9 datasets found
  1. c

    The Cancer Genome Atlas Stomach Adenocarcinoma Collection

    • cancerimagingarchive.net
    dicom, n/a
    Updated Jan 5, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Cancer Imaging Archive (2016). The Cancer Genome Atlas Stomach Adenocarcinoma Collection [Dataset]. http://doi.org/10.7937/K9/TCIA.2016.GDHL9KIM
    Explore at:
    dicom, n/aAvailable download formats
    Dataset updated
    Jan 5, 2016
    Dataset authored and provided by
    The Cancer Imaging Archive
    License

    https://www.cancerimagingarchive.net/data-usage-policies-and-restrictions/https://www.cancerimagingarchive.net/data-usage-policies-and-restrictions/

    Time period covered
    May 29, 2020
    Dataset funded by
    National Cancer Institutehttp://www.cancer.gov/
    Description

    The Cancer Genome Atlas Stomach Adenocarcinoma (TCGA-STAD) data collection is part of a larger effort to build a research community focused on connecting cancer phenotypes to genotypes by providing clinical images matched to subjects from The Cancer Genome Atlas (TCGA). Clinical, genetic, and pathological data resides in the Genomic Data Commons (GDC) Data Portal while the radiological data is stored on The Cancer Imaging Archive (TCIA).

    Matched TCGA patient identifiers allow researchers to explore the TCGA/TCIA databases for correlations between tissue genotype, radiological phenotype and patient outcomes. Tissues for TCGA were collected from many sites all over the world in order to reach their accrual targets, usually around 500 specimens per cancer type. For this reason the image data sets are also extremely heterogeneous in terms of scanner modalities, manufacturers and acquisition protocols. In most cases the images were acquired as part of routine care and not as part of a controlled research study or clinical trial.

    CIP TCGA Radiology Initiative

    Imaging Source Site (ISS) Groups are being populated and governed by participants from institutions that have provided imaging data to the archive for a given cancer type. Modeled after TCGA analysis groups, ISS groups are given the opportunity to publish a marker paper for a given cancer type per the guidelines in the table above. This opportunity will generate increased participation in building these multi-institutional data sets as they become an open community resource. Learn more about the CIP TCGA Radiology Initiative.

  2. c

    The Cancer Genome Atlas Rectum Adenocarcinoma Collection

    • cancerimagingarchive.net
    dicom, n/a
    Updated Jan 5, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Cancer Imaging Archive (2016). The Cancer Genome Atlas Rectum Adenocarcinoma Collection [Dataset]. http://doi.org/10.7937/K9/TCIA.2016.F7PPNPNU
    Explore at:
    dicom, n/aAvailable download formats
    Dataset updated
    Jan 5, 2016
    Dataset authored and provided by
    The Cancer Imaging Archive
    License

    https://www.cancerimagingarchive.net/data-usage-policies-and-restrictions/https://www.cancerimagingarchive.net/data-usage-policies-and-restrictions/

    Time period covered
    May 29, 2020
    Dataset funded by
    National Cancer Institutehttp://www.cancer.gov/
    Description

    The Cancer Genome Atlas Rectum Adenocarcinoma (TCGA-READ) data collection is part of a larger effort to build a research community focused on connecting cancer phenotypes to genotypes by providing clinical images matched to subjects from The Cancer Genome Atlas (TCGA). Clinical, genetic, and pathological data resides in the Genomic Data Commons (GDC) Data Portal while the radiological data is stored on The Cancer Imaging Archive (TCIA).

    Matched TCGA patient identifiers allow researchers to explore the TCGA/TCIA databases for correlations between tissue genotype, radiological phenotype and patient outcomes. Tissues for TCGA were collected from many sites all over the world in order to reach their accrual targets, usually around 500 specimens per cancer type. For this reason the image data sets are also extremely heterogeneous in terms of scanner modalities, manufacturers and acquisition protocols. In most cases the images were acquired as part of routine care and not as part of a controlled research study or clinical trial.

    CIP TCGA Radiology Initiative

    Imaging Source Site (ISS) Groups are being populated and governed by participants from institutions that have provided imaging data to the archive for a given cancer type. Modeled after TCGA analysis groups, ISS groups are given the opportunity to publish a marker paper for a given cancer type per the guidelines in the table above. This opportunity will generate increased participation in building these multi-institutional data sets as they become an open community resource. Learn more about the CIP TCGA Radiology Initiative.

  3. f

    hCINAP expression in colorectal cancer

    • figshare.com
    docx
    Updated May 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Yapeng Ji; zefang Zhang; zemin Zhang; xiaofeng Zheng (2023). hCINAP expression in colorectal cancer [Dataset]. http://doi.org/10.6084/m9.figshare.4737181.v3
    Explore at:
    docxAvailable download formats
    Dataset updated
    May 31, 2023
    Dataset provided by
    figshare
    Authors
    Yapeng Ji; zefang Zhang; zemin Zhang; xiaofeng Zheng
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The authors declare that the data analysis processes supporting the findings of this study are available within the article and its Supplementary Information files. The TCGA gene expression profile data, as recomputed based on gencode v23, were downloaded from UCSC Xena (http://xena.ucsc.edu/). The TCGA clinical data were downloaded from the GDC Data Portal (https://gdc-portal.nci.nih.gov/), with accession number phs000178.v9.p8 in dbGap. Supplementary Information: For analyzing the hCINAP expression in CRC, we downloaded the recomputed TCGA gene expression datasets for COAD and READ cancer types from the UCSC Xena (http://xena.ucsc.edu/). The gene model was based on gencode v23, and the expression unit is TPM (Transcript per million). The clinical data were downloaded from the GDC Data Portal (https://gdc-portal.nci.nih.gov/).

    For differential expression analysis, we compiled a selected sample set, including 367 tumor- and 51 normal-samples, in which each sample has information available for clinical variables such as gender, age and race (Supplementary Table1). For expression analysis by pathological stages, we only used those tumor samples with stage information (Supplementary Table1). The dataset used for profiling gene expression by CRC subtypes was compiled based on the results of consensus molecular subtypes (CMSs) described previously [PMID: 26457759] , containing 265 tumor samples (Supplementary Table1).

  4. c

    The Cancer Genome Atlas Lung Adenocarcinoma Collection

    • cancerimagingarchive.net
    dicom, n/a
    Updated Jan 30, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Cancer Imaging Archive (2017). The Cancer Genome Atlas Lung Adenocarcinoma Collection [Dataset]. http://doi.org/10.7937/K9/TCIA.2016.JGNIHEP5
    Explore at:
    n/a, dicomAvailable download formats
    Dataset updated
    Jan 30, 2017
    Dataset authored and provided by
    The Cancer Imaging Archive
    License

    https://www.cancerimagingarchive.net/data-usage-policies-and-restrictions/https://www.cancerimagingarchive.net/data-usage-policies-and-restrictions/

    Time period covered
    May 29, 2020
    Dataset funded by
    National Cancer Institutehttp://www.cancer.gov/
    Description

    The Cancer Genome Atlas Lung Adenocarcinoma (TCGA-LUAD) data collection is part of a larger effort to build a research community focused on connecting cancer phenotypes to genotypes by providing clinical images matched to subjects from The Cancer Genome Atlas (TCGA). Clinical, genetic, and pathological data resides in the Genomic Data Commons (GDC) Data Portal while the radiological data is stored on The Cancer Imaging Archive (TCIA).

    Matched TCGA patient identifiers allow researchers to explore the TCGA/TCIA databases for correlations between tissue genotype, radiological phenotype and patient outcomes. Tissues for TCGA were collected from many sites all over the world in order to reach their accrual targets, usually around 500 specimens per cancer type. For this reason the image data sets are also extremely heterogeneous in terms of scanner modalities, manufacturers and acquisition protocols. In most cases the images were acquired as part of routine care and not as part of a controlled research study or clinical trial.

    CIP TCGA Radiology Initiative

    Imaging Source Site (ISS) Groups are being populated and governed by participants from institutions that have provided imaging data to the archive for a given cancer type. Modeled after TCGA analysis groups, ISS groups are given the opportunity to publish a marker paper for a given cancer type per the guidelines in the table above. This opportunity will generate increased participation in building these multi-institutional data sets as they become an open community resource. Learn more about the TCGA Lung Phenotype Research Group.

  5. c

    The Cancer Genome Atlas Prostate Adenocarcinoma Collection

    • cancerimagingarchive.net
    dicom, n/a
    Updated Feb 2, 2014
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Cancer Imaging Archive (2014). The Cancer Genome Atlas Prostate Adenocarcinoma Collection [Dataset]. http://doi.org/10.7937/K9/TCIA.2016.YXOGLM4Y
    Explore at:
    dicom, n/aAvailable download formats
    Dataset updated
    Feb 2, 2014
    Dataset authored and provided by
    The Cancer Imaging Archive
    License

    https://www.cancerimagingarchive.net/data-usage-policies-and-restrictions/https://www.cancerimagingarchive.net/data-usage-policies-and-restrictions/

    Time period covered
    May 29, 2020
    Dataset funded by
    National Cancer Institutehttp://www.cancer.gov/
    Description

    The Cancer Genome Atlas Prostate Adenocarcinoma (TCGA-PRAD) data collection is part of a larger effort to build a research community focused on connecting cancer phenotypes to genotypes by providing clinical images matched to subjects from The Cancer Genome Atlas (TCGA). Clinical, genetic, and pathological data resides in the Genomic Data Commons (GDC) Data Portal while the radiological data is stored on The Cancer Imaging Archive (TCIA).

    Matched TCGA patient identifiers allow researchers to explore the TCGA/TCIA databases for correlations between tissue genotype, radiological phenotype and patient outcomes. Tissues for TCGA were collected from many sites all over the world in order to reach their accrual targets, usually around 500 specimens per cancer type. For this reason the image data sets are also extremely heterogeneous in terms of scanner modalities, manufacturers and acquisition protocols. In most cases the images were acquired as part of routine care and not as part of a controlled research study or clinical trial.

    CIP TCGA Radiology Initiative

    Imaging Source Site (ISS) Groups are being populated and governed by participants from institutions that have provided imaging data to the archive for a given cancer type. Modeled after TCGA analysis groups, ISS groups are given the opportunity to publish a marker paper for a given cancer type per the guidelines in the table above. This opportunity will generate increased participation in building these multi-institutional data sets as they become an open community resource. Learn more about the CIP TCGA Radiology Initiative.

  6. c

    The Cancer Genome Atlas Liver Hepatocellular Carcinoma Collection

    • cancerimagingarchive.net
    dicom, n/a
    Updated May 29, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Cancer Imaging Archive (2020). The Cancer Genome Atlas Liver Hepatocellular Carcinoma Collection [Dataset]. http://doi.org/10.7937/K9/TCIA.2016.IMMQW8UQ
    Explore at:
    n/a, dicomAvailable download formats
    Dataset updated
    May 29, 2020
    Dataset authored and provided by
    The Cancer Imaging Archive
    License

    https://www.cancerimagingarchive.net/data-usage-policies-and-restrictions/https://www.cancerimagingarchive.net/data-usage-policies-and-restrictions/

    Time period covered
    May 29, 2020
    Dataset funded by
    National Cancer Institutehttp://www.cancer.gov/
    Description

    The Cancer Genome Atlas Liver Hepatocellular Carcinoma (TCGA-LIHC) data collection is part of a larger effort to build a research community focused on connecting cancer phenotypes to genotypes by providing clinical images matched to subjects from The Cancer Genome Atlas (TCGA). Clinical, genetic, and pathological data resides in the Genomic Data Commons (GDC) Data Portal while the radiological data is stored on The Cancer Imaging Archive (TCIA).

    Matched TCGA patient identifiers allow researchers to explore the TCGA/TCIA databases for correlations between tissue genotype, radiological phenotype and patient outcomes. Tissues for TCGA were collected from many sites all over the world in order to reach their accrual targets, usually around 500 specimens per cancer type. For this reason the image data sets are also extremely heterogeneous in terms of scanner modalities, manufacturers and acquisition protocols. In most cases the images were acquired as part of routine care and not as part of a controlled research study or clinical trial.

    CIP TCGA Radiology Initiative

    Imaging Source Site (ISS) Groups are being populated and governed by participants from institutions that have provided imaging data to the archive for a given cancer type. Modeled after TCGA analysis groups, ISS groups are given the opportunity to publish a marker paper for a given cancer type per the guidelines in the table above. This opportunity will generate increased participation in building these multi-institutional data sets as they become an open community resource. Learn more about the CIP TCGA Radiology Initiative.

  7. c

    The Cancer Genome Atlas Colon Adenocarcinoma Collection

    • cancerimagingarchive.net
    dicom, n/a
    Updated Jan 5, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Cancer Imaging Archive (2016). The Cancer Genome Atlas Colon Adenocarcinoma Collection [Dataset]. http://doi.org/10.7937/K9/TCIA.2016.HJJHBOXZ
    Explore at:
    dicom, n/aAvailable download formats
    Dataset updated
    Jan 5, 2016
    Dataset authored and provided by
    The Cancer Imaging Archive
    License

    https://www.cancerimagingarchive.net/data-usage-policies-and-restrictions/https://www.cancerimagingarchive.net/data-usage-policies-and-restrictions/

    Time period covered
    May 29, 2020
    Dataset funded by
    National Cancer Institutehttp://www.cancer.gov/
    Description

    The Cancer Genome Atlas Colon Adenocarcinoma (TCGA-COAD) data collection is part of a larger effort to build a research community focused on connecting cancer phenotypes to genotypes by providing clinical images matched to subjects from The Cancer Genome Atlas (TCGA). Clinical, genetic, and pathological data resides in the Genomic Data Commons (GDC) Data Portal while the radiological data is stored on The Cancer Imaging Archive (TCIA).

    Matched TCGA patient identifiers allow researchers to explore the TCGA/TCIA databases for correlations between tissue genotype, radiological phenotype and patient outcomes. Tissues for TCGA were collected from many sites all over the world in order to reach their accrual targets, usually around 500 specimens per cancer type. For this reason the image data sets are also extremely heterogeneous in terms of scanner modalities, manufacturers and acquisition protocols. In most cases the images were acquired as part of routine care and not as part of a controlled research study or clinical trial.

    CIP TCGA Radiology Initiative

    Imaging Source Site (ISS) Groups are being populated and governed by participants from institutions that have provided imaging data to the archive for a given cancer type. Modeled after TCGA analysis groups, ISS groups are given the opportunity to publish a marker paper for a given cancer type per the guidelines in the table above. This opportunity will generate increased participation in building these multi-institutional data sets as they become an open community resource. Learn more about the CIP TCGA Radiology Initiative.

  8. c

    The Cancer Genome Atlas Kidney Chromophobe Collection

    • cancerimagingarchive.net
    dicom, n/a
    Updated Jan 5, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Cancer Imaging Archive (2016). The Cancer Genome Atlas Kidney Chromophobe Collection [Dataset]. http://doi.org/10.7937/K9/TCIA.2016.YU3RBCZN
    Explore at:
    dicom, n/aAvailable download formats
    Dataset updated
    Jan 5, 2016
    Dataset authored and provided by
    The Cancer Imaging Archive
    License

    https://www.cancerimagingarchive.net/data-usage-policies-and-restrictions/https://www.cancerimagingarchive.net/data-usage-policies-and-restrictions/

    Time period covered
    May 29, 2020
    Dataset funded by
    National Cancer Institutehttp://www.cancer.gov/
    Description

    The Cancer Genome Atlas Kidney Chromophobe (TCGA-KICH) data collection is part of a larger effort to build a research community focused on connecting cancer phenotypes to genotypes by providing clinical images matched to subjects from The Cancer Genome Atlas (TCGA). Clinical, genetic, and pathological data resides in the Genomic Data Commons (GDC) Data Portal while the radiological data is stored on The Cancer Imaging Archive (TCIA).

    Matched TCGA patient identifiers allow researchers to explore the TCGA/TCIA databases for correlations between tissue genotype, radiological phenotype and patient outcomes. Tissues for TCGA were collected from many sites all over the world in order to reach their accrual targets, usually around 500 specimens per cancer type. For this reason the image data sets are also extremely heterogeneous in terms of scanner modalities, manufacturers and acquisition protocols. In most cases the images were acquired as part of routine care and not as part of a controlled research study or clinical trial.

    CIP TCGA Radiology Initiative

    Imaging Source Site (ISS) Groups are being populated and governed by participants from institutions that have provided imaging data to the archive for a given cancer type. Modeled after TCGA analysis groups, ISS groups are given the opportunity to publish a marker paper for a given cancer type per the guidelines in the table above. This opportunity will generate increased participation in building these multi-institutional data sets as they become an open community resource. Learn more about the TCGA Renal Phenotype Research Group.

  9. c

    The Cancer Genome Atlas Sarcoma Collection

    • cancerimagingarchive.net
    dicom, n/a
    Updated Jan 5, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Cancer Imaging Archive (2016). The Cancer Genome Atlas Sarcoma Collection [Dataset]. http://doi.org/10.7937/K9/TCIA.2016.CX6YLSUX
    Explore at:
    dicom, n/aAvailable download formats
    Dataset updated
    Jan 5, 2016
    Dataset authored and provided by
    The Cancer Imaging Archive
    License

    https://www.cancerimagingarchive.net/data-usage-policies-and-restrictions/https://www.cancerimagingarchive.net/data-usage-policies-and-restrictions/

    Time period covered
    May 29, 2020
    Dataset funded by
    National Cancer Institutehttp://www.cancer.gov/
    Description

    The Cancer Genome Atlas Sarcoma (TCGA-SARC) data collection is part of a larger effort to build a research community focused on connecting cancer phenotypes to genotypes by providing clinical images matched to subjects from The Cancer Genome Atlas (TCGA). Clinical, genetic, and pathological data resides in the Genomic Data Commons (GDC) Data Portal while the radiological data is stored on The Cancer Imaging Archive (TCIA).

    Matched TCGA patient identifiers allow researchers to explore the TCGA/TCIA databases for correlations between tissue genotype, radiological phenotype and patient outcomes. Tissues for TCGA were collected from many sites all over the world in order to reach their accrual targets, usually around 500 specimens per cancer type. For this reason the image data sets are also extremely heterogeneous in terms of scanner modalities, manufacturers and acquisition protocols. In most cases the images were acquired as part of routine care and not as part of a controlled research study or clinical trial.

    CIP TCGA Radiology Initiative

    Imaging Source Site (ISS) Groups are being populated and governed by participants from institutions that have provided imaging data to the archive for a given cancer type. Modeled after TCGA analysis groups, ISS groups are given the opportunity to publish a marker paper for a given cancer type per the guidelines in the table above. This opportunity will generate increased participation in building these multi-institutional data sets as they become an open community resource. Learn more about the CIP TCGA Radiology Initiative.

  10. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
The Cancer Imaging Archive (2016). The Cancer Genome Atlas Stomach Adenocarcinoma Collection [Dataset]. http://doi.org/10.7937/K9/TCIA.2016.GDHL9KIM

The Cancer Genome Atlas Stomach Adenocarcinoma Collection

TCGA-STAD

Explore at:
11 scholarly articles cite this dataset (View in Google Scholar)
dicom, n/aAvailable download formats
Dataset updated
Jan 5, 2016
Dataset authored and provided by
The Cancer Imaging Archive
License

https://www.cancerimagingarchive.net/data-usage-policies-and-restrictions/https://www.cancerimagingarchive.net/data-usage-policies-and-restrictions/

Time period covered
May 29, 2020
Dataset funded by
National Cancer Institutehttp://www.cancer.gov/
Description

The Cancer Genome Atlas Stomach Adenocarcinoma (TCGA-STAD) data collection is part of a larger effort to build a research community focused on connecting cancer phenotypes to genotypes by providing clinical images matched to subjects from The Cancer Genome Atlas (TCGA). Clinical, genetic, and pathological data resides in the Genomic Data Commons (GDC) Data Portal while the radiological data is stored on The Cancer Imaging Archive (TCIA).

Matched TCGA patient identifiers allow researchers to explore the TCGA/TCIA databases for correlations between tissue genotype, radiological phenotype and patient outcomes. Tissues for TCGA were collected from many sites all over the world in order to reach their accrual targets, usually around 500 specimens per cancer type. For this reason the image data sets are also extremely heterogeneous in terms of scanner modalities, manufacturers and acquisition protocols. In most cases the images were acquired as part of routine care and not as part of a controlled research study or clinical trial.

CIP TCGA Radiology Initiative

Imaging Source Site (ISS) Groups are being populated and governed by participants from institutions that have provided imaging data to the archive for a given cancer type. Modeled after TCGA analysis groups, ISS groups are given the opportunity to publish a marker paper for a given cancer type per the guidelines in the table above. This opportunity will generate increased participation in building these multi-institutional data sets as they become an open community resource. Learn more about the CIP TCGA Radiology Initiative.

Search
Clear search
Close search
Google apps
Main menu