Facebook
TwitterA list of NIH-supported repositories that accept submissions of appropriate scientific research data from biomedical researchers. It includes resources that aggregate information about biomedical data and information sharing systems. Links are provided to information about submitting data to and accessing data from the listed repositories. Additional information about the repositories and points-of contact for further information or inquiries can be found on the websites of the individual repositories.
Facebook
TwitterThe goal of BioLINCC is to facilitate and coordinate the existing activities of the NHLBI Biorepository and the Data Repository and to expand their scope and usability to the scientific community through a single web-based user interface.
Facebook
TwitterA listing of NIH supported data sharing repositories that make data accessible for reuse. Most accept submissions of appropriate data from NIH-funded investigators (and others), but some restrict data submission to only those researchers involved in a specific research network. Also included are resources that aggregate information about biomedical data and information sharing systems. The table can be sorted according by name and by NIH Institute or Center and may be searched using keywords so that you can find repositories more relevant to your data. Links are provided to information about submitting data to and accessing data from the listed repositories. Additional information about the repositories and points-of-contact for further information or inquiries can be found on the websites of the individual repositories.
Facebook
TwitterThe NIH Common Data Elements (CDE) Repository has been designed to provide access to structured human and machine-readable definitions of data elements that have been recommended or required by NIH Institutes and Centers and other organizations for use in research and for other purposes. Visit the NIH CDE Resource Portal for contextual information about the repository.
Facebook
TwitterA database which contains longitudinal structural MRIs, spectroscopy, DTI and correlated clinical/behavioral data from approximately 500 healthy, normally developing children, ages newborn to young adult.
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
This dataset aggregates information about 191 research data repositories that were shut down. The data collection was based on the registry of research data repositories re3data and a comprehensive content analysis of repository websites and related materials. Documented in the dataset are the period in which a repository was active, the risks resulting in its shutdown, and the repositories taking over custody of the data after.
Facebook
TwitterA listing of NIH supported data sharing repositories that make data accessible for reuse. Most accept submissions of appropriate data from NIH-funded investigators (and others), but some restrict data submission to only those researchers involved in a specific research network. Also included are resources that aggregate information about biomedical data and information sharing systems. The table can be sorted according by name and by NIH Institute or Center and may be searched using keywords so that you can find repositories more relevant to your data. Links are provided to information about submitting data to and accessing data from the listed repositories. Additional information about the repositories and points-of-contact for further information or inquiries can be found on the websites of the individual repositories.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This file collection is part of the ORD Landscape and Cost Analysis Project (DOI: 10.5281/zenodo.2643460), a study jointly commissioned by the SNSF and swissuniversities in 2018.
Please cite this data collection as: von der Heyde, M. (2019). Data and tools of the landscape and cost analysis of data repositories currently used by the Swiss research community. Retrieved from https://doi.org/10.5281/zenodo.2643495
Connected data papers are: von der Heyde, M. (2019). Open Data Landscape: Repository Usage of the Swiss Research Community: Description of collection, collected data, and analysis methods [Data paper]. Retrieved from https://doi.org/10.5281/zenodo.2643430 von der Heyde, M. (2019). International Open Data Repository Survey: Description of collection, collected data, and analysis methods [Data paper]. Retrieved from https://doi.org/10.5281/zenodo.2643450
Connected data sets are: von der Heyde, M. (2019). Data from the Swiss Open Data Repository Landscape survey. Retrieved from https://doi.org/10.5281/zenodo.2643487 von der Heyde, M. (2019). Data from the International Open Data Repository Survey. Retrieved from https://doi.org/10.5281/zenodo.2643493
Contact
Swiss National Science Foundation (SNSF)
Open Research Data Group
E-mail: ord@snf.ch
swissuniversities
Program "Scientific Information"
Gabi Schneider
E-Mail: isci@swissuniversities.ch
Facebook
TwitterData file is composed of two sheets. First sheet includes raw data: colony numbers for each salicylic acid concentration and exposure time with their repetitions. Second sheet includes means of the log(colony numbers) and standart deviations. These were used to interpret the results and calculate EC50 values.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This file collection is part of the ORD Landscape and Cost Analysis Project (DOI: 10.5281/zenodo.2643460), a study jointly commissioned by the SNSF and swissuniversities in 2018.
Please cite this data collection as: von der Heyde, M. (2019). Data from the International Open Data Repository Survey. Retrieved from https://doi.org/10.5281/zenodo.2643493
Further information is given in the corresponding data paper: von der Heyde, M. (2019). International Open Data Repository Survey: Description of collection, collected data, and analysis methods [Data paper]. Retrieved from https://doi.org/10.5281/zenodo.2643450
Contact
Swiss National Science Foundation (SNSF)
Open Research Data Group
E-mail: ord@snf.ch
swissuniversities
Program "Scientific Information"
Gabi Schneider
E-Mail: isci@swissuniversities.ch
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The attached data sets provides an overview of the landscape of research data repositories in 2015. They are based on an analysis of the re3data - registry of research data repositories from December 2015.
Facebook
TwitterObjective To characterise experiences using clinical research data shared through the National Institutes of Health (NIH)'s Biologic Specimen and Data Repository Information Coordinating Center (BioLINCC) clinical research data repository, along with data recipients’ perceptions of the value, importance and challenges with using BioLINCC data. Design and setting Cross-sectional web-based survey. Participants All investigators who requested and received access to clinical research data from BioLINCC between 2007 and 2014. Main outcome measures Reasons for BioLINCC data request, research project plans, interactions with original study investigators, BioLINCC experience and other project details. Results There were 536 investigators who requested and received access to clinical research data from BioLINCC between 2007 and 2014. Of 441 potential respondents, 195 completed the survey (response rate=44%); 89% (n=174) requested data for an independent study, 17% (n=33) for pilot/preliminary analysis. Commonly cited reasons for requesting data through BioLINCC were feasibility of collecting data of similar size and scope (n=122) and insufficient financial resources for primary data collection (n=76). For 95% of respondents (n=186), a primary research objective was to complete new research, as opposed to replicate prior analyses. Prior to requesting data from BioLINCC, 18% (n=36) of respondents had contacted the original study investigators to obtain data, whereas 24% (n=47) had done so to request collaboration. Nearly all (n=176; 90%) respondents found the data to be suitable for their proposed project; among those who found the data unsuitable (n=19; 10%), cited reasons were data too complicated to use (n=5) and data poorly organised (n=5). Half (n=98) of respondents had completed their proposed projects, of which 67% (n=66) have been published. Conclusions Investigators were primarily using clinical research data from BioLINCC for independent research, making use of data that would otherwise have not been feasible to collect.
Facebook
TwitterThe NIDDK Central Repository stores biosamples, genetic and other data collected in designated NIDDK-funded clinical studies. The purpose of the NIDDK Central Repository is to expand the usefulness of these studies by allowing a wider research community to access data and materials beyond the end of the study.
Facebook
TwitterBRADS is a repository for data and biospecimens from population health research initiatives and clinical or interventional trials designed and implemented by NICHD’s Division of Intramural Population Health Research (DIPHR). Topics include human reproduction and development, pregnancy, child health and development, and women’s health. The website is maintained by DIPHR.
Facebook
TwitterTo determine the physical strain of walking and assess its relationship with quantity and intensity of daily activity in people with neuromuscular diseases.
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
In order to better understand the factors that most influence where researchers deposit their data when they have a choice, we collected survey data from researchers who deposited phylogenetic data in either the TreeBASE or Dryad data repositories. Respondents were asked to rank the relative importance of eight possible factors. We found that factors differed in importance for both TreeBASE and Dryad, and that the rankings differed subtly but significantly between TreeBASE and Dryad users. On average, TreeBASE users ranked the domain specialization of the repository highest, while Dryad users ranked as equal highest their trust in the persistence of the repository and the ease of its data submission process. Interestingly, respondents (particularly Dryad users) were strongly divided as to whether being directed to choose a particular repository by a journal policy or funding agency was among the most or least important factors. Some users reported depositing their data in multiple repositories and archiving their data voluntarily.
Facebook
Twitter"The NICHD Data and Specimen Hub (DASH) is a centralized resource that allows researchers to share and access de-identified data from studies funded by NICHD. DASH also serves as a portal for requesting biospecimens from selected DASH studies.". This dataset is associated with the following publication: Deluca, N., K. Thomas, A. Mullikin, R. Slover, L. Stanek, D. Pilant, and E. Hubal. Geographic and demographic variability in serum PFAS concentrations for pregnant women in the United States. Journal of Exposure Science and Environmental Epidemiology. Nature Publishing Group, London, UK, 33(1): 710-724, (2023).
Facebook
TwitterThe National Institute on Aging Genetics of Alzheimer's Disease Data Storage Site (NIAGADS) is a national genetics data repository facilitating access to genotypic and phenotypic data for Alzheimer's disease (AD). Data include GWAS, whole genome (WGS) and whole exome (WES), expression, RNA Seq, and CHIP Seq analyses. Data for the Alzheimer’s Disease Sequencing Project (ADSP) are available through a partnership with dbGaP (ADSP at dbGaP). Results are integrated and annotated in the searchable genomics database that also provides access to a variety of software packages, analytic pipelines, online resources, and web-based tools to facilitate analysis and interpretation of large-scale genomic data. Data are available as defined by the NIA Genomics of Alzheimer’s Disease Sharing Policy and the NIH Genomics Data Sharing Policy. Investigators return secondary analysis data to the database in keeping with the NIAGADS Data Distribution Agreement.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
To inform efforts to improve the discoverability of and access to biomedical datasets by providing a preliminary estimate of the number and type of datasets generated annually by National Institutes of Health (NIH)-funded researchers. Of particular interest is characterizing those datasets that are not deposited in a known data repository or registry, e.g., those for which a related journal article does not indicate that underlying data have been deposited in a known repository. Such “invisible” datasets comprise the “long tail” of biomedical data and pose significant practical challenges to ongoing efforts to improve discoverability of and access to biomedical research data. This study identified datasets used to support the NIH-funded research reported in articles published in 2011 and cited in PubMed® and deposited in PubMed Central® (PMC). After searching for all articles that acknowledged NIH support, we first identified articles that contained explicit mention of datasets being deposited in recognized repositories. Thirty members of the NIH staff then analyzed a random sample of the remaining articles to estimate how many and what types of datasets were used per article. Two reviewers independently examined each paper. Each dataset is titled Bigdata_randomsample_xxxx_xx. The xxxx refers to the set of articles the annotator looked at, while the xxidentifies the annotator that did the analysis. Within each dataset, the author has listed the number of datasets they identified within the articles that they looked at. For every dataset that was found, the annotators were asked to insert a new row into the spreadsheet, and then describe the dataset they found (e.g., type of data, subject of study, etc.). Each row in the spreadsheet was always prepended by the PubMed Identifier (PMID) where the dataset was found. Finally, the files 2013-08-07_Bigdatastudy_dataanalysis, Dataanalysis_ack_si_datasets, and Datasets additional random sample mention vs deposit 20150313 refer to the analysis that was performed based on each annotator's analysis of the publications they were assigned, and the data deposits identified from the analysis.
Facebook
TwitterThis dataset tracks the updates made on the dataset "NIH Common Data Elements Repository" as a repository for previous versions of the data and metadata.
Facebook
TwitterA list of NIH-supported repositories that accept submissions of appropriate scientific research data from biomedical researchers. It includes resources that aggregate information about biomedical data and information sharing systems. Links are provided to information about submitting data to and accessing data from the listed repositories. Additional information about the repositories and points-of contact for further information or inquiries can be found on the websites of the individual repositories.