that scale for the whole country. High resolution NHD adds detail to the original 1:100,000-scale NHD. (Data for Alaska, Puerto Rico and the Virgin Islands was developed at high-resolution, not 1:100,000 scale.) Like the 1:100,000-scale NHD, high resolution NHD contains reach codes for networked features and isolated lakes, flow direction, names, stream level, and centerline representations for areal water bodies. Reaches are also defined to represent waterbodies and the approximate shorelines of the Great Lakes, the Atlantic and Pacific Oceans and the Gulf of Mexico. The NHD also incorporates the National Spatial Data Infrastructure framework criteria set out by the Federal Geographic Data Committee.NHD is used with other data themes such as elevation, boundaries, and transportation to produce general reference maps. The NHD is often used by scientists using GIS technology. GIS takes advantage of a rich set of attributes that can be processed to generate specialized information. These analyses are possible because the NHD contains a flow direction network that traces the water downstream or upstream. The NHD also uses an addressing system to link specific information about the water such as discharge rates, water quality, and fish population. Using the basic NHD attributes, flow network, linked information, and other characteristics, it is possible to study cause and affect relationships such as how a source of poor water quality upstream might affect a fish population downstream. The features in the NHD are organized into polygons, lines and points. The polygons most commonly portray waterbodies such as lakes while lines commonly portray streams. The stream lines are broken into shorter segments stretching from confluence-to-confluence. The segments are then linked together to trace the flow of water across the landscape. Flowlines attributed as artificial paths are added inside water bodies to maintain the flow network.
The Florida Hydrography Dataset (FHD) is a feature-based database that interconnects and uniquely identifies the stream segments or reaches that make up the state's surface water drainage system. The FHD is based on the original National Hydrography Dataset (NHD) data was originally developed at 1:100,000-scale and exists at that scale for the whole country. This high-resolution FHD, generally developed at 1:5,000 scale, adds detail to the original 1:100,000-scale NHD. (Data for Alaska, Puerto Rico and the Virgin Islands was developed at high-resolution, not 1:100,000 scale.) The FHD contains reach codes for networked features, flow direction, names, and centerline representations for areal water bodies. Reaches are also defined on waterbodies and the approximate shorelines of the Great Lakes, the Atlantic and Pacific Oceans and the Gulf of Mexico. The FHD also incorporates the National Spatial Data Infrastructure framework criteria established by the Federal Geographic Data Committee.
Lakes, ponds, and other waterbodies included in the National Hydrography Dataset (NHD) within Stark County, Ohio. This data was downloaded in May, 2019, and clipped the extent of the county boundary. This version of the NHD was last updated in 2016.The High Resolution National Hydrography Dataset (NHD) provides a hydrologic framework of the United States’ surface water drainage network. This layer displays the key features of the High Resolution NHD including streams and rivers, waterbodies and other area features and points features such as sinks, waterfalls, gauging stations, wells, and springs.The NHD was created through collaboration between the US Geological Survey (USGS) and the Environmental Protection Agency (EPA). USGS is currently responsible for updating and maintaining the NHD. This layer is of the high-resolution NHD, which was created at a scale of 1:24,000 to enhance the original NHD, which was created at a scale of 1:100,000.
The National Hydrography Dataset (NHD) is a feature-based database that interconnects and uniquely identifies the stream segments or reaches that make up the nation's surface water drainage system. NHD data was originally developed at 1:100,000 scale and exists at that scale for the whole country. High resolution NHD adds detail to the original 1:100,000-scale NHD. (Data for Alaska, Puerto Rico and the Virgin Islands was developed at high-resolution, not 1:100,000 scale.) Like the 1:100,000-scale NHD, high resolution NHD contains reach codes for networked features and isolated lakes, flow direction, names, stream level, and centerline representations for areal water bodies. Reaches are also defined to represent waterbodies and the approximate shorelines of the Great Lakes, the Atlantic and Pacific Oceans and the Gulf of Mexico. The NHD also incorporates the National Spatial Data Infrastructure framework criteria set out by the Federal Geographic Data Committee.
This hybrid medium-resolution national hydrography dataset with river corridor attributes (NHD-RC) for the conterminous United States (CONUS) was created by merging lentic and lotic attributes from the high-resolution NHDPlus (U.S. Geological Survey, 2020) into the medium-resolution NHDPlus Version 2.1 (U.S. Geological Survey, 2016). NHD-RC includes attributes from an additional 5.4 million small pond features and 5 million kilometers of small streams beyond the approximately 123,000 lentic waterbodies and 4 million kilometers of larger streams and rivers accounted for NHDPlus Version 2.1. This hybrid approach permitted the use of the many attributes that have been linked to NHD by others, including land cover and dam inventories, to provide four distinct classes of medium- and high-resolution lentic waterbodies: (1) lakes, (2) reservoirs, (3) historic small ponds that were not intensively managed during the past century, and (4) managed small ponds that were constructed for water supply, farm use, or another management purpose. Small ponds located in upland positions without a defined and mapped flowline are also included. This hybrid dataset further advances the basis for improved and more comprehensive integrated modeling and analyses of river corridors.
Shapefile (NJ State Plane NAD 1983) download: Click "Open" or Click hereFile Geodatabase (NJ State Plane NAD 1983) download: Click hereThese data sets will provide Waterbody and Stream information for regulators, planners, and others interested in hydrography data. The use of the NHD data layers in hydrologic analyses will provide a means of monitoring "the health of the citizens and ecosystems of New Jersey" through the use of diverse applications. This data set is intended to serve as a resource for analysis rather than regulatory delineations. The NJDEP may change the line work based on more in depth analysis and field inspection for regulatory purposes. NJDEP/BGIS is a stewardship partner with USGS in the development of Local resolution data which is NHD compliant.
The NHDPlus Version 1.0 is an integrated suite of application-ready geospatial data sets that incorporate many of the best features of the National Hydrography Dataset (NHD) and the National Elevation Dataset (NED). The NHDPlus includes a stream network (based on the 1:100,000-scale NHD), improved networking, naming, and value-added attributes (VAAs). NHDPlus also includes elevation-derived catchments (drainage areas) produced using a drainage enforcement technique first broadly applied in New England, and thus dubbed The New-England Method. This technique involves burning-in the 1:100,000-scale NHD and when available building walls using the national Watershed Boundary Dataset (WBD). The resulting modified digital elevation model (HydroDEM) is used to produce hydrologic derivatives that agree with the NHD and WBD. An interdisciplinary team from the U. S. Geological Survey (USGS), U.S. Environmental Protection Agency (USEPA), and contractors, over the last two years has found this method to produce the best quality NHD catchments using an automated process.
The VAAs include greatly enhanced capabilities for upstream and downstream navigation, analysis and modeling. Examples include: retrieve all flowlines (predominantly confluence-to-confluence stream segments) and catchments upstream of a given flowline using queries rather than by slower flowline-by-flowline navigation; retrieve flowlines by stream order; subset a stream level path sorted in hydrologic order for stream profile mapping, analysis and plotting; and, calculate cumulative catchment attributes using streamlined VAA hydrologic sequencing routing attributes.
The VAAs include results from the use of these cumulative routing techniques, including cumulative drainage areas, precipitation, temperature, and land cover distributions. Several of these cumulative attributes are used to estimate mean annual flow and velocity as part of the VAAs.
NHDPlus contains a snapshot (2005) of the 1:100,000-scale NHD that has been extensively improved. While these updates will eventually make their way back to the central NHD repository at USGS, this will not have happened prior to distribution of NHDPlus because the update process for the central NHD repository is still in development. Consequently, the NHDPlus will contain some temporary database keys and, as a result, NHDPlus users may not make updates to the NHD portions of NHDPlus with the intent of sending these updates back to the USGS. Once the NHDPlus updates have been posted to the central NHD repository, a fresh copy of the improved data can be downloaded from the central NHD repository and that copy will be usable for data maintenance. Note that the NHDPlus products are tightly integrated and user modifications to the underlying NHD can compromise this synchronization.
NOTE: This is not a regularly updated version of this data. It is a static dataset for use within PA DEP purposes. Waterbodies such as lake/pond features are represented in NHDWaterbody. They portray the spatial geometry and the attributes of the feature. These water polygons may have NHDFlowline artificial paths drawn through them to allow the representation of water flow direction. Other NHDWaterbody features are swamp/marsh, reservoir, playa, estuary, and ice mass.