Facebook
TwitterStorm Data is provided by the National Weather Service (NWS) and contain statistics on personal injuries and damage estimates. Storm Data covers the United States of America. The data began as early as 1950 through to the present, updated monthly with up to a 120 day delay possible. NCDC Storm Event database allows users to find various types of storms recorded by county, or use other selection criteria as desired. The data contain a chronological listing, by state, of hurricanes, tornadoes, thunderstorms, hail, floods, drought conditions, lightning, high winds, snow, temperature extremes and other weather phenomena.
Facebook
TwitterThis map contains continuously updated U.S. tornado reports, wind storm reports and hail storm reports. Click each feature to receive information about the specific location and read a short description about the issue.Now contains ALL available Incident Report types, for a total of 15, not just Hail; Wind; and Tornados.See new layer for details or Feature Layer Item with exclusive Past 24-Hour ALL Storm Reports Layer.Each layer is updated 4 times hourly from data provided by NOAA’s National Weather Service Storm Prediction Center.A full archive of storm events can be accessed from the NOAA National Centers for Environmental Information.SourceNOAA Storm Prediction Center https://www.spc.noaa.gov/climo/reportsSample DataSee Sample Layer Item for sample data during inactive periods!Update FrequencyThe service is updated every 15 minutes using the Aggregated Live Feeds MethodologyArea CoveredCONUS (Contiguous United States)What can you do with this layer?This map service is suitable for data discovery and visualization.Change the symbology of each layer using single or bi-variate smart mapping. For instance, use size or color to indicate the intensity of a tornado.Click each feature to receive information about the specific location and read a short description about the issue.Query the attributes to show only specific event types or locations.Revisions:Aug 10, 2021: Updated Classic Layers to use new Symbols. Corrected Layer Order Presentation. Updated Thumbnail.Aug 8, 2021: Update to layer-popups, correcting link URLs. Expanded length of 'Comment' fields to 1kb of text. New Layer added that includes ALL available Incident Types and Age in 'Hours Old'.This map is provided for informational purposes and is not monitored 24/7 for accuracy and currency.If you would like to be alerted to potential issues or simply see when this service will update next, please visit our Live Feed Status Page.
Facebook
TwitterTornado TracksThis feature layer, utilizing data from the National Oceanic and Atmospheric Administration (NOAA), displays tornadoes in the United States, Puerto Rico and U.S. Virgin Islands between 1950 and 2024. A tornado track shows the route of a tornado. Per NOAA, "A tornado is a narrow, violently rotating column of air that extends from a thunderstorm to the ground. Because wind is invisible, it is hard to see a tornado unless it forms a condensation funnel made up of water droplets, dust and debris. Tornadoes can be among the most violent phenomena of all atmospheric storms we experience. The most destructive tornadoes occur from supercells, which are rotating thunderstorms with a well-defined radar circulation called a mesocyclone. (Supercells can also produce damaging hail, severe non-tornadic winds, frequent lightning, and flash floods.)"EF-5 Tornado Track (May 3, 1999) near Oklahoma City, OklahomaData currency: December 30, 2024Data source: Storm Prediction CenterData modifications: Added field "Date_Calc"For more information: Severe Weather 101 - Tornadoes; NSSL Research: TornadoesSupport documentation: SPC Tornado, Hail, and Wind Database Format SpecificationFor feedback, please contact: ArcGIScomNationalMaps@esri.comNational Oceanic and Atmospheric AdministrationPer NOAA, its mission is "To understand and predict changes in climate, weather, ocean, and coasts, to share that knowledge and information with others, and to conserve and manage coastal and marine ecosystems and resources."
Facebook
TwitterThe Severe Weather Data Inventory (SWDI) is an integrated database of severe weather records for the United States. SWDI enables a user to search through a variety of source data sets in the NCDC (now NCEI) archive in order to find records covering a particular time period and geographic region, and then to download the results of the search in a variety of formats. The formats currently supported are Shapefile (for GIS), KMZ (for Google Earth), CSV (comma-separated), and XML. The current data layers in SWDI are: Storm Cells from NEXRAD (Level-III Storm Structure Product); Hail Signatures from NEXRAD (Level-III Hail Product); Mesocyclone Signatures from NEXRAD (Level-III Meso Product); Digital Mesocyclone Detection Algorithm from NEXRAD (Level-III MDA Product); Tornado Signature from NEXRAD (Level-III TVS Product); Preliminary Local Storm Reports from the NOAA National Weather Service; Lightning Strikes from Vaisala NLDN.
Facebook
TwitterGlobal Surface Summary of the Day is derived from The Integrated Surface Hourly (ISH) dataset. The ISH dataset includes global data obtained from the USAF Climatology Center, located in the Federal Climate Complex with NCDC. The latest daily summary data are normally available 1-2 days after the date-time of the observations used in the daily summaries. The online data files begin with 1929 and are at the time of this writing at the Version 8 software level. Over 9000 stations' data are typically available. The daily elements included in the dataset (as available from each station) are: Mean temperature (.1 Fahrenheit) Mean dew point (.1 Fahrenheit) Mean sea level pressure (.1 mb) Mean station pressure (.1 mb) Mean visibility (.1 miles) Mean wind speed (.1 knots) Maximum sustained wind speed (.1 knots) Maximum wind gust (.1 knots) Maximum temperature (.1 Fahrenheit) Minimum temperature (.1 Fahrenheit) Precipitation amount (.01 inches) Snow depth (.1 inches) Indicator for occurrence of: Fog, Rain or Drizzle, Snow or Ice Pellets, Hail, Thunder, Tornado/Funnel Cloud Global summary of day data for 18 surface meteorological elements are derived from the synoptic/hourly observations contained in USAF DATSAV3 Surface data and Federal Climate Complex Integrated Surface Hourly (ISH). Historical data are generally available for 1929 to the present, with data from 1973 to the present being the most complete. For some periods, one or more countries' data may not be available due to data restrictions or communications problems. In deriving the summary of day data, a minimum of 4 observations for the day must be present (allows for stations which report 4 synoptic observations/day). Since the data are converted to constant units (e.g, knots), slight rounding error from the originally reported values may occur (e.g, 9.9 instead of 10.0). The mean daily values described below are based on the hours of operation for the station. For some stations/countries, the visibility will sometimes 'cluster' around a value (such as 10 miles) due to the practice of not reporting visibilities greater than certain distances. The daily extremes and totals--maximum wind gust, precipitation amount, and snow depth--will only appear if the station reports the data sufficiently to provide a valid value. Therefore, these three elements will appear less frequently than other values. Also, these elements are derived from the stations' reports during the day, and may comprise a 24-hour period which includes a portion of the previous day. The data are reported and summarized based on Greenwich Mean Time (GMT, 0000Z - 2359Z) since the original synoptic/hourly data are reported and based on GMT.
Facebook
TwitterThe National Weather Service issues warnings for severe weather that are imminent or actively occurring. This layer shows shorter-term warnings for the following events:Special Marine Warnings - potentially hazardous weather conditions of short duration (up to 2 hours) that may include sustained winds or gusts of 39 mph or greater, hail 0.75” or greater in diameter, or waterspouts.Severe Thunderstorm Warnings - storms with winds of 58 mph or higher or hail 1” or greater in diameter.Tornado Warnings - imminent or active tornados.Extreme Wind Warnings - surface winds of 115 mph or greater associated with non-convective, downslope, derecho, or sustained hurricane winds are expected to occur within one hour.Flash Flood Warnings - conditions are favorable for flash flooding. It does not mean that flash flooding will occur, but it is possible.SourceCurrent Warnings: https://www.weather.gov/source/crh/shapefiles/CurrentWarnings.tar.gzSample DataSee Sample Layer Item for sample data during Weather inactivity!Update FrequencyThe service is updated every 5 minutes using the Aggregated Live Feeds methodology.Area CoveredContiguous United StatesWhat can you do with this layer?Customize the display of each attribute by using the Change Style option for any layer.Query the layer to display only specific types of weather watches and warnings.Add to a map with other weather data layers to provide inside on hazardous weather events.Use ArcGIS Online analysis tools, such as Enrich Data, to determine the potential impact of weather events on populations.This map is provided for informational purposes and is not monitored 24/7 for accuracy and currency.If you would like to be alerted to potential issues or simply see when this Service will update next, please visit our Live Feed Status Page!
Facebook
TwitterThe State of the Climate is a collection of periodic summaries recapping climate-related occurrences on both a global and national scale. The State of the Climate Monthly Overview - National Tornadoes provides a summary of tornadic activity in the United States. Tornado occurrences and significant events, including storms and outbreaks, are covered. Regular monthly and annual reports begin in July 2008. Spring "tornado seaso" reports are available for 2006 and 2008. In some months during climatologically inactive periods, the narrative part of this report may be omitted.
Facebook
TwitterMetadata available at http://www.spc.noaa.gov/wcm/data/SPC_severe_database_description.pdf
Facebook
TwitterTornadoesThis feature layer, utilizing data from the National Oceanic and Atmospheric Administration (NOAA), displays tornadoes in the United States, Puerto Rico and U.S. Virgin Islands between 1950 and 2024. Per NOAA, "A tornado is a narrow, violently rotating column of air that extends from a thunderstorm to the ground. Because wind is invisible, it is hard to see a tornado unless it forms a condensation funnel made up of water droplets, dust and debris. Tornadoes can be among the most violent phenomena of all atmospheric storms we experience. The most destructive tornadoes occur from supercells, which are rotating thunderstorms with a well-defined radar circulation called a mesocyclone. (Supercells can also produce damaging hail, severe non-tornadic winds, frequent lightning, and flash floods.)"EF-5 Tornado (May 22, 2011) near Joplin, MissouriData currency: December 30, 2024Data source: Storm Prediction CenterData modifications: Added field "Date_Calc"For more information: Severe Weather 101 - Tornadoes; NSSL Research: TornadoesSupport documentation: SPC Tornado, Hail, and Wind Database Format SpecificationFor feedback, please contact: ArcGIScomNationalMaps@esri.comNational Oceanic and Atmospheric AdministrationPer NOAA, its mission is "To understand and predict changes in climate, weather, ocean, and coasts, to share that knowledge and information with others, and to conserve and manage coastal and marine ecosystems and resources."
Facebook
Twitterhttps://www.weather.gov/disclaimerhttps://www.weather.gov/disclaimer
The NOAA Storm Events Database contains comprehensive records of significant weather phenomena, including tornadoes, from 1950 to present. This database is maintained by the National Centers for Environmental Information (NCEI) and provides detailed information on storm characteristics, impacts, and damage assessments.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Tornadoes frequently occur in the United States, resulting in vast destruction and often injuries and death. They occur more often in the United States and Canada than in other countries with the most tornado-prone regions in the US being the central and southeastern states along a corridor sometimes called "Tornado Alley."
A tornado's destructiveness is derived largely from the wind speed within it. For this reason, meteoroligists rate tornadoes using a scale based on wind speed. In the US, tornadoes were originally rated on the Fujita Scale, and since February 2007 on the Enhanced Fujita Scale. The two scales cover slightly different speed ranges, but for practical purposes are the same. The enhanced Fujita scale is shown below.
| Rating | Wind Speed | Damage |
|---|---|---|
| EF0 | 65–85 mph | Light damage |
| EF1 | 86–110 mph | Moderate damage |
| EF2 | 111–135 mph | Considerable damage |
| EF3 | 136–165 mph | Severe damage |
| EF4 | 166–200 mph | Devastating damage |
| EF5 | >200 mph | Incredible damage |
This dataset was derived from a dataset produced by NOAA's Storm Prediction Center. The primary changes made to create this dataset were the deletion of some columns, change of some data types, and sorting by date.
NOAA Storm Prediction Center WIkipedia - Tornado Wikipedia - Fujita Scale Wikipedia - Enhanced Fujita Scale
Facebook
TwitterThe data comes from NOAA's National Weather Service Storm Prediction Center Severe Weather Maps, Graphics, and Data Page
tornados.csv| variable | class | description |
|---|---|---|
| om | integer | Tornado number. Effectively an ID for this tornado in this year. |
| yr | integer | Year, 1950-2022. |
| mo | integer | Month, 1-12. |
| dy | integer | Day of the month, 1-31. |
| date | date | Date. |
| time | time | Time. |
| tz | character | Canonical tz database timezone. |
| datetime_utc | datetime | Date and time normalized to UTC. |
| st | character | Two-letter postal abbreviation for the state (DC = Washington, DC; PR = Puerto Rico; VI = Virgin Islands). |
| stf | integer | State FIPS (Federal Information Processing Standards) number. |
| mag | integer | Magnitude on the F scale (EF beginning in 2007). Some of these values are estimated (see fc). |
| inj | integer | Number of injuries. When summing for state totals, use sn == 1 (see below). |
| fat | integer | Number of fatalities. When summing for state totals, use sn == 1 (see below). |
| loss | double | Estimated property loss information in dollars. Prior to 1996, values were grouped into ranges. The reported number for such years is the maximum of its range. |
| slat | double | Starting latitude in decimal degrees. |
| slon | double | Starting longitude in decimal degrees. |
| elat | double | Ending latitude in decimal degrees. |
| elon | double | Ending longitude in decimal degrees. |
| len | double | Length in miles. |
| wid | double | Width in yards. |
| ns | integer | Number of states affected by this tornado. 1, 2, or 3. |
| sn | integer | State number for this row. 1 means the row contains the entire track information for this state, 0 means there is at least one more entry for this state for this tornado (om + yr). |
| f1 | integer | FIPS code for the 1st county. |
| f2 | integer | FIPS code for the 2nd county. |
| f3 | integer | FIPS code for the 3rd county. |
| f4 | integer | FIPS code for the 4th county. |
| fc | logical | Was the mag column estimated? |
Facebook
TwitterThis layer contains continuously updated U.S. tornado reports, wind storm reports and hail storm reports from the National Weather Service (NWS).
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This dataset is identical to Kaggle's NOAA GSOD dataset using BigQuery. The data for both datasets updates on the same basis (daily) but may not be updated on the same time. Data from this dataset can be downloaded/accessed through this dataset page and Kaggle's API.
Global Surface Summary of the Day is derived from The Integrated Surface Hourly (ISH) dataset. The ISH dataset includes global data obtained from the USAF Climatology Center, located in the Federal Climate Complex with NCDC. The latest daily summary data are normally available 1-2 days after the date-time of the observations used in the daily summaries.
Global summary of day data for 18 surface meteorological elements are derived from the synoptic/hourly observations contained in USAF DATSAV3 Surface data and Federal Climate Complex Integrated Surface Hourly (ISH). Historical data are generally available for 1929 to the present, with data from 1973 to the present being the most complete. For some periods, one or more countries' data may not be available due to data restrictions or communications problems.
The online data files begin with 1929 and are at the time of this writing at the Version 8 software level. Over 9000 stations' data are typically available. The daily elements included in the dataset (as available from each station) are: Mean temperature (.1 Fahrenheit) Mean dew point (.1 Fahrenheit) Mean sea level pressure (.1 mb) Mean station pressure (.1 mb) Mean visibility (.1 miles) Mean wind speed (.1 knots) Maximum sustained wind speed (.1 knots) Maximum wind gust (.1 knots) Maximum temperature (.1 Fahrenheit) Minimum temperature (.1 Fahrenheit) Precipitation amount (.01 inches) Snow depth (.1 inches) Indicator for occurrence of: Fog, Rain or Drizzle, Snow or Ice Pellets, Hail, Thunder, Tornado/Funnel Cloud.
Dataset Source: NOAA. This dataset is publicly available for anyone to use under the following terms provided by the Dataset Source — http://www.data.gov/privacy-policy#data_policy — and is provided "AS IS" without any warranty, express or implied, from Google. Google disclaims all liability for any damages, direct or indirect, resulting from the use of the dataset.
Cover photo by Jeremy Bishop on Unsplash
Unsplash Images are distributed under a unique Unsplash License.
Facebook
TwitterThis map contains continuously updated US tornado reports, wind storm reports and hail storm reports.
Facebook
TwitterCurrently filtered for Storm Date is after 12/1/2023Purpose: This is a feature layer of tornado swaths for the NWS Damage Assessment Toolkit.The National Weather Service (NWS) Damage Assessment Toolkit (DAT) has been utilized experimentally since 2009 to assess damage following tornadoes and convective wind events. The DAT is a GIS-based framework for collecting, storing, and analyzing damage survey data, utilizing the Enhanced Fujita (EF) scale for the classification of damage. Data collected from individual locations via mobile device are transmitted to a central geospatial database where they are quality controlled and analyzed to assign the official EF rating. In addition to the individual point, the data are analyzed to generate track centerlines and damage swaths. High resolution satellite imagery and radar data, through partnership with the NASA Short-term Prediction Research and Transition Center, are also available to aid in the analysis. The subsequent dataset is then made available through a web-based graphical interface and GIS services.Here is the full REST service: https://services.dat.noaa.gov/arcgis/rest/services/nws_damageassessmenttoolkitGeoplatform website: https://communities.geoplatform.gov/disasters/noaa-damage-assessment-toolkit-dat/More InformationWelcome to the National Weather Service Damage Assessment Toolkit. Data on this interface is collected during NWS Post-Event Damage Assessments. While the data has been quality controlled, it is still considered preliminary. Official statistics for severe weather events can be found in the Storm Data publication, available from the National Centers for Environmental Information (NCEI) at: https://www.ncdc.noaa.gov/IPS/sd/sd.html Questions regarding this data can be addressed to: parks.camp@noaa.gov.
Facebook
TwitterThe imagery posted on this site was acquired following Nashville Tornado in March 2020. The aerial photography missions were conducted by the NOAA Remote Sensing Division. The images were acquired from an altitude of 2500 to 5000 feet, using a Trimble Digital Sensor System (DSS).
Facebook
Twitterhttp://opendatacommons.org/licenses/dbcl/1.0/http://opendatacommons.org/licenses/dbcl/1.0/
The Storm Events Database is an integrated database of severe weather events across the United States , with information about a storm event's location, azimuth, distance, impact, and severity, including the cost of damages to property and crops. It contains data documenting: • The occurrence of storms and other significant weather phenomena having sufficient intensity to cause loss of life, injuries, significant property damage, and/or disruption to commerce • Rare, unusual, weather phenomena that generate media attention, such as snow flurries in South Florida or the San Diego coastal area • Other significant meteorological events, such as record maximum or minimum temperatures or precipitation that occur in connection with another event.
I have collected the datasets from the National Oceanic And Atmospheric Administration's Storm Events database hosted on Google BigQuery. In the storms datasets, each case represents a storm that hit the U.S. after 2013 and the tornado path dataset represents each tornado that hit the U.S. (and affiliated damages) from 1950 onwards.
More information about the datasets and the data dictionary can be found here:
Data Source: Google Cloud: Severe Storm Event Details
The dataset can be combined with other datasets to measure correlations between increased severity of storms in the U.S. and rising carbon emissions, etc.
Facebook
TwitterThis dataset consists of Level II weather radar data collected from Next-Generation Radar (NEXRAD) stations located in the contiguous United States, Alaska, Hawaii, U.S. territories and at military base sites. NEXRAD is a network of 160 high-resolution Doppler weather radars operated by the NOAA National Weather Service (NWS), the Federal Aviation Administration (FAA), and the U.S. Air Force (USAF). Doppler radars detect atmospheric precipitation and winds, which allow scientists to track and anticipate weather events, such as rain, ice pellets, snow, hail, and tornadoes, as well as some non-weather objects like birds and insects. NEXRAD stations use the Weather Surveillance Radar - 1988, Doppler (WSR-88D) system. This is a 10 cm wavelength (S-Band) radar that operates at a frequency between 2,700 and 3,000 MHz. The radar system operates in two basic modes: a slow-scanning Clear Air Mode (Mode B) for analyzing air movements when there is little or no precipitation activity in the area, and a Precipitation Mode (Mode A) with a faster scan for tracking active weather. The two modes employ nine Volume Coverage Patterns (VCPs) to adequately sample the atmosphere based on weather conditions. A VCP is a series of 360 degree sweeps of the antenna at pre-determined elevation angles and pulse repetition frequencies completed in a specified period of time. The radar scan times 4.5, 5, 6 or 10 minutes depending on the selected VCP. The NEXRAD products are divided into multiple data processing levels. The lower Level II data contain the three meteorological base data quantities at original resolution: reflectivity, mean radial velocity, and spectrum width. With the advent of dual polarization beginning in 2011, additional base products of differential reflectivity, correlation coefficient and differential phase are available. Level II data are recorded at all NWS and most USAF and FAA WSR-88D sites. From the Level II quantities, computer processing generates numerous meteorological analysis Level 3 products. NEXRAD data are acquired by the NOAA National Centers for Environmental Information (NCEI) for archiving and dissemination to users. Data coverage varies by station and ranges from June 1991 to 1 day from present. Most stations began observing in the mid-1990s, and most period of records are continuous.
Facebook
Twitter
Facebook
TwitterStorm Data is provided by the National Weather Service (NWS) and contain statistics on personal injuries and damage estimates. Storm Data covers the United States of America. The data began as early as 1950 through to the present, updated monthly with up to a 120 day delay possible. NCDC Storm Event database allows users to find various types of storms recorded by county, or use other selection criteria as desired. The data contain a chronological listing, by state, of hurricanes, tornadoes, thunderstorms, hail, floods, drought conditions, lightning, high winds, snow, temperature extremes and other weather phenomena.