100+ datasets found
  1. N

    Norway NO: Population: Male: Aged 15-64

    • ceicdata.com
    Updated Mar 15, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2018). Norway NO: Population: Male: Aged 15-64 [Dataset]. https://www.ceicdata.com/en/norway/population-and-urbanization-statistics/no-population-male-aged-1564
    Explore at:
    Dataset updated
    Mar 15, 2018
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2006 - Dec 1, 2017
    Area covered
    Norway
    Variables measured
    Population
    Description

    Norway NO: Population: Male: Aged 15-64 data was reported at 1,774,104.000 Person in 2017. This records an increase from the previous number of 1,762,276.000 Person for 2016. Norway NO: Population: Male: Aged 15-64 data is updated yearly, averaging 1,386,558.000 Person from Dec 1960 (Median) to 2017, with 58 observations. The data reached an all-time high of 1,774,104.000 Person in 2017 and a record low of 1,129,967.000 Person in 1960. Norway NO: Population: Male: Aged 15-64 data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Norway – Table NO.World Bank: Population and Urbanization Statistics. Male population between the ages 15 to 64. Population is based on the de facto definition of population, which counts all residents regardless of legal status or citizenship.; ; World Bank staff estimates using the World Bank's total population and age/sex distributions of the United Nations Population Division's World Population Prospects: 2017 Revision.; Sum;

  2. USA 2020 Census Population Characteristics - Place Geographies

    • hub.arcgis.com
    • data-isdh.opendata.arcgis.com
    Updated Jun 1, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2023). USA 2020 Census Population Characteristics - Place Geographies [Dataset]. https://hub.arcgis.com/maps/9c84c24c55a04c3b8317f37e536e6a8a
    Explore at:
    Dataset updated
    Jun 1, 2023
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    This layer shows total population counts by sex, age, and race groups data from the 2020 Census Demographic and Housing Characteristics. This is shown by Nation, Consolidated City, Census Designated Place, Incorporated Place boundaries. Each geography layer contains a common set of Census counts based on available attributes from the U.S. Census Bureau. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis.   To see the full list of attributes available in this service, go to the "Data" tab above, and then choose "Fields" at the top right. Each attribute contains definitions, additional details, and the formula for calculated fields in the field description.Vintage of boundaries and attributes: 2020 Demographic and Housing Characteristics Table(s): P1, H1, H3, P2, P3, P5, P12, P13, P17, PCT12 (Not all lines of these DHC tables are available in this feature layer.)Data downloaded from: U.S. Census Bureau’s data.census.gov siteDate the Data was Downloaded: May 25, 2023Geography Levels included: Nation, Consolidated City, Census Designated Place, Incorporated PlaceNational Figures: included in Nation layer The United States Census Bureau Demographic and Housing Characteristics: 2020 Census Results 2020 Census Data Quality Geography & 2020 Census Technical Documentation Data Table Guide: includes the final list of tables, lowest level of geography by table and table shells for the Demographic Profile and Demographic and Housing Characteristics.News & Updates This layer is ready to be used in ArcGIS Pro, ArcGIS Online and its configurable apps, Story Maps, dashboards, Notebooks, Python, custom apps, and mobile apps. Data can also be exported for offline workflows. Please cite the U.S. Census Bureau when using this data. Data Processing Notes: These 2020 Census boundaries come from the US Census TIGER geodatabases. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For Census tracts and block groups, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract and block group boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2020 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are unchanged and available as attributes within the data table (units are square meters).  The layer contains all US states, Washington D.C., and Puerto Rico. Census tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99). Block groups that fall within the same criteria (Block Group denoted as 0 with no area land) have also been removed.Percentages and derived counts, are calculated values (that can be identified by the "_calc_" stub in the field name). Field alias names were created based on the Table Shells file available from the Data Table Guide for the Demographic Profile and Demographic and Housing Characteristics. Not all lines of all tables listed above are included in this layer. Duplicative counts were dropped. For example, P0030001 was dropped, as it is duplicative of P0010001.To protect the privacy and confidentiality of respondents, their data has been protected using differential privacy techniques by the U.S. Census Bureau.

  3. N

    Norway NO: Population: Female: Ages 5-9: % of Female Population

    • ceicdata.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com, Norway NO: Population: Female: Ages 5-9: % of Female Population [Dataset]. https://www.ceicdata.com/en/norway/population-and-urbanization-statistics/no-population-female-ages-59--of-female-population
    Explore at:
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2006 - Dec 1, 2017
    Area covered
    Norway
    Variables measured
    Population
    Description

    Norway NO: Population: Female: Ages 5-9: % of Female Population data was reported at 5.921 % in 2017. This records a decrease from the previous number of 5.985 % for 2016. Norway NO: Population: Female: Ages 5-9: % of Female Population data is updated yearly, averaging 6.540 % from Dec 1960 (Median) to 2017, with 58 observations. The data reached an all-time high of 8.194 % in 1960 and a record low of 5.797 % in 1988. Norway NO: Population: Female: Ages 5-9: % of Female Population data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Norway – Table NO.World Bank: Population and Urbanization Statistics. Female population between the ages 5 to 9 as a percentage of the total female population.; ; World Bank staff estimates based on age/sex distributions of United Nations Population Division's World Population Prospects: 2017 Revision.; ;

  4. 2023 American Community Survey: S0102 | Population 60 Years and Over in the...

    • data.census.gov
    Updated Oct 18, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ACS (2023). 2023 American Community Survey: S0102 | Population 60 Years and Over in the United States (ACS 1-Year Estimates Subject Tables) [Dataset]. https://data.census.gov/table?q=S0102
    Explore at:
    Dataset updated
    Oct 18, 2023
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Authors
    ACS
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Time period covered
    2023
    Area covered
    United States
    Description

    Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, the decennial census is the official source of population totals for April 1st of each decennial year. In between censuses, the Census Bureau's Population Estimates Program produces and disseminates the official estimates of the population for the nation, states, counties, cities, and towns and estimates of housing units and the group quarters population for states and counties..Information about the American Community Survey (ACS) can be found on the ACS website. Supporting documentation including code lists, subject definitions, data accuracy, and statistical testing, and a full list of ACS tables and table shells (without estimates) can be found on the Technical Documentation section of the ACS website.Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section..Source: U.S. Census Bureau, 2023 American Community Survey 1-Year Estimates.ACS data generally reflect the geographic boundaries of legal and statistical areas as of January 1 of the estimate year. For more information, see Geography Boundaries by Year..Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see ACS Technical Documentation). The effect of nonsampling error is not represented in these tables..Users must consider potential differences in geographic boundaries, questionnaire content or coding, or other methodological issues when comparing ACS data from different years. Statistically significant differences shown in ACS Comparison Profiles, or in data users' own analysis, may be the result of these differences and thus might not necessarily reflect changes to the social, economic, housing, or demographic characteristics being compared. For more information, see Comparing ACS Data..The 60 years and over column of data refers to the age of the householder for the estimates of households, occupied housing units, owner-occupied housing units, and renter-occupied housing units lines..The age specified on the population 15 years and over, population 25 years and over, population 30 years and over, civilian population 18 years and over, civilian population 5 years and over, population 1 years and over, population 5 years and over, and population 16 years and over lines refer to the data shown in the "Total" column while the second column is limited to the population 60 years and over..Estimates of urban and rural populations, housing units, and characteristics reflect boundaries of urban areas defined based on 2020 Census data. As a result, data for urban and rural areas from the ACS do not necessarily reflect the results of ongoing urbanization..Explanation of Symbols:- The estimate could not be computed because there were an insufficient number of sample observations. For a ratio of medians estimate, one or both of the median estimates falls in the lowest interval or highest interval of an open-ended distribution. For a 5-year median estimate, the margin of error associated with a median was larger than the median itself.N The estimate or margin of error cannot be displayed because there were an insufficient number of sample cases in the selected geographic area. (X) The estimate or margin of error is not applicable or not available.median- The median falls in the lowest interval of an open-ended distribution (for example "2,500-")median+ The median falls in the highest interval of an open-ended distribution (for example "250,000+").** The margin of error could not be computed because there were an insufficient number of sample observations.*** The margin of error could not be computed because the median falls in the lowest interval or highest interval of an open-ended distribution.***** A margin of error is not appropriate because the corresponding estimate is controlled to an independent population or housing estimate. Effectively, the corresponding estimate has no sampling error and the margin of error may be treated as zero.

  5. N

    Lowry, SD Population Pyramid Dataset: Age Groups, Male and Female...

    • neilsberg.com
    csv, json
    Updated Sep 16, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2023). Lowry, SD Population Pyramid Dataset: Age Groups, Male and Female Population, and Total Population for Demographics Analysis [Dataset]. https://www.neilsberg.com/research/datasets/62d1df25-3d85-11ee-9abe-0aa64bf2eeb2/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Sep 16, 2023
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Lowry, South Dakota
    Variables measured
    Male and Female Population Under 5 Years, Male and Female Population over 85 years, Male and Female Total Population for Age Groups, Male and Female Population Between 5 and 9 years, Male and Female Population Between 10 and 14 years, Male and Female Population Between 15 and 19 years, Male and Female Population Between 20 and 24 years, Male and Female Population Between 25 and 29 years, Male and Female Population Between 30 and 34 years, Male and Female Population Between 35 and 39 years, and 9 more
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates. To measure the three variables, namely (a) male population, (b) female population and (b) total population, we initially analyzed and categorized the data for each of the age groups. For age groups we divided it into roughly a 5 year bucket for ages between 0 and 85. For over 85, we aggregated data into a single group for all ages. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the data for the Lowry, SD population pyramid, which represents the Lowry population distribution across age and gender, using estimates from the U.S. Census Bureau American Community Survey 5-Year estimates. It lists the male and female population for each age group, along with the total population for those age groups. Higher numbers at the bottom of the table suggest population growth, whereas higher numbers at the top indicate declining birth rates. Furthermore, the dataset can be utilized to understand the youth dependency ratio, old-age dependency ratio, total dependency ratio, and potential support ratio.

    Key observations

    • Youth dependency ratio, which is the number of children aged 0-14 per 100 persons aged 15-64, for Lowry, SD, is not applicable, as there were no residents in the working age population range according to the 2021 ACS estimates..
    • Old-age dependency ratio, which is the number of persons aged 65 or over per 100 persons aged 15-64, for Lowry, SD, is not applicable, as there were no residents in the working age population range according to the 2021 ACS estimates..
    • Total dependency ratio for Lowry, SD is not applicable, as there were no residents in the working age population range according to the 2021 ACS estimates..
    • Potential support ratio, which is the number of youth (working age population) per elderly, for Lowry, SD is 0.0.
    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.

    Age groups:

    • Under 5 years
    • 5 to 9 years
    • 10 to 14 years
    • 15 to 19 years
    • 20 to 24 years
    • 25 to 29 years
    • 30 to 34 years
    • 35 to 39 years
    • 40 to 44 years
    • 45 to 49 years
    • 50 to 54 years
    • 55 to 59 years
    • 60 to 64 years
    • 65 to 69 years
    • 70 to 74 years
    • 75 to 79 years
    • 80 to 84 years
    • 85 years and over

    Variables / Data Columns

    • Age Group: This column displays the age group for the Lowry population analysis. Total expected values are 18 and are define above in the age groups section.
    • Population (Male): The male population in the Lowry for the selected age group is shown in the following column.
    • Population (Female): The female population in the Lowry for the selected age group is shown in the following column.
    • Total Population: The total population of the Lowry for the selected age group is shown in the following column.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Lowry Population by Age. You can refer the same here

  6. Number of families in the US by number of children 2000-2023

    • statista.com
    Updated Oct 16, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Number of families in the US by number of children 2000-2023 [Dataset]. https://www.statista.com/statistics/183790/number-of-families-in-the-us-by-number-of-children/
    Explore at:
    Dataset updated
    Oct 16, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    Around 6.8 million families had three or more children under 18 living in the household in 2023. In that same year, about 51.05 million households had no children under 18 living in the household.

  7. N

    Owasco, New York Population Breakdown by Gender Dataset: Male and Female...

    • neilsberg.com
    csv, json
    Updated Feb 24, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). Owasco, New York Population Breakdown by Gender Dataset: Male and Female Population Distribution // 2025 Edition [Dataset]. https://www.neilsberg.com/insights/owasco-ny-population-by-gender/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Feb 24, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Owasco, New York
    Variables measured
    Male Population, Female Population, Male Population as Percent of Total Population, Female Population as Percent of Total Population
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. To measure the two variables, namely (a) population and (b) population as a percentage of the total population, we initially analyzed and categorized the data for each of the gender classifications (biological sex) reported by the US Census Bureau. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the population of Owasco town by gender, including both male and female populations. This dataset can be utilized to understand the population distribution of Owasco town across both sexes and to determine which sex constitutes the majority.

    Key observations

    There is a slight majority of male population, with 51.65% of total population being male. Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Scope of gender :

    Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis. No further analysis is done on the data reported from the Census Bureau.

    Variables / Data Columns

    • Gender: This column displays the Gender (Male / Female)
    • Population: The population of the gender in the Owasco town is shown in this column.
    • % of Total Population: This column displays the percentage distribution of each gender as a proportion of Owasco town total population. Please note that the sum of all percentages may not equal one due to rounding of values.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Owasco town Population by Race & Ethnicity. You can refer the same here

  8. N

    St. Helens, OR Population Breakdown by Gender Dataset: Male and Female...

    • neilsberg.com
    csv, json
    Updated Feb 24, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). St. Helens, OR Population Breakdown by Gender Dataset: Male and Female Population Distribution // 2025 Edition [Dataset]. https://www.neilsberg.com/insights/st-helens-or-population-by-gender/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Feb 24, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    St. Helens, Oregon
    Variables measured
    Male Population, Female Population, Male Population as Percent of Total Population, Female Population as Percent of Total Population
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. To measure the two variables, namely (a) population and (b) population as a percentage of the total population, we initially analyzed and categorized the data for each of the gender classifications (biological sex) reported by the US Census Bureau. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the population of St. Helens by gender, including both male and female populations. This dataset can be utilized to understand the population distribution of St. Helens across both sexes and to determine which sex constitutes the majority.

    Key observations

    There is a slight majority of male population, with 51.75% of total population being male. Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Scope of gender :

    Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis. No further analysis is done on the data reported from the Census Bureau.

    Variables / Data Columns

    • Gender: This column displays the Gender (Male / Female)
    • Population: The population of the gender in the St. Helens is shown in this column.
    • % of Total Population: This column displays the percentage distribution of each gender as a proportion of St. Helens total population. Please note that the sum of all percentages may not equal one due to rounding of values.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for St. Helens Population by Race & Ethnicity. You can refer the same here

  9. N

    Norway NO: Population: Female: Ages 25-29: % of Female Population

    • ceicdata.com
    Updated Mar 15, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2018). Norway NO: Population: Female: Ages 25-29: % of Female Population [Dataset]. https://www.ceicdata.com/en/norway/population-and-urbanization-statistics/no-population-female-ages-2529--of-female-population
    Explore at:
    Dataset updated
    Mar 15, 2018
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2006 - Dec 1, 2017
    Area covered
    Norway
    Variables measured
    Population
    Description

    Norway NO: Population: Female: Ages 25-29: % of Female Population data was reported at 6.809 % in 2017. This records a decrease from the previous number of 6.827 % for 2016. Norway NO: Population: Female: Ages 25-29: % of Female Population data is updated yearly, averaging 6.924 % from Dec 1960 (Median) to 2017, with 58 observations. The data reached an all-time high of 7.620 % in 1995 and a record low of 5.294 % in 1963. Norway NO: Population: Female: Ages 25-29: % of Female Population data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Norway – Table NO.World Bank: Population and Urbanization Statistics. Female population between the ages 25 to 29 as a percentage of the total female population.; ; World Bank staff estimates based on age/sex distributions of United Nations Population Division's World Population Prospects: 2017 Revision.; ;

  10. N

    Ypsilanti, MI Population Breakdown by Gender Dataset: Male and Female...

    • neilsberg.com
    csv, json
    Updated Feb 24, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). Ypsilanti, MI Population Breakdown by Gender Dataset: Male and Female Population Distribution // 2025 Edition [Dataset]. https://www.neilsberg.com/insights/ypsilanti-mi-population-by-gender/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Feb 24, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Ypsilanti, Michigan
    Variables measured
    Male Population, Female Population, Male Population as Percent of Total Population, Female Population as Percent of Total Population
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. To measure the two variables, namely (a) population and (b) population as a percentage of the total population, we initially analyzed and categorized the data for each of the gender classifications (biological sex) reported by the US Census Bureau. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the population of Ypsilanti by gender, including both male and female populations. This dataset can be utilized to understand the population distribution of Ypsilanti across both sexes and to determine which sex constitutes the majority.

    Key observations

    There is a slight majority of female population, with 51.29% of total population being female. Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Scope of gender :

    Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis. No further analysis is done on the data reported from the Census Bureau.

    Variables / Data Columns

    • Gender: This column displays the Gender (Male / Female)
    • Population: The population of the gender in the Ypsilanti is shown in this column.
    • % of Total Population: This column displays the percentage distribution of each gender as a proportion of Ypsilanti total population. Please note that the sum of all percentages may not equal one due to rounding of values.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Ypsilanti Population by Race & Ethnicity. You can refer the same here

  11. 2022 Cartographic Boundary File (SHP), Current Census Tract for Nebraska,...

    • catalog.data.gov
    • s.cnmilf.com
    Updated Dec 14, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Department of Commerce, U.S. Census Bureau, Geography Division, Customer Engagement Branch (Point of Contact) (2023). 2022 Cartographic Boundary File (SHP), Current Census Tract for Nebraska, 1:500,000 [Dataset]. https://catalog.data.gov/dataset/2022-cartographic-boundary-file-shp-current-census-tract-for-nebraska-1-500000
    Explore at:
    Dataset updated
    Dec 14, 2023
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Area covered
    Nebraska
    Description

    The 2022 cartographic boundary shapefiles are simplified representations of selected geographic areas from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). These boundary files are specifically designed for small-scale thematic mapping. When possible, generalization is performed with the intent to maintain the hierarchical relationships among geographies and to maintain the alignment of geographies within a file set for a given year. Geographic areas may not align with the same areas from another year. Some geographies are available as nation-based files while others are available only as state-based files. Census tracts are small, relatively permanent statistical subdivisions of a county or equivalent entity, and were defined by local participants as part of the 2020 Census Participant Statistical Areas Program. The Census Bureau delineated the census tracts in situations where no local participant existed or where all the potential participants declined to participate. The primary purpose of census tracts is to provide a stable set of geographic units for the presentation of census data and comparison back to previous decennial censuses. Census tracts generally have a population size between 1,200 and 8,000 people, with an optimum size of 4,000 people. When first delineated, census tracts were designed to be homogeneous with respect to population characteristics, economic status, and living conditions. The spatial size of census tracts varies widely depending on the density of settlement. Physical changes in street patterns caused by highway construction, new development, and so forth, may require boundary revisions. In addition, census tracts occasionally are split due to population growth, or combined as a result of substantial population decline. Census tract boundaries generally follow visible and identifiable features. They may follow legal boundaries such as minor civil division (MCD) or incorporated place boundaries in some states and situations to allow for census tract-to-governmental unit relationships where the governmental boundaries tend to remain unchanged between censuses. State and county boundaries always are census tract boundaries in the standard census geographic hierarchy. In a few rare instances, a census tract may consist of noncontiguous areas. These noncontiguous areas may occur where the census tracts are coextensive with all or parts of legal entities that are themselves noncontiguous. For the 2010 Census and beyond, the census tract code range of 9400 through 9499 was enforced for census tracts that include a majority American Indian population according to Census 2000 data and/or their area was primarily covered by federally recognized American Indian reservations and/or off-reservation trust lands; the code range 9800 through 9899 was enforced for those census tracts that contained little or no population and represented a relatively large special land use area such as a National Park, military installation, or a business/industrial park; and the code range 9900 through 9998 was enforced for those census tracts that contained only water area, no land area.

  12. 2023 Cartographic Boundary File (SHP), Census Tract for Massachusetts,...

    • catalog.data.gov
    • datasets.ai
    • +1more
    Updated May 16, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Department of Commerce, U.S. Census Bureau, Geography Division (Point of Contact) (2024). 2023 Cartographic Boundary File (SHP), Census Tract for Massachusetts, 1:500,000 [Dataset]. https://catalog.data.gov/dataset/2023-cartographic-boundary-file-shp-census-tract-for-massachusetts-1-500000
    Explore at:
    Dataset updated
    May 16, 2024
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Area covered
    Massachusetts
    Description

    The 2023 cartographic boundary shapefiles are simplified representations of selected geographic areas from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). These boundary files are specifically designed for small-scale thematic mapping. When possible, generalization is performed with the intent to maintain the hierarchical relationships among geographies and to maintain the alignment of geographies within a file set for a given year. Geographic areas may not align with the same areas from another year. Some geographies are available as nation-based files while others are available only as state-based files. Census tracts are small, relatively permanent statistical subdivisions of a county or equivalent entity, and were defined by local participants as part of the 2020 Census Participant Statistical Areas Program. The Census Bureau delineated the census tracts in situations where no local participant existed or where all the potential participants declined to participate. The primary purpose of census tracts is to provide a stable set of geographic units for the presentation of census data and comparison back to previous decennial censuses. Census tracts generally have a population size between 1,200 and 8,000 people, with an optimum size of 4,000 people. When first delineated, census tracts were designed to be homogeneous with respect to population characteristics, economic status, and living conditions. The spatial size of census tracts varies widely depending on the density of settlement. Physical changes in street patterns caused by highway construction, new development, and so forth, may require boundary revisions. In addition, census tracts occasionally are split due to population growth, or combined as a result of substantial population decline. Census tract boundaries generally follow visible and identifiable features. They may follow legal boundaries such as minor civil division (MCD) or incorporated place boundaries in some states and situations to allow for census tract-to-governmental unit relationships where the governmental boundaries tend to remain unchanged between censuses. State and county boundaries always are census tract boundaries in the standard census geographic hierarchy. In a few rare instances, a census tract may consist of noncontiguous areas. These noncontiguous areas may occur where the census tracts are coextensive with all or parts of legal entities that are themselves noncontiguous. For the 2010 Census and beyond, the census tract code range of 9400 through 9499 was enforced for census tracts that include a majority American Indian population according to Census 2000 data and/or their area was primarily covered by federally recognized American Indian reservations and/or off-reservation trust lands; the code range 9800 through 9899 was enforced for those census tracts that contained little or no population and represented a relatively large special land use area such as a National Park, military installation, or a business/industrial park; and the code range 9900 through 9998 was enforced for those census tracts that contained only water area, no land area.

  13. a

    Digital Divide Index - Population With No Access to 100 20 Mbps Web Layer

    • broadband-wacommerce.hub.arcgis.com
    Updated Sep 20, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Timmons@WACOM (2023). Digital Divide Index - Population With No Access to 100 20 Mbps Web Layer [Dataset]. https://broadband-wacommerce.hub.arcgis.com/maps/ccdf864e583a4c89ad8766fa5165ffbe
    Explore at:
    Dataset updated
    Sep 20, 2023
    Dataset authored and provided by
    Timmons@WACOM
    Area covered
    Description

    The Digital Divide Index or DDI ranges in value from 0 to 100, where 100 indicates the highest digital divide. It is composed of two scores, also ranging from 0 to 100: the infrastructure/adoption (INFA) score and the socioeconomic (SE) score.The INFA score groups five variables related to broadband infrastructure and adoption: (1) percentage of total 2020 population without access to fixed broadband of at least 100 Mbps download and 20 Mbps upload as of 2020 based on Ookla Speedtest® open dataset; (2) percent of homes without a computing device (desktops, laptops, smartphones, tablets, etc.); (3) percent of homes with no internet access (have no internet subscription, including cellular data plans or dial-up); (4) median maximum advertised download speeds; and (5) median maximum advertised upload speeds.The SE score groups five variables known to impact technology adoption: (1) percent population ages 65 and over; (2) percent population 25 and over with less than high school; (3) individual poverty rate; (4) percent of noninstitutionalized civilian population with a disability: and (5) a brand new digital inequality or internet income ratio measure (IIR). In other words, these variables indirectly measure adoption since they are potential predictors of lagging technology adoption or reinforcing existing inequalities that also affect adoption.These two scores are combined to calculate the overall DDI score. If a particular county or census tract has a higher INFA score versus a SE score, efforts should be made to improve broadband infrastructure. If on the other hand, a particular geography has a higher SE score versus an INFA score, efforts should be made to increase digital literacy and exposure to the technology’s benefits.The DDI measures primarily physical access/adoption and socioeconomic characteristics that may limit motivation, skills, and usage. Due to data limitations it was designed as a descriptive and pragmatic tool and is not intended to be comprehensive. Rather it should help initiate important discussions among community leaders and residents.

  14. GLA 2013 round population and household projections

    • data.ubdc.ac.uk
    xls
    Updated Nov 8, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Greater London Authority (2023). GLA 2013 round population and household projections [Dataset]. https://data.ubdc.ac.uk/dataset/gla-2013-round-population-and-household-projections
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Nov 8, 2023
    Dataset provided by
    Greater London Authorityhttp://www.london.gov.uk/
    Description

    Trend-based projections

    Four variants of trend-based population projections and corresponding household projections are currently available to download. These are labelled as High, Central and Low and differ in their domestic migration assumptions beyond 2017. The economic crisis has been linked to a fall in migration from London to the rest of the UK and a rise in flows from the UK to London. The variants reflect a range of scenarios relating to possible return to pre-crisis trends in migration.

    High: In this scenario, the changes to domestic migration flows are considered to be structural and recent patterns persist regardless of an improving economic outlook.

    Low: Changes to domestic migration patterns are assumed to be transient and return to pre-crisis trends beyond 2018. Domestic outflow propensities increase by 10% and inflows decrease by 6% as compared to the High variant.

    Central: Assumes recent migration patterns are partially transient and partially structural. Beyond 2018, domestic outlow propensities increase by 5% and inflows by 3% as compared to the High variant.

    Central - incorporating 2012-based fertility assumptions: Uses the same migration assumptions as the Central projeciton above, but includes updated age-specific-fertility-rates based on 2011 birth data and future fertility trends taken from ONS's 2012-based National Population Projections. The impact of these changes is to increase fertility by ~10% in the long term.

    GLA 2013 round trend-based population projections:
    Borough: High
    Borough: Low
    Borough: Central
    Borough: Central - incorporating 2012-based NPP fertility assumptions
    Ward: Central

    GLA 2013 round trend-based household projections:
    Borough: High
    Borough: Low
    Borough: Central

    GLA 2013 round ethnic group population projections:
    Borough: Central

    Updates:
    Update 03-2014: GLA 2013 round of trend-based population projections - Methodology
    Update 04-2014: GLA 2013 round of trend-based population projections - Results
    Data to accompany Update 04-2014
    Update 12-2014: GLA 2013 round ethnic group population projections
    Data to accompany Update 12-2014

    Housing linked projections

    Two variants of housing-linked projections are available based on housing trajectories derived from the 2013 Strategic Housing Land Availability Assessment (SHLAA). The two variants are produced using different models to constrain the population to available dwellings. These are referred to as the DCLG-based model and the Capped Household Size model. These models will be explained in greater detail in an upcoming Intelligence Unit Update.

    Projection Models:

    DCLG-Based Model

    This model makes use of Household Representative Rates (HRR) from DCLG’s 2011-based household projections to convert populations by age and gender into households. The models uses iteration to find a population that yields a total number of households that matches the number of available household spaces implied by the development data. This iterative process involves modulating gross migration flows between each London local authority and UK regions outside of London. HRRs beyond 2021 have been extrapolated forward by the GLA. The model also produces a set of household projections consistent with the population outputs.

    Capped Household Size Model

    This model was introduced to provide an alternative projection based on the SHLAA housing trajectories. While the projections given by the DCLG-Based Model appear realistic for the majority of London, there are concerns that it could lead to under projection for certain local authorities, namely those in Outer London where recent population growth has primarily been driven by rising household sizes. For these boroughs, the Capped Household Size model provides greater freedom for the population to follow the growth patterns shown in the Trend-based projections, but caps average household size at 2012 levels. For boroughs where the DCLG-based SHLAA model gave higher results than the Trend-based model, the projections follow the results of the former.

    Household projections are not available from this model.

    Development assumptions:

    SHLAA housing data

    These projections incorporate development data from the 2013 Strategic Housing Land Availability Assessment (SHLAA) database to determine populations for 2012 onwards. Development trajectories are derived from this data for four phases: 2015-20, 2021-25, 2026-30, and 2031-36. For 2012-14, data is taken from the 2009 SHLAA trajectories. No data is included in the database for beyond 2036 and the 2031-36 trajectories are extended forward to 2041. This data was correct as at February 2014 and may be updated in future. Assumed development figures will not necessarily match information in the SHLAA report as some data on estate renewals is not included in the database at this time.

    GLA 2013 round SHLAA-based population projections:
    Borough: SHLAA-based
    Borough: capped SHLAA-based
    Ward: SHLAA-based
    Ward: capped SHLAA-based

    GLA 2013 round SHLAA-based household projections:
    Borough: SHLAA-based

    GLA 2013 round SHLAA-based ethnic group population projections:
    Borough: SHLAA-based

    Zero-development projections

    The GLA produces so-called zero-development projections for London that assume that future dwelling stocks remain unchanged. These projections can be used in conjunction with the SHLAA-based projections to give an indication of the modelled impact of the assumed development. Variants are produced consistent with the DCLG-based and Capped Household Size projections. Due to the way the models operate, the former assumes no development beyond 2011 and the latter no development after 2012.

    GLA 2013 round zero development population projections:
    Borough: DCLG zero development
    Borough: capped zero development
    Ward: DCLG zero development
    Ward: capped zero development

    Frequently asked question: which projection should I use?

    The GLA Demography Team recommends using the Capped Household Size SHLAA projection for most purposes. The main exception to this is for work estimating future housing need, where it is more appropriate to use the trend-based projections.

    The custom-age population tool is here.

    To access the GLA's full range of demographic projections please click here.

  15. w

    The Population and Housing Census of Thailand 2000 - IPUMS Subset - Thailand...

    • microdata.worldbank.org
    • catalog.ihsn.org
    Updated Apr 25, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Minnesota Population Center (2018). The Population and Housing Census of Thailand 2000 - IPUMS Subset - Thailand [Dataset]. https://microdata.worldbank.org/index.php/catalog/564
    Explore at:
    Dataset updated
    Apr 25, 2018
    Dataset provided by
    Minnesota Population Center
    National Statistical Office
    Time period covered
    2000
    Area covered
    Thailand
    Description

    Abstract

    IPUMS-International is an effort to inventory, preserve, harmonize, and disseminate census microdata from around the world. The project has collected the world's largest archive of publicly available census samples. The data are coded and documented consistently across countries and over time to facillitate comparative research. IPUMS-International makes these data available to qualified researchers free of charge through a web dissemination system.

    The IPUMS project is a collaboration of the Minnesota Population Center, National Statistical Offices, and international data archives. Major funding is provided by the U.S. National Science Foundation and the Demographic and Behavioral Sciences Branch of the National Institute of Child Health and Human Development. Additional support is provided by the University of Minnesota Office of the Vice President for Research, the Minnesota Population Center, and Sun Microsystems.

    Geographic coverage

    National coverage

    Analysis unit

    Households

    UNITS IDENTIFIED: - Dwellings: No - Vacant units: No - Households: Yes - Individuals: Yes - Group quarters: Yes - Special populations: No

    UNIT DESCRIPTIONS: - Dwellings: Building or any construction structures including boat, houseboat, and truck at which a person can live. - Households: A household refers to the living one person or many persons in the same house or the same construction structure. They seek for, consume, and utilize all facilities together for their benefit, regardless of whether they are related or not. - Group quarters: Household which compose of several people living together because of having certain rule or regulation which indicated that those people must live together or needed to stay together for their own benefit. There are two kinds of collective households: institutions and other collective households [also called 'special households' in this sample]

    Universe

    All Thai nationals residing in Thailand on the census date; foreign civilians who normally reside in Thailand or who temporarily reside in Thailand 3 months or more before the census date; any individual who has normally resided in Thailand but was away for military training, sailing, or temporarily travelling abroad; and Thai civil/military/diplomatic officers and their families who normally have their offices in foreign countries.

    Kind of data

    Census/enumeration data [cen]

    Sampling procedure

    MICRODATA SOURCE: National Statistical Office

    SAMPLE DESIGN: A stratified two-stage sample was adopted. 5 strata were Bangkok and the four regions (Central, North, Northeastern, South), and each stratum was divided into municipal areas and non-municipal areas. Then, the sample was selected in two stages. In stage one, a number of sample enumeration districts (EDs) were selected systematically in each sub-stratum with sampling fraction of 1 in 20. In stage two, a sample of households was selected systematically from each sample ED as follows. For private households, one-fifth of households in each ED were selected. For collective households, one-fifth of special households and one fiftth of institutional households were selected in each sub-stratum (municipal and non-municipal areas.

    SAMPLE UNIT: Household

    SAMPLE FRACTION: 1%

    SAMPLE SIZE (person records): 604,519

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    The population was enumerated with Form 2, which consists of three parts. Part 1 identifies the location of the household. Part 2 contains questions on population including questions on demography (S1-S16) and questions on detail of population (L17-L27). Part 3 contains housing questions that are asked of the sample private households only. Note: (i) Only Part 1 and questions on demography (S1-S16) of Part 2 in Form 2 were asked of the private households that have not been selected as sample households. (ii) For the private households that have been selected as sample private households (20%), all questions in Form 2 were asked. (iii) All collective households were enumerated using Form 2 on Part 1 (location of household) and Part 2 (questions on demography and on details of population), but questions on housing were not asked.

  16. Census Designated Place

    • hub.arcgis.com
    Updated Jun 29, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2023). Census Designated Place [Dataset]. https://hub.arcgis.com/maps/esri::census-designated-place-3
    Explore at:
    Dataset updated
    Jun 29, 2023
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    This layer shows race and ethnicity data from the 2020 Census Demographic and Housing Characteristics. This is shown by Nation, Consolidated City, Census Designated Place, Incorporated Place boundaries. Each geography layer contains a common set of Census counts based on available attributes from the U.S. Census Bureau. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis.   To see the full list of attributes available in this service, go to the "Data" tab above, and then choose "Fields" at the top right. Each attribute contains definitions, additional details, and the formula for calculated fields in the field description.Vintage of boundaries and attributes: 2020 Demographic and Housing Characteristics Table(s): P1, H1, H3, P5, P9 Data downloaded from: U.S. Census Bureau’s data.census.gov siteDate the Data was Downloaded: May 25, 2023Geography Levels included: Nation, Consolidated City, Census Designated Place, Incorporated PlaceNational Figures: included in Nation layer The United States Census Bureau Demographic and Housing Characteristics: 2020 Census Results 2020 Census Data Quality Geography & 2020 Census Technical Documentation Data Table Guide: includes the final list of tables, lowest level of geography by table and table shells for the Demographic Profile and Demographic and Housing Characteristics.News & Updates This layer is ready to be used in ArcGIS Pro, ArcGIS Online and its configurable apps, Story Maps, dashboards, Notebooks, Python, custom apps, and mobile apps. Data can also be exported for offline workflows. Please cite the U.S. Census Bureau when using this data. Data Processing Notes: These 2020 Census boundaries come from the US Census TIGER geodatabases. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For Census tracts and block groups, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract and block group boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2020 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are unchanged and available as attributes within the data table (units are square meters).  The layer contains all US states, Washington D.C., and Puerto Rico. Census tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99). Block groups that fall within the same criteria (Block Group denoted as 0 with no area land) have also been removed.Percentages and derived counts, are calculated values (that can be identified by the "_calc_" stub in the field name). Field alias names were created based on the Table Shells file available from the Data Table Guide for the Demographic Profile and Demographic and Housing Characteristics. Not all lines of all tables listed above are included in this layer. Duplicative counts were dropped. For example, P0030001 was dropped, as it is duplicative of P0010001.To protect the privacy and confidentiality of respondents, their data has been protected using differential privacy techniques by the U.S. Census Bureau.

  17. 2023 Cartographic Boundary File (KML), Census Tract for Florida, 1:500,000

    • catalog.data.gov
    • s.cnmilf.com
    Updated May 16, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Department of Commerce, U.S. Census Bureau, Geography Division (Point of Contact) (2024). 2023 Cartographic Boundary File (KML), Census Tract for Florida, 1:500,000 [Dataset]. https://catalog.data.gov/dataset/2023-cartographic-boundary-file-kml-census-tract-for-florida-1-500000
    Explore at:
    Dataset updated
    May 16, 2024
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Area covered
    Florida
    Description

    The 2023 cartographic boundary KMLs are simplified representations of selected geographic areas from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). These boundary files are specifically designed for small-scale thematic mapping. When possible, generalization is performed with the intent to maintain the hierarchical relationships among geographies and to maintain the alignment of geographies within a file set for a given year. Geographic areas may not align with the same areas from another year. Some geographies are available as nation-based files while others are available only as state-based files. Census tracts are small, relatively permanent statistical subdivisions of a county or equivalent entity, and were defined by local participants as part of the 2020 Census Participant Statistical Areas Program. The Census Bureau delineated the census tracts in situations where no local participant existed or where all the potential participants declined to participate. The primary purpose of census tracts is to provide a stable set of geographic units for the presentation of census data and comparison back to previous decennial censuses. Census tracts generally have a population size between 1,200 and 8,000 people, with an optimum size of 4,000 people. When first delineated, census tracts were designed to be homogeneous with respect to population characteristics, economic status, and living conditions. The spatial size of census tracts varies widely depending on the density of settlement. Physical changes in street patterns caused by highway construction, new development, and so forth, may require boundary revisions. In addition, census tracts occasionally are split due to population growth, or combined as a result of substantial population decline. Census tract boundaries generally follow visible and identifiable features. They may follow legal boundaries such as minor civil division (MCD) or incorporated place boundaries in some states and situations to allow for census tract-to-governmental unit relationships where the governmental boundaries tend to remain unchanged between censuses. State and county boundaries always are census tract boundaries in the standard census geographic hierarchy. In a few rare instances, a census tract may consist of noncontiguous areas. These noncontiguous areas may occur where the census tracts are coextensive with all or parts of legal entities that are themselves noncontiguous. For the 2010 Census and beyond, the census tract code range of 9400 through 9499 was enforced for census tracts that include a majority American Indian population according to Census 2000 data and/or their area was primarily covered by federally recognized American Indian reservations and/or off-reservation trust lands; the code range 9800 through 9899 was enforced for those census tracts that contained little or no population and represented a relatively large special land use area such as a National Park, military installation, or a business/industrial park; and the code range 9900 through 9998 was enforced for those census tracts that contained only water area, no land area.

  18. 2023 American Community Survey: B23002F | Sex by Age by Employment Status...

    • data.census.gov
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ACS, 2023 American Community Survey: B23002F | Sex by Age by Employment Status for the Population 16 Years and Over (Some Other Race Alone) (ACS 1-Year Estimates Detailed Tables) [Dataset]. https://data.census.gov/table/ACSDT1Y2023.B23002F?q=B23002&g=040XX00US42
    Explore at:
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Authors
    ACS
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Time period covered
    2023
    Description

    Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, the decennial census is the official source of population totals for April 1st of each decennial year. In between censuses, the Census Bureau's Population Estimates Program produces and disseminates the official estimates of the population for the nation, states, counties, cities, and towns and estimates of housing units and the group quarters population for states and counties..Information about the American Community Survey (ACS) can be found on the ACS website. Supporting documentation including code lists, subject definitions, data accuracy, and statistical testing, and a full list of ACS tables and table shells (without estimates) can be found on the Technical Documentation section of the ACS website.Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section..Source: U.S. Census Bureau, 2023 American Community Survey 1-Year Estimates.ACS data generally reflect the geographic boundaries of legal and statistical areas as of January 1 of the estimate year. For more information, see Geography Boundaries by Year..Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see ACS Technical Documentation). The effect of nonsampling error is not represented in these tables..Users must consider potential differences in geographic boundaries, questionnaire content or coding, or other methodological issues when comparing ACS data from different years. Statistically significant differences shown in ACS Comparison Profiles, or in data users' own analysis, may be the result of these differences and thus might not necessarily reflect changes to the social, economic, housing, or demographic characteristics being compared. For more information, see Comparing ACS Data..Employment and unemployment estimates may vary from the official labor force data released by the Bureau of Labor Statistics because of differences in survey design and data collection. For guidance on differences in employment and unemployment estimates from different sources go to Labor Force Guidance..Armed Forces data are not shown for the population 65 years and over..Estimates of urban and rural populations, housing units, and characteristics reflect boundaries of urban areas defined based on 2020 Census data. As a result, data for urban and rural areas from the ACS do not necessarily reflect the results of ongoing urbanization..Explanation of Symbols:- The estimate could not be computed because there were an insufficient number of sample observations. For a ratio of medians estimate, one or both of the median estimates falls in the lowest interval or highest interval of an open-ended distribution. For a 5-year median estimate, the margin of error associated with a median was larger than the median itself.N The estimate or margin of error cannot be displayed because there were an insufficient number of sample cases in the selected geographic area. (X) The estimate or margin of error is not applicable or not available.median- The median falls in the lowest interval of an open-ended distribution (for example "2,500-")median+ The median falls in the highest interval of an open-ended distribution (for example "250,000+").** The margin of error could not be computed because there were an insufficient number of sample observations.*** The margin of error could not be computed because the median falls in the lowest interval or highest interval of an open-ended distribution.***** A margin of error is not appropriate because the corresponding estimate is controlled to an independent population or housing estimate. Effectively, the corresponding estimate has no sampling error and the margin of error may be treated as zero.

  19. TIGER/Line Shapefile, Current, State, New Hampshire, Census Tract

    • catalog.data.gov
    Updated Dec 15, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Department of Commerce, U.S. Census Bureau, Geography Division, Geospatial Products Branch (Point of Contact) (2023). TIGER/Line Shapefile, Current, State, New Hampshire, Census Tract [Dataset]. https://catalog.data.gov/dataset/tiger-line-shapefile-current-state-new-hampshire-census-tract
    Explore at:
    Dataset updated
    Dec 15, 2023
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Area covered
    New Hampshire
    Description

    This resource is a member of a series. The TIGER/Line shapefiles and related database files (.dbf) are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line shapefile is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. Census tracts are small, relatively permanent statistical subdivisions of a county or equivalent entity, and were defined by local participants as part of the 2020 Census Participant Statistical Areas Program. The Census Bureau delineated the census tracts in situations where no local participant existed or where all the potential participants declined to participate. The primary purpose of census tracts is to provide a stable set of geographic units for the presentation of census data and comparison back to previous decennial censuses. Census tracts generally have a population size between 1,200 and 8,000 people, with an optimum size of 4,000 people. When first delineated, census tracts were designed to be homogeneous with respect to population characteristics, economic status, and living conditions. The spatial size of census tracts varies widely depending on the density of settlement. Physical changes in street patterns caused by highway construction, new development, and so forth, may require boundary revisions. In addition, census tracts occasionally are split due to population growth, or combined as a result of substantial population decline. Census tract boundaries generally follow visible and identifiable features. They may follow legal boundaries such as minor civil division (MCD) or incorporated place boundaries in some States and situations to allow for census tract-to-governmental unit relationships where the governmental boundaries tend to remain unchanged between censuses. State and county boundaries always are census tract boundaries in the standard census geographic hierarchy. In a few rare instances, a census tract may consist of noncontiguous areas. These noncontiguous areas may occur where the census tracts are coextensive with all or parts of legal entities that are themselves noncontiguous. For the 2010 Census, the census tract code range of 9400 through 9499 was enforced for census tracts that include a majority American Indian population according to Census 2000 data and/or their area was primarily covered by federally recognized American Indian reservations and/or off-reservation trust lands; the code range 9800 through 9899 was enforced for those census tracts that contained little or no population and represented a relatively large special land use area such as a National Park, military installation, or a business/industrial park; and the code range 9900 through 9998 was enforced for those census tracts that contained only water area, no land area.

  20. 2020 Cartographic Boundary File (KML), Current Census Tract for Idaho,...

    • catalog.data.gov
    Updated Dec 14, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Department of Commerce, U.S. Census Bureau, Geography Division, Customer Engagement Branch (Point of Contact) (2023). 2020 Cartographic Boundary File (KML), Current Census Tract for Idaho, 1:500,000 [Dataset]. https://catalog.data.gov/dataset/2020-cartographic-boundary-file-kml-current-census-tract-for-idaho-1-500000
    Explore at:
    Dataset updated
    Dec 14, 2023
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Area covered
    Idaho
    Description

    The 2020 cartographic boundary KMLs are simplified representations of selected geographic areas from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). These boundary files are specifically designed for small-scale thematic mapping. When possible, generalization is performed with the intent to maintain the hierarchical relationships among geographies and to maintain the alignment of geographies within a file set for a given year. Geographic areas may not align with the same areas from another year. Some geographies are available as nation-based files while others are available only as state-based files. Census tracts are small, relatively permanent statistical subdivisions of a county or equivalent entity, and were defined by local participants as part of the 2020 Census Participant Statistical Areas Program. The Census Bureau delineated the census tracts in situations where no local participant existed or where all the potential participants declined to participate. The primary purpose of census tracts is to provide a stable set of geographic units for the presentation of census data and comparison back to previous decennial censuses. Census tracts generally have a population size between 1,200 and 8,000 people, with an optimum size of 4,000 people. When first delineated, census tracts were designed to be homogeneous with respect to population characteristics, economic status, and living conditions. The spatial size of census tracts varies widely depending on the density of settlement. Physical changes in street patterns caused by highway construction, new development, and so forth, may require boundary revisions. In addition, census tracts occasionally are split due to population growth, or combined as a result of substantial population decline. Census tract boundaries generally follow visible and identifiable features. They may follow legal boundaries such as minor civil division (MCD) or incorporated place boundaries in some states and situations to allow for census tract-to-governmental unit relationships where the governmental boundaries tend to remain unchanged between censuses. State and county boundaries always are census tract boundaries in the standard census geographic hierarchy. In a few rare instances, a census tract may consist of noncontiguous areas. These noncontiguous areas may occur where the census tracts are coextensive with all or parts of legal entities that are themselves noncontiguous. For the 2010 Census and beyond, the census tract code range of 9400 through 9499 was enforced for census tracts that include a majority American Indian population according to Census 2000 data and/or their area was primarily covered by federally recognized American Indian reservations and/or off-reservation trust lands; the code range 9800 through 9899 was enforced for those census tracts that contained little or no population and represented a relatively large special land use area such as a National Park, military installation, or a business/industrial park; and the code range 9900 through 9998 was enforced for those census tracts that contained only water area, no land area.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
CEICdata.com (2018). Norway NO: Population: Male: Aged 15-64 [Dataset]. https://www.ceicdata.com/en/norway/population-and-urbanization-statistics/no-population-male-aged-1564

Norway NO: Population: Male: Aged 15-64

Explore at:
Dataset updated
Mar 15, 2018
Dataset provided by
CEICdata.com
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Time period covered
Dec 1, 2006 - Dec 1, 2017
Area covered
Norway
Variables measured
Population
Description

Norway NO: Population: Male: Aged 15-64 data was reported at 1,774,104.000 Person in 2017. This records an increase from the previous number of 1,762,276.000 Person for 2016. Norway NO: Population: Male: Aged 15-64 data is updated yearly, averaging 1,386,558.000 Person from Dec 1960 (Median) to 2017, with 58 observations. The data reached an all-time high of 1,774,104.000 Person in 2017 and a record low of 1,129,967.000 Person in 1960. Norway NO: Population: Male: Aged 15-64 data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Norway – Table NO.World Bank: Population and Urbanization Statistics. Male population between the ages 15 to 64. Population is based on the de facto definition of population, which counts all residents regardless of legal status or citizenship.; ; World Bank staff estimates using the World Bank's total population and age/sex distributions of the United Nations Population Division's World Population Prospects: 2017 Revision.; Sum;

Search
Clear search
Close search
Google apps
Main menu