Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Here we present a dataset, MNIST4OD, of large size (number of dimensions and number of instances) suitable for Outliers Detection task.The dataset is based on the famous MNIST dataset (http://yann.lecun.com/exdb/mnist/).We build MNIST4OD in the following way:To distinguish between outliers and inliers, we choose the images belonging to a digit as inliers (e.g. digit 1) and we sample with uniform probability on the remaining images as outliers such as their number is equal to 10% of that of inliers. We repeat this dataset generation process for all digits. For implementation simplicity we then flatten the images (28 X 28) into vectors.Each file MNIST_x.csv.gz contains the corresponding dataset where the inlier class is equal to x.The data contains one instance (vector) in each line where the last column represents the outlier label (yes/no) of the data point. The data contains also a column which indicates the original image class (0-9).See the following numbers for a complete list of the statistics of each datasets ( Name | Instances | Dimensions | Number of Outliers in % ):MNIST_0 | 7594 | 784 | 10MNIST_1 | 8665 | 784 | 10MNIST_2 | 7689 | 784 | 10MNIST_3 | 7856 | 784 | 10MNIST_4 | 7507 | 784 | 10MNIST_5 | 6945 | 784 | 10MNIST_6 | 7564 | 784 | 10MNIST_7 | 8023 | 784 | 10MNIST_8 | 7508 | 784 | 10MNIST_9 | 7654 | 784 | 10
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Identification of errors or anomalous values, collectively considered outliers, assists in exploring data or through removing outliers improves statistical analysis. In biomechanics, outlier detection methods have explored the ‘shape’ of the entire cycles, although exploring fewer points using a ‘moving-window’ may be advantageous. Hence, the aim was to develop a moving-window method for detecting trials with outliers in intra-participant time-series data. Outliers were detected through two stages for the strides (mean 38 cycles) from treadmill running. Cycles were removed in stage 1 for one-dimensional (spatial) outliers at each time point using the median absolute deviation, and in stage 2 for two-dimensional (spatial–temporal) outliers using a moving window standard deviation. Significance levels of the t-statistic were used for scaling. Fewer cycles were removed with smaller scaling and smaller window size, requiring more stringent scaling at stage 1 (mean 3.5 cycles removed for 0.0001 scaling) than at stage 2 (mean 2.6 cycles removed for 0.01 scaling with a window size of 1). Settings in the supplied Matlab code should be customised to each data set, and outliers assessed to justify whether to retain or remove those cycles. The method is effective in identifying trials with outliers in intra-participant time series data.
There has been a tremendous increase in the volume of sensor data collected over the last decade for different monitoring tasks. For example, petabytes of earth science data are collected from modern satellites, in-situ sensors and different climate models. Similarly, huge amount of flight operational data is downloaded for different commercial airlines. These different types of datasets need to be analyzed for finding outliers. Information extraction from such rich data sources using advanced data mining methodologies is a challenging task not only due to the massive volume of data, but also because these datasets are physically stored at different geographical locations with only a subset of features available at any location. Moving these petabytes of data to a single location may waste a lot of bandwidth. To solve this problem, in this paper, we present a novel algorithm which can identify outliers in the entire data without moving all the data to a single location. The method we propose only centralizes a very small sample from the different data subsets at different locations. We analytically prove and experimentally verify that the algorithm offers high accuracy compared to complete centralization with only a fraction of the communication cost. We show that our algorithm is highly relevant to both earth sciences and aeronautics by describing applications in these domains. The performance of the algorithm is demonstrated on two large publicly available datasets: (1) the NASA MODIS satellite images and (2) a simulated aviation dataset generated by the ‘Commercial Modular Aero-Propulsion System Simulation’ (CMAPSS).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Cylindrical data are bivariate data formed from the combination of circular and linear variables. Identifying outliers is a crucial step in any data analysis work. This paper proposes a new distribution-free procedure to detect outliers in cylindrical data using the Mahalanobis distance concept. The use of Mahalanobis distance incorporates the correlation between the components of the cylindrical distribution, which had not been accounted for in the earlier papers on outlier detection in cylindrical data. The threshold for declaring an observation to be an outlier can be obtained via parametric or non-parametric bootstrap, depending on whether the underlying distribution is known or unknown. The performance of the proposed method is examined via extensive simulations from the Johnson-Wehrly distribution. The proposed method is applied to two real datasets, and the outliers are identified in those datasets.
The problem of distance-based outlier detection is difficult to solve efficiently in very large datasets because of potential quadratic time complexity. We address this problem and develop sequential and distributed algorithms that are significantly more efficient than state-of-the-art methods while still guaranteeing the same outliers. By combining simple but effective indexing and disk block accessing techniques, we have developed a sequential algorithm iOrca that is up to an order-of-magnitude faster than the state-of-the-art. The indexing scheme is based on sorting the data points in order of increasing distance from a fixed reference point and then accessing those points based on this sorted order. To speed up the basic outlier detection technique, we develop two distributed algorithms (DOoR and iDOoR) for modern distributed multi-core clusters of machines, connected on a ring topology. The first algorithm passes data blocks from each machine around the ring, incrementally updating the nearest neighbors of the points passed. By maintaining a cutoff threshold, it is able to prune a large number of points in a distributed fashion. The second distributed algorithm extends this basic idea with the indexing scheme discussed earlier. In our experiments, both distributed algorithms exhibit significant improvements compared to the state-of-the-art distributed methods.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Japan Composite Index: Coincident Series: Number Outlier Replacement data was reported at 105.200 2015=100 in Oct 2018. This records an increase from the previous number of 102.200 2015=100 for Sep 2018. Japan Composite Index: Coincident Series: Number Outlier Replacement data is updated monthly, averaging 94.450 2015=100 from Jan 1985 (Median) to Oct 2018, with 406 observations. The data reached an all-time high of 108.600 2015=100 in Oct 1990 and a record low of 63.700 2015=100 in Mar 2009. Japan Composite Index: Coincident Series: Number Outlier Replacement data remains active status in CEIC and is reported by Economic and Social Research Institute. The data is categorized under Global Database’s Japan – Table JP.S001: Leading Indicators: 2015=100.
This dataset is example data from the Norwegian Women and Cancer study. It is supporting information to our article "A Standard Operating Procedure for Outlier Removal in Large-Sample Epidemiological Transcriptomics Datasets." (In submission) The bulk of the data comes from measuring gene expression in blood samples from the Norwegian Women and Cancer study (NOWAC) on Illumina Whole-Genome Gene Expression Bead Chips, HumanHT-12 v4. Please see README.txt for details
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Investigating the extent (or the existence) of local adaptation is crucial to understanding how populations adapt. When experiments or fitness measurements are difficult or impossible to perform in natural populations, genomic techniques allow us to investigate local adaptation through the comparison of allele frequencies and outlier loci along environmental clines. The thick-billed murre (Uria lomvia) is a highly philopatric colonial arctic seabird that occupies a significant environmental gradient, shows marked phenotypic differences among colonies, and has large effective population sizes. To test whether thick-billed murres from five colonies along the eastern Canadian Arctic coast show genomic signatures of local adaptation to their breeding grounds, we analyzed geographic variation in genome-wide markers mapped to a newly assembled thick-billed murre reference genome. We used outlier analyses to detect loci putatively under selection, and clustering analyses to investigate patterns of differentiation based on 2220 genomewide single nucleotide polymorphisms (SNPs) and 137 outlier SNPs. We found no evidence of population structure among colonies using all loci but found population structure based on outliers only, where birds from the two northernmost colonies (Minarets and Prince Leopold) grouped with birds from the southernmost colony (Gannet), and birds from Coats and Akpatok were distinct from all other colonies. Although results from our analyses did not support local adaptation along the latitudinal cline of breeding colonies, outlier loci grouped birds from different colonies according to their non-breeding distributions, suggesting that outliers may be informative about adaptation and/or demographic connectivity associated with their migration patterns or nonbreeding grounds.
Consider a scenario in which the data owner has some private/sensitive data and wants a data miner to access it for studying important patterns without revealing the sensitive information. Privacy preserving data mining aims to solve this problem by randomly transforming the data prior to its release to data miners. Previous work only considered the case of linear data perturbations — additive, multiplicative or a combination of both for studying the usefulness of the perturbed output. In this paper, we discuss nonlinear data distortion using potentially nonlinear random data transformation and show how it can be useful for privacy preserving anomaly detection from sensitive datasets. We develop bounds on the expected accuracy of the nonlinear distortion and also quantify privacy by using standard definitions. The highlight of this approach is to allow a user to control the amount of privacy by varying the degree of nonlinearity. We show how our general transformation can be used for anomaly detection in practice for two specific problem instances: a linear model and a popular nonlinear model using the sigmoid function. We also analyze the proposed nonlinear transformation in full generality and then show that for specific cases it is distance preserving. A main contribution of this paper is the discussion between the invertibility of a transformation and privacy preservation and the application of these techniques to outlier detection. Experiments conducted on real-life datasets demonstrate the effectiveness of the approach.
https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html
Here are six files that provide details for all 44,120 identified single nucleotide polymorphisms (SNPs) or the 215 outlier SNPs associated with the evolution of rapid character displacement among replicate islands with (2Spp) and without competition (1Spp) between two Anolis species. On 2Spp islands, A. carolinensis occurs higher in trees and have evolved larger toe pads. Among 1Spp and 2Spp island populations, we identify 44,120 SNPs, with 215-outlier SNPs with improbably large FST values, low nucleotide variation, greater linkage than expected, and these SNPs are enriched for animal walking behavior. Thus, we conclude that these 215-outliers are evolving by natural selection in response to the phenotypic convergent evolution of character displacement. There are two, non-mutually exclusive perspective of these nucleotide variants. One is character displacement is convergent: all 215 outlier SNPs are shared among 3 out of 5 2Spp island and 24% of outlier SNPS are shared among all five out of five 2Spp island. Second, character displacement is genetically redundant because the allele frequencies in one or more 2Spp are similar to 1Spp islands: among one or more 2Spp islands 33% of outlier SNPS are within the range of 1Spp MiAF and 76% of outliers are more similar to 1Spp island than mean MiAF of 2Spp islands. Focusing on convergence SNP is scientifically more robust, yet it distracts from the perspective of multiple genetic solutions that enhances the rate and stability of adaptive change. The six files include: a description of eight islands, details of 94 individuals, and four files on SNPs. The four SNP files include the VCF files for 94 individuals with 44KSNPs and two files (Excel sheet/tab-delimited file) with FST, p-values and outlier status for all 44,120 identified single nucleotide polymorphisms (SNPs) associated with the evolution of rapid character displacement. The sixth file is a detailed file on the 215 outlier SNPs. Complete sequence data is available at Bioproject PRJNA833453, which including samples not included in this study. The 94 individuals used in this study are described in “Supplemental_Sample_description.txt” Methods Anoles and genomic DNA: Tissue or DNA for 160 Anolis carolinensis and 20 A. sagrei samples were provided by the Museum of Comparative Zoology at Harvard University (Table S2). Samples were previously used to examine evolution of character displacement in native A. carolinensis following invasion by A. sagrei onto man-made spoil islands in Mosquito Lagoon Florida (Stuart et al. 2014). One hundred samples were genomic DNAs, and 80 samples were tissues (terminal tail clip, Table S2). Genomic DNA was isolated from 80 of 160 A. carolinensis individuals (MCZ, Table S2) using a custom SPRI magnetic bead protocol (Psifidi et al. 2015). Briefly, after removing ethanol, tissues were placed in 200 ul of GH buffer (25 mM Tris- HCl pH 7.5, 25 mM EDTA, , 2M GuHCl Guanidine hydrochloride, G3272 SIGMA, 5 mM CaCl2, 0.5% v/v Triton X-100, 1% N-Lauroyl-Sarcosine) with 5% per volume of 20 mg/ml proteinase K (10 ul/200 ul GH) and digested at 55º C for at least 2 hours. After proteinase K digestion, 100 ul of 0.1% carboxyl-modified Sera-Mag Magnetic beads (Fisher Scientific) resuspended in 2.5 M NaCl, 20% PEG were added and allowed to bind the DNA. Beads were subsequently magnetized and washed twice with 200 ul 70% EtOH, and then DNA was eluted in 100 ul 0.1x TE (10 mM Tris, 0.1 mM EDTA). All DNA samples were gel electrophoresed to ensure high molecular mass and quantified by spectrophotometry and fluorescence using Biotium AccuBlueTM High Sensitivity dsDNA Quantitative Solution according to manufacturer’s instructions. Genotyping-by-sequencing (GBS) libraries were prepared using a modified protocol after Elshire et al. (Elshire et al. 2011). Briefly, high-molecular-weight genomic DNA was aliquoted and digested using ApeKI restriction enzyme. Digests from each individual sample were uniquely barcoded, pooled, and size selected to yield insert sizes between 300-700 bp (Borgstrom et al. 2011). Pooled libraries were PCR amplified (15 cycles) using custom primers that extend into the genomic DNA insert by 3 bases (CTG). Adding 3 extra base pairs systematically reduces the number of sequenced GBS tags, ensuring sufficient sequencing depth. The final library had a mean size of 424 bp ranging from 188 to 700 bp . Anolis SNPs: Pooled libraries were sequenced on one lane on the Illumina HiSeq 4000 in 2x150 bp paired-end configuration, yielding approximately 459 million paired-end reads ( ~138 Gb). The medium Q-Score was 42 with the lower 10% Q-Scores exceeding 32 for all 150 bp. The initial library contained 180 individuals with 8,561,493 polymorphic sites. Twenty individuals were Anolis sagrei, and two individuals (Yan 1610 & Yin 1411) clustered with A. sagrei and were not used to define A. carolinesis’ SNPs. Anolis carolinesis reads were aligned to the Anolis carolinensis genome (NCBI RefSeq accession number:/GCF_000090745.1_AnoCar2.0). Single nucleotide polymorphisms (SNPs) for A. carolinensis were called using the GBeaSy analysis pipeline (Wickland et al. 2017) with the following filter settings: minimum read length of 100 bp after barcode and adapter trimming, minimum phred-scaled variant quality of 30 and minimum read depth of 5. SNPs were further filtered by requiring SNPs to occur in > 50% of individuals, and 66 individuals were removed because they had less than 70% of called SNPs. These filtering steps resulted in 51,155 SNPs among 94 individuals. Final filtering among 94 individuals required all sites to be polymorphic (with fewer individuals, some sites were no longer polymorphic) with a maximum of 2 alleles (all are bi-allelic), minimal allele frequency 0.05, and He that does not exceed HWE (FDR <0.01). SNPs with large He were removed (2,280 SNPs). These SNPs with large significant heterozygosity may result from aligning paralogues (different loci), and thus may not represent polymorphisms. No SNPs were removed with low He (due to possible demography or other exceptions to HWE). After filtering, 94 individual yielded 44,120 SNPs. Thus, the final filtered SNP data set was 44K SNPs from 94 indiviuals. Statistical Analyses: Eight A. carolinensis populations were analyzed: three populations from islands with native species only (1Spp islands) and 5 populations from islands where A. carolinesis co-exist with A. sagrei (2Spp islands, Table 1, Table S1). Most analyses pooled the three 1Spp islands and contrasted these with the pooled five 2Spp islands. Two approaches were used to define SNPs with unusually large allele frequency differences between 1Spp and 2Spp islands: 1) comparison of FST values to random permutations and 2) a modified FDIST approach to identify outlier SNPs with large and statistically unlikely FST values. Random Permutations: FST values were calculated in VCFTools (version 4.2, (Danecek et al. 2011)) where the p-value per SNP were defined by comparing FST values to 1,000 random permutations using a custom script (below). Basically, individuals and all their SNPs were randomly assigned to one of eight islands or to 1Spp versus 2Spp groups. The sample sizes (55 for 2Spp and 39 for 1Spp islands) were maintained. FST values were re-calculated for each 1,000 randomizations using VCFTools. Modified FDIST: To identify outlier SNPs with statistically large FST values, a modified FDIST (Beaumont and Nichols 1996) was implemented in Arlequin (Excoffier et al. 2005). This modified approach applies 50,000 coalescent simulations using hierarchical population structure, in which demes are arranged into k groups of d demes and in which migration rates between demes are different within and between groups. Unlike the finite island models, which have led to large frequencies of false positive because populations share different histories (Lotterhos and Whitlock 2014), the hierarchical island model avoids these false positives by avoiding the assumption of similar ancestry (Excoffier et al. 2009). References Beaumont, M. A. and R. A. Nichols. 1996. Evaluating loci for use in the genetic analysis of population structure. P Roy Soc B-Biol Sci 263:1619-1626. Borgstrom, E., S. Lundin, and J. Lundeberg. 2011. Large scale library generation for high throughput sequencing. PLoS One 6:e19119. Bradbury, P. J., Z. Zhang, D. E. Kroon, T. M. Casstevens, Y. Ramdoss, and E. S. Buckler. 2007. TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23:2633-2635. Cingolani, P., A. Platts, L. Wang le, M. Coon, T. Nguyen, L. Wang, S. J. Land, X. Lu, and D. M. Ruden. 2012. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly (Austin) 6:80-92. Danecek, P., A. Auton, G. Abecasis, C. A. Albers, E. Banks, M. A. DePristo, R. E. Handsaker, G. Lunter, G. T. Marth, S. T. Sherry, G. McVean, R. Durbin, and G. Genomes Project Analysis. 2011. The variant call format and VCFtools. Bioinformatics 27:2156-2158. Earl, D. A. and B. M. vonHoldt. 2011. Structure Harvester: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conservation Genet Resour 4:359-361. Elshire, R. J., J. C. Glaubitz, Q. Sun, J. A. Poland, K. Kawamoto, E. S. Buckler, and S. E. Mitchell. 2011. A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS One 6:e19379. Evanno, G., S. Regnaut, and J. Goudet. 2005. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611-2620. Excoffier, L., T. Hofer, and M. Foll. 2009. Detecting loci under selection in a hierarchically structured population. Heredity 103:285-298. Excoffier, L., G. Laval, and S. Schneider. 2005. Arlequin (version 3.0): An integrated software package for population genetics data analysis.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Japan Composite Index: Lagging Series: Number Outlier Replacement data was reported at 103.600 2015=100 in Oct 2018. This records a decrease from the previous number of 104.100 2015=100 for Sep 2018. Japan Composite Index: Lagging Series: Number Outlier Replacement data is updated monthly, averaging 96.150 2015=100 from Jan 1985 (Median) to Oct 2018, with 406 observations. The data reached an all-time high of 115.300 2015=100 in Jun 1991 and a record low of 85.900 2015=100 in Oct 2009. Japan Composite Index: Lagging Series: Number Outlier Replacement data remains active status in CEIC and is reported by Economic and Social Research Institute. The data is categorized under Global Database’s Japan – Table JP.S001: Leading Indicators: 2015=100.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Japan Composite Index: Leading Series: Number Outlier Replacement data was reported at 102.300 2015=100 in Oct 2018. This records an increase from the previous number of 100.100 2015=100 for Sep 2018. Japan Composite Index: Leading Series: Number Outlier Replacement data is updated monthly, averaging 94.700 2015=100 from Jan 1985 (Median) to Oct 2018, with 406 observations. The data reached an all-time high of 111.000 2015=100 in Apr 2006 and a record low of 67.600 2015=100 in Feb 2009. Japan Composite Index: Leading Series: Number Outlier Replacement data remains active status in CEIC and is reported by Economic and Social Research Institute. The data is categorized under Global Database’s Japan – Table JP.S001: Leading Indicators: 2015=100.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Japan Composite Index: Lagging Series: Without Outlier Replacement data was reported at 117.700 2010=100 in Sep 2018. This records a decrease from the previous number of 118.600 2010=100 for Aug 2018. Japan Composite Index: Lagging Series: Without Outlier Replacement data is updated monthly, averaging 108.000 2010=100 from Jan 1985 (Median) to Sep 2018, with 405 observations. The data reached an all-time high of 129.700 2010=100 in Jun 1991 and a record low of 96.500 2010=100 in Oct 2009. Japan Composite Index: Lagging Series: Without Outlier Replacement data remains active status in CEIC and is reported by Economic and Social Research Institute. The data is categorized under Global Database’s Japan – Table JP.S001: Leading Indicators: 2015=100.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The Controlled Anomalies Time Series (CATS) Dataset consists of commands, external stimuli, and telemetry readings of a simulated complex dynamical system with 200 injected anomalies.
The CATS Dataset exhibits a set of desirable properties that make it very suitable for benchmarking Anomaly Detection Algorithms in Multivariate Time Series [1]:
[1] Example Benchmark of Anomaly Detection in Time Series: “Sebastian Schmidl, Phillip Wenig, and Thorsten Papenbrock. Anomaly Detection in Time Series: A Comprehensive Evaluation. PVLDB, 15(9): 1779 - 1797, 2022. doi:10.14778/3538598.3538602”
About Solenix
Solenix is an international company providing software engineering, consulting services and software products for the space market. Solenix is a dynamic company that brings innovative technologies and concepts to the aerospace market, keeping up to date with technical advancements and actively promoting spin-in and spin-out technology activities. We combine modern solutions which complement conventional practices. We aspire to achieve maximum customer satisfaction by fostering collaboration, constructivism, and flexibility.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Japan Composite Index: Coincident Series: Without Outlier Replacement data was reported at 114.000 2010=100 in Sep 2018. This records a decrease from the previous number of 115.200 2010=100 for Aug 2018. Japan Composite Index: Coincident Series: Without Outlier Replacement data is updated monthly, averaging 104.900 2010=100 from Jan 1985 (Median) to Sep 2018, with 405 observations. The data reached an all-time high of 120.600 2010=100 in Oct 1990 and a record low of 70.700 2010=100 in Mar 2009. Japan Composite Index: Coincident Series: Without Outlier Replacement data remains active status in CEIC and is reported by Economic and Social Research Institute. The data is categorized under Global Database’s Japan – Table JP.S001: Leading Indicators: 2015=100.
The following report outlines the workflow used to optimize your Find Outliers result:Initial Data Assessment.There were 1684 valid input features.POVERTY Properties:Min0.0000Max91.8000Mean18.9902Std. Dev.12.7152There were 22 outlier locations; these will not be used to compute the optimal fixed distance band.Scale of AnalysisThe optimal fixed distance band was based on the average distance to 30 nearest neighbors: 3709.0000 Meters.Outlier AnalysisCreating the random reference distribution with 499 permutations.There are 1155 output features statistically significant based on a FDR correction for multiple testing and spatial dependence.There are 68 statistically significant high outlier features.There are 84 statistically significant low outlier features.There are 557 features part of statistically significant low clusters.There are 446 features part of statistically significant high clusters.OutputPink output features are part of a cluster of high POVERTY values.Light Blue output features are part of a cluster of low POVERTY values.Red output features represent high outliers within a cluster of low POVERTY values.Blue output features represent low outliers within a cluster of high POVERTY values.
Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
License information was derived automatically
AbstractGenetics-based approaches have informed fisheries management for decades, yet remain challenging to implement within systems involving recently diverged stocks or where gene flow persists. In such cases, genetic markers exhibiting locus-specific (“outlier”) effects associated with divergent selection may provide promising alternatives to loci that reflect genome-wide (“neutral”) effects for guiding fisheries management. Okanagan Lake kokanee (Oncorhynchus nerka), a fishery of conservation concern, exhibits two sympatric ecotypes adapted to different reproductive environments, however, previous research demonstrated the limited utility of neutral microsatellites for assigning individuals. Here, we investigated the efficacy of an outlier-based approach to fisheries management by screening >11,000 expressed sequence tags for linked microsatellites and conducting genomic scans for kokanee sampled across seven spawning sites. We identified eight outliers among 52 polymorphic loci that detected ecotype-level divergence, whereas there was no evidence of divergence at neutral loci. Outlier loci exhibited the highest self-assignment accuracy to ecotype (92.1%), substantially outperforming 44 neutral loci (71.8%). Results were robust among-sampling years, with assignment and mixed composition estimates for individuals sampled in 2010 mirroring baseline results. Overall, outlier loci constitute promising alternatives for informing fisheries management involving recently diverged stocks, with potential applications for designating management units across a broad range of taxa., Usage notesOkanagan_Lake_kokanee_microsatellite_dataLength, in base-pairs, of alleles at up to 52 EST-linked and non-EST-linked microsatellite loci in 164 individual kokanee (Oncorhynchus nerka) sampled at seven spawning sites across Okanagan Lake, British Columbia over two sampling years (2007 and 2010). File in GenAlEx format with missing data coded as 0. Data collected with funds from NSERC, Habitat Conservation Trust Fund and Northwest Scientific Association.
amakihiN144R1R2_bammerge_081615.vcf
http://rightsstatements.org/vocab/InC/1.0/http://rightsstatements.org/vocab/InC/1.0/
Outliers is a research project articulated through a solo exhibition held at No 20 Arts in London. It contained a body of 26 works including paintings, drawings and photographs that were the culmination of a research trip to Greenland. This body of work aimed to explore how the medium of paint could be manipulated to not only represent the dramatic and transient nature of the icescapes of Greenland but to also emulate and explore the properties of snow and ice themselves. This item contains a text reproduction of a blog about the project originally appearing at link below. This content is provided as contextualising information. The work is under copyright and may not be used without permission. Use of this repository acknowledges cooperation with its policies and relevant copyright law.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Here we present a dataset, MNIST4OD, of large size (number of dimensions and number of instances) suitable for Outliers Detection task.The dataset is based on the famous MNIST dataset (http://yann.lecun.com/exdb/mnist/).We build MNIST4OD in the following way:To distinguish between outliers and inliers, we choose the images belonging to a digit as inliers (e.g. digit 1) and we sample with uniform probability on the remaining images as outliers such as their number is equal to 10% of that of inliers. We repeat this dataset generation process for all digits. For implementation simplicity we then flatten the images (28 X 28) into vectors.Each file MNIST_x.csv.gz contains the corresponding dataset where the inlier class is equal to x.The data contains one instance (vector) in each line where the last column represents the outlier label (yes/no) of the data point. The data contains also a column which indicates the original image class (0-9).See the following numbers for a complete list of the statistics of each datasets ( Name | Instances | Dimensions | Number of Outliers in % ):MNIST_0 | 7594 | 784 | 10MNIST_1 | 8665 | 784 | 10MNIST_2 | 7689 | 784 | 10MNIST_3 | 7856 | 784 | 10MNIST_4 | 7507 | 784 | 10MNIST_5 | 6945 | 784 | 10MNIST_6 | 7564 | 784 | 10MNIST_7 | 8023 | 784 | 10MNIST_8 | 7508 | 784 | 10MNIST_9 | 7654 | 784 | 10