62 datasets found
  1. Annual nifty 50 returns in India 2014-2023

    • statista.com
    Updated Aug 30, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Annual nifty 50 returns in India 2014-2023 [Dataset]. https://www.statista.com/statistics/1461792/india-annual-nifty-50-returns/
    Explore at:
    Dataset updated
    Aug 30, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    India
    Description

    In 2023, the returns on Nifty 50 reported a rise of 19.42 percent compared to the year before. Furthermore, since 2016, Nifty 50 has consistently demonstrated a positive trend in annual returns. Nifty 50 is a benchmark Indian stock market index representing the weighted average of 50 of the largest Indian companies listed on the National Stock Exchange (NSE).

  2. T

    NSE Nifty 50 Index - Index Price | Live Quote | Historical Chart

    • tradingeconomics.com
    csv, excel, json, xml
    Updated Jul 12, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2017). NSE Nifty 50 Index - Index Price | Live Quote | Historical Chart [Dataset]. https://tradingeconomics.com/nifty:ind
    Explore at:
    xml, csv, excel, jsonAvailable download formats
    Dataset updated
    Jul 12, 2017
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 1, 2000 - Jul 2, 2025
    Description

    Prices for NSE Nifty 50 Index including live quotes, historical charts and news. NSE Nifty 50 Index was last updated by Trading Economics this July 2 of 2025.

  3. Annual performance of the Nifty 50 Index in India 2010-2024

    • statista.com
    Updated Feb 28, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Annual performance of the Nifty 50 Index in India 2010-2024 [Dataset]. https://www.statista.com/statistics/886446/india-yearly-development-of-the-nifty-50-index/
    Explore at:
    Dataset updated
    Feb 28, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    India
    Description

    This statistic depicts the average annual performance of the Nifty 50 Index in India from years 2011 to 2024. In 2024, the average annual Nifty 50 Index was reported as 23,644.8, an increase from the previous year where the value was 21,731.4.

  4. k

    Nifty 50: Climb or Crash? (Forecast)

    • kappasignal.com
    Updated Apr 17, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2024). Nifty 50: Climb or Crash? (Forecast) [Dataset]. https://www.kappasignal.com/2024/04/nifty-50-climb-or-crash.html
    Explore at:
    Dataset updated
    Apr 17, 2024
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    Nifty 50: Climb or Crash?

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  5. Nifty 50 Stock Market Dataset (2018-2023)

    • kaggle.com
    Updated Aug 5, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Aamir Kalimi (2023). Nifty 50 Stock Market Dataset (2018-2023) [Dataset]. https://www.kaggle.com/datasets/codekalimi/nifty-50-2018-2023
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Aug 5, 2023
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Aamir Kalimi
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    This dataset contains a comprehensive collection of historical data for the Nifty 50 stocks, a diversified stock market index in India. The data covers the period from January 2018 to August 2023, providing valuable insights into the performance of the Indian stock market over the years.

    Features: - Stock Symbol: The unique stock symbol of the company listed in the Nifty 50 index - Date: The date of the stock market data. - Open: The opening price of the stock on the given date. - High: The highest price reached by the stock during the trading session. - Low: The lowest price reached by the stock during the trading session. - Close: The closing price of the stock on the given date. - Volume: The trading volume of the stock on the given date.

  6. Nifty 50: A Journey to 20,000 and Beyond? (Forecast)

    • kappasignal.com
    Updated Apr 4, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2024). Nifty 50: A Journey to 20,000 and Beyond? (Forecast) [Dataset]. https://www.kappasignal.com/2024/04/nifty-50-journey-to-20000-and-beyond.html
    Explore at:
    Dataset updated
    Apr 4, 2024
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    Nifty 50: A Journey to 20,000 and Beyond?

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  7. Dividend yield of broad market indices listed on NSE in India 2024

    • statista.com
    Updated Aug 30, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Dividend yield of broad market indices listed on NSE in India 2024 [Dataset]. https://www.statista.com/statistics/1461818/india-broad-nse-market-indices-dividend-yield/
    Explore at:
    Dataset updated
    Aug 30, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Apr 16, 2024
    Area covered
    India
    Description

    In April 2024, among all the indices listed on the National Stock Exchange (NSE) of India, Nifty 50 had the highest dividend yield of 1.2 percent. This was closely followed by Nifty 100 and Nifty Next 50, both with a dividend yield of 1.15 percent, respectively.

    What are broad market indices? 

    Broad market indices, also called market indices, are utilized to monitor the performance of a collection of stocks that closely mirror the overall stock market. They generally consist of large, liquid stocks listed on the stock exchange. They serve as a benchmark for measuring the performance of the stock market or portfolios such as mutual fund investments. In many broad-based indexes, companies are weighted based on their market value. This means that larger companies carry more weight in determining the index price compared to smaller ones. For instance, in the Nifty-50 index, Cipla, a major pharmaceutical company, has a significant impact, while smaller companies like Natco Pharma have less influence due to their lower market capitalization.

    What is Nifty 50? 

    Nifty-50 is the flagship index of NSE. It tracks the movement of the portfolio of the 50 largest blue-chip companies and most liquid securities in the Indian market. It is extensively used by domestic and foreign investors as the barometer of the Indian capital market. Annual returns of Nifty-50 were around 20 percent in fiscal year 2023, indicating strong market performance.

  8. T

    NIFTY 50 - Harga Saham

    • id.tradingeconomics.com
    csv, excel, json, xml
    Updated Jul 2, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). NIFTY 50 - Harga Saham [Dataset]. https://id.tradingeconomics.com/nifty:ind
    Explore at:
    csv, json, xml, excelAvailable download formats
    Dataset updated
    Jul 2, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 1, 2000 - Jul 2, 2025
    Description

    Prices for NIFTY 50 - Harga Saham including live quotes, historical charts and news. NIFTY 50 - Harga Saham was last updated by Trading Economics this July 2 of 2025.

  9. k

    Nifty 50 Index Forecast Data

    • kappasignal.com
    csv, json
    Updated Apr 17, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    AC Investment Research (2024). Nifty 50 Index Forecast Data [Dataset]. https://www.kappasignal.com/2024/04/nifty-50-climb-or-crash.html
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Apr 17, 2024
    Dataset authored and provided by
    AC Investment Research
    License

    https://www.ademcetinkaya.com/p/legal-disclaimer.htmlhttps://www.ademcetinkaya.com/p/legal-disclaimer.html

    Description

    Nifty 50's upward trend is likely to continue, with volatility remaining low. However, global uncertainties like geopolitical tensions and the ongoing pandemic pose risks to this outlook. Additionally, profit-taking and technical corrections may lead to temporary setbacks. Investors should maintain caution and monitor market conditions closely.

  10. k

    Nifty 50: A Hold for Now, But Long-Term Gains Are Possible (Forecast)

    • kappasignal.com
    Updated Jun 4, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2023). Nifty 50: A Hold for Now, But Long-Term Gains Are Possible (Forecast) [Dataset]. https://www.kappasignal.com/2023/06/nifty-50-hold-for-now-but-long-term.html
    Explore at:
    Dataset updated
    Jun 4, 2023
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    Nifty 50: A Hold for Now, But Long-Term Gains Are Possible

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  11. NSE NIFTY (26 OCT 20 -18 JAN 21)

    • kaggle.com
    Updated Jun 23, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    YASHASWITA SINGH (2021). NSE NIFTY (26 OCT 20 -18 JAN 21) [Dataset]. https://www.kaggle.com/yashaswitasingh/nse-nifty-1-min-data-26-oct-20-18-jan-21/metadata
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jun 23, 2021
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    YASHASWITA SINGH
    Description

    Context

    Stock market data is widely analyzed for educational, business interests.

    Content

    The data is the price history and trading volumes of the fifty stocks in the index NIFTY 50 from NSE (National Stock Exchange) India. All data represent 1min change with pricing and trading values split across .cvs files for each stock along with a metadata file with some macro-information about the stocks themselves. The data spans from 26 OCT 20 -18 JAN 21

    Usability

    Algorithmic Trading, Anomaly Detection, and Visualizing Trends.

  12. Nifty 3 Min dataset from Jan 2015 to Oct 2022

    • kaggle.com
    Updated Jul 16, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    adityaghuse (2023). Nifty 3 Min dataset from Jan 2015 to Oct 2022 [Dataset]. https://www.kaggle.com/datasets/adityaghuse/nifty-3-min-dataset-from-jan-2015-to-oct-2022
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jul 16, 2023
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    adityaghuse
    Description

    The Nifty 50 is an index that represents the performance of the top 50 companies listed on the National Stock Exchange (NSE) in India. The dataset you mentioned includes 3-minute interval data for the Nifty 50 index from January 2015 to October 2022, with the date and time combined in a single "Date" column.

    Each entry in the dataset represents a 3-minute interval and includes the following information:

    1. date: The specific date and time corresponding to the 3-minute interval.
    2. open: The opening price of the Nifty 50 index during that 3-minute period.
    3. high: The highest price reached by the Nifty 50 index during that 3-minute period.
    4. low: The lowest price reached by the Nifty 50 index during that 3-minute period.
    5. close: The closing price of the Nifty 50 index during that 3-minute period. 6.volume: NA

    This dataset with combined date and time information in a single "Date" column can still be utilized for scalping strategies and general analysis purposes. Traders and analysts can analyze the open, high, low, and close prices at each 3-minute interval, along with the associated date and time, to identify short-term trends, measure volatility, and determine potential entry and exit points for trades.

    Additionally, traders and analysts can perform technical analysis, identify patterns, and develop trading strategies based on this dataset. They can apply various technical indicators, such as moving averages, oscillators, and trend lines, to gain insights into market dynamics and make informed trading decisions, considering the combined date and time information for each 3-minute interval.

    By studying the Nifty 50 3-minute dataset, traders and analysts can gain a deeper understanding of the price behavior of the top 50 companies in the Indian stock market. The dataset spans from January 2015 to October 2022, allowing for comprehensive analysis of historical trends, patterns, and market movements. The combined date and time information in the "Date" column provides a reference for each 3-minute interval, enabling traders and analysts to refine their trading strategies, enhance decision-making processes, and potentially extract valuable insights for successful trading.

  13. d

    Monthly and Annual Averages of NSE Nifty 50

    • dataful.in
    Updated Jun 27, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dataful (Factly) (2025). Monthly and Annual Averages of NSE Nifty 50 [Dataset]. https://dataful.in/datasets/17840
    Explore at:
    csv, application/x-parquet, xlsxAvailable download formats
    Dataset updated
    Jun 27, 2025
    Dataset authored and provided by
    Dataful (Factly)
    License

    https://dataful.in/terms-and-conditionshttps://dataful.in/terms-and-conditions

    Area covered
    India
    Variables measured
    Averages
    Description

    The dataset shows monthly and annual averages of NSE Nifty 50

    Note: 1. The averages are based on daily closing index. 2. S&P CNX Nifty has been re-branded as Nifty 50 w.e.f. November 09, 2015.

  14. i

    Nifty-50 Companies

    • ieee-dataport.org
    Updated Mar 12, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Shiva Agarwal (2022). Nifty-50 Companies [Dataset]. https://ieee-dataport.org/documents/nifty-50-companies
    Explore at:
    Dataset updated
    Mar 12, 2022
    Authors
    Shiva Agarwal
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Close

  15. A

    ‘NIFTY-50 Stocks Dataset’ analyzed by Analyst-2

    • analyst-2.ai
    Updated Aug 4, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com) (2020). ‘NIFTY-50 Stocks Dataset’ analyzed by Analyst-2 [Dataset]. https://analyst-2.ai/analysis/kaggle-nifty-50-stocks-dataset-9575/b7837ff9/?iid=001-574&v=presentation
    Explore at:
    Dataset updated
    Aug 4, 2020
    Dataset authored and provided by
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com)
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Analysis of ‘NIFTY-50 Stocks Dataset’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/iamsouravbanerjee/nifty50-stocks-dataset on 28 January 2022.

    --- Dataset description provided by original source is as follows ---

    Context

    The NIFTY 50 is a benchmark Indian stock market index that represents the weighted average of 50 of the largest Indian companies listed on the National Stock Exchange. It is one of the two main stock indices used in India, the other being the BSE SENSEX.

    Nifty 50 is owned and managed by NSE Indices (previously known as India Index Services & Products Limited), which is a wholly-owned subsidiary of the NSE Strategic Investment Corporation Limited. NSE Indices had a marketing and licensing agreement with Standard & Poor's for co-branding equity indices until 2013. The Nifty 50 index was launched on 22 April 1996, and is one of the many stock indices of Nifty.

    The NIFTY 50 index has shaped up to be the largest single financial product in India, with an ecosystem consisting of exchange-traded funds (onshore and offshore), exchange-traded options at NSE, and futures and options abroad at the SGX. NIFTY 50 is the world's most actively traded contract. WFE, IOM, and FIA surveys endorse NSE's leadership position.

    The NIFTY 50 index covers 13 sectors (as of 30 April 2021) of the Indian economy and offers investment managers exposure to the Indian market in one portfolio. Between 2008 & 2012, the NIFTY 50 index's share of NSE's market capitalization fell from 65% to 29% due to the rise of sectoral indices like NIFTY Bank, NIFTY IT, NIFTY Pharma, NIFTY SERV SECTOR, NIFTY Next 50, etc. The NIFTY 50 Index gives a weightage of 39.47% to financial services, 15.31% to Energy, 13.01% to IT, 12.38% to consumer goods, 6.11% to Automobiles a and 0% to the agricultural sector.

    The NIFTY 50 index is a free-float market capitalization weighted index. The index was initially calculated on a full market capitalization methodology. On 26 June 2009, the computation was changed to a free-float methodology. The base period for the NIFTY 50 index is 3 November 1995, which marked the completion of one year of operations of the National Stock Exchange Equity Market Segment. The base value of the index has been set at 1000 and a base capital of ₹ 2.06 trillion.

    Content

    In this Dataset, we have records of all the NIFTY-50 stocks along with various parameters.

    Important Note

    • % change is calculated with respect to adjusted price on ex-date for Dividend, Bonus, Rights & Face Value Split.
    • 52 weeks high & 52 week low prices are adjusted for Bonus, Split & Rights Corporate actions.
    • 365 days % Change and 30 days % Change values are adjusted With respect to corporate actions.

    Acknowledgements

    For more, you can visit the website of the National Stock Exchange of India Limited (NSE): https://www1.nseindia.com/

    --- Original source retains full ownership of the source dataset ---

  16. k

    Billion Dollar Question: Is Nifty 50 Ready for the Next Bull Run? (Forecast)...

    • kappasignal.com
    Updated May 13, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2024). Billion Dollar Question: Is Nifty 50 Ready for the Next Bull Run? (Forecast) [Dataset]. https://www.kappasignal.com/2024/05/billion-dollar-question-is-nifty-50.html
    Explore at:
    Dataset updated
    May 13, 2024
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    Billion Dollar Question: Is Nifty 50 Ready for the Next Bull Run?

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  17. India National Stock Exchange of India Limited: Index: NIFTY 50

    • ceicdata.com
    Updated Mar 25, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2025). India National Stock Exchange of India Limited: Index: NIFTY 50 [Dataset]. https://www.ceicdata.com/en/india/national-stock-exchange-of-india-limited/national-stock-exchange-of-india-limited-index-nifty-50
    Explore at:
    Dataset updated
    Mar 25, 2025
    Dataset provided by
    CEIC Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Mar 7, 2025 - Mar 25, 2025
    Area covered
    India
    Description

    National Stock Exchange of India Limited: Index: NIFTY 50 data was reported at 25,062.100 NA in 15 May 2025. This records an increase from the previous number of 24,666.900 NA for 14 May 2025. National Stock Exchange of India Limited: Index: NIFTY 50 data is updated daily, averaging 11,013.550 NA from Jun 2013 (Median) to 15 May 2025, with 2950 observations. The data reached an all-time high of 26,216.050 NA in 26 Sep 2024 and a record low of 5,285.000 NA in 28 Aug 2013. National Stock Exchange of India Limited: Index: NIFTY 50 data remains active status in CEIC and is reported by Exchange Data International Limited. The data is categorized under High Frequency Database’s Financial and Futures Market – Table IN.EDI.SE: National Stock Exchange of India Limited.

  18. m

    Historical Data for NIFTY 50

    • data.mendeley.com
    Updated Aug 10, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    kondal kolipaka (2020). Historical Data for NIFTY 50 [Dataset]. http://doi.org/10.17632/6pjd2wzzcc.1
    Explore at:
    Dataset updated
    Aug 10, 2020
    Authors
    kondal kolipaka
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    NIFTY 50 data For the period 01-01-2020 to 11-08-2020

  19. Nifty 50 6 Months Data 2

    • kaggle.com
    Updated Mar 12, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    surajk862 (2025). Nifty 50 6 Months Data 2 [Dataset]. https://www.kaggle.com/datasets/surajk862/nifty-50-6-months-data-2
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Mar 12, 2025
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    surajk862
    Description

    Dataset

    This dataset was created by surajk862

    Released under Other (specified in description)

    Contents

  20. 6 year NIFTY50 historical data of 5, 30 min candle

    • kaggle.com
    Updated Mar 27, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Abhishek Koshta (2021). 6 year NIFTY50 historical data of 5, 30 min candle [Dataset]. https://www.kaggle.com/abhishekkoshta/6-year-nifty50-historical-data-of-5-30-min-candle/discussion
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Mar 27, 2021
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Abhishek Koshta
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Context

    You don't have to know about the whole universe of stocks to make money. You can earn if you can predict movement of one index only. It will suffice. Here is the data of Nifty 50 index. It has volume in millions. You have a chance to make an algorithm with this data and win in the markets.

    Content

    The data contains the open, high, low, close of NIFTY 50 index with time stamps. The data is available from 9 January 2015 to 25 March 2021.

    Acknowledgements

    I have downloaded this data using kite connect API.

    Inspiration

    Can you find a reliable pattern in a 5 minute or 30 minute candlestick NIFTY 50 chart? Even if we have to wait for a month for that pattern to reappear on the charts we can. But it should be trustworthy to go along. We just need a single trade to make our year and not a thousand.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statista (2024). Annual nifty 50 returns in India 2014-2023 [Dataset]. https://www.statista.com/statistics/1461792/india-annual-nifty-50-returns/
Organization logo

Annual nifty 50 returns in India 2014-2023

Explore at:
Dataset updated
Aug 30, 2024
Dataset authored and provided by
Statistahttp://statista.com/
Area covered
India
Description

In 2023, the returns on Nifty 50 reported a rise of 19.42 percent compared to the year before. Furthermore, since 2016, Nifty 50 has consistently demonstrated a positive trend in annual returns. Nifty 50 is a benchmark Indian stock market index representing the weighted average of 50 of the largest Indian companies listed on the National Stock Exchange (NSE).

Search
Clear search
Close search
Google apps
Main menu