Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The Office of Water Prediction (OWP) National Water Center provides water information products from version 2.1 of the National Water Model (NWM). Information about NWM products available through the OWP website can be found in this Product Description Document. Advisory: NWM products do not yet incorporate anthropogenic influence and should be used with some caution. The NWM is currently undergoing extensive validation and verification to identify where scientific updates to the model can make the most improvement. The next version of the NWM will be released in the late spring 2020 time frame. For more information about the NWM, go here.
Please note, the mapping interface and NWM products and web services are experimental. In addition to products from the NWM (streamflow, soil saturation), two products from the National Snow Analysis (snow depth, snow water equivalent) are available, as well as several useful reference maps from various sources. The OWP is seeking to improve the availability and quality of its products and services based on user feedback. Comments regarding any of the experimental NWM products and web services should be submitted through the NWM online survey form.
The OWP also provides a range of NWS official water information through the following web sites.
Official river observations and forecast information: https://water.weather.gov/ahps Snow Information: https://www.nohrsc.noaa.gov Precipitation Frequency Estimates: https://www.weather.gov/owp/hdsc Comments? Questions? Please Contact nws.nwc.ops@noaa.gov.
Facebook
TwitterThe Local Climatological Data Map Viewer provided by NOAA's National Centers for Environmental Information (NCEI) is an interactive map providing access to metadata, data, and images about local climatological data.
Layers available on the interactive map Local Climatological Data
Usage Tips Click on map to identify data of interest (or use the available tools to define a rectangular area) Results will appear on left, showing samples near the click point. Mouse-over the list to highlight data on the map In the results, click on an entry to view the station details and to access data
Facebook
TwitterThis is the web map component used in NCEI's Natural Hazards Data Viewer. Note: this link points to the older version of the Natural Hazards Viewer; the newer version has not yet been released. This web map is under development and may change at any time.Included are layers for Historical Tsunami Events, Tsunami Observations, Significant Earthquakes, Significant Volcanic Events, Volcano Locations, Current DARTs and Retrospective BPR Deployments, Historical Tsunami Marigrams, Tsunami-Capable Tide Stations, Plate Boundaries, Modeled Tsunami Travel Time Contours, and Tsunami Energy Plots for Selected Events.
Facebook
TwitterThe Daily Summaries Map Viewer provided by NOAA's National Centers for Environmental Information (NCEI) is an interactive map providing access to data and images about current and historical daily conditions available from the Global Historical Climatology Network - Daily (GHCN-D) station network.Layers available on the interactive map:Daily Summaries (GHCN-D)Usage Tips:Click on map to identify data of interest (or use the available tools to define a rectangular area). Results will appear on left, showing samples near the click point. Mouse-over the list to highlight data on the map. In the results, click on an entry to view the station details and to access data.
Facebook
TwitterThe Sea Level Rise and Coastal Flooding Impacts Viewer depicts potential sea level rise and its associated impacts on the nation's coastal areas. These coastal areas include all the states (except for Alaska, Louisiana, and Great Lake states) and the U.S. territories of Guam, Puerto Rico, Saipan, and the U.S. Virgin Islands. The purpose of the mapping viewer is to provide coastal managers and scientists with a preliminary look at sea level rise (slr) and coastal flooding impacts. Being able to visualize potential impacts from sea level rise is a powerful teaching and planning tool, and the viewer brings this capability to coastal communities. The viewer is a screening-level tool that uses nationally consistent data sets and analyses. Data and maps provided can be used at several scales to help gauge trends and prioritize actions for different scenarios. The Sea Level Rise and Coastal Flooding Impacts Viewer may be accessed at: http://www.coast.noaa.gov/slr/. Some of the features of this tool are: 1. Displays potential future sea levels 2. Provides simulations of sea level rise at local landmarks 3. Communicates the spatial uncertainty of mapped sea levels 4. Models potential marsh migration due to sea level rise 5. Overlays social and economic data onto potential sea level rise 6. Examines how tidal flooding will become more frequent with sea level rise
Facebook
TwitterThis project was a cooperative effort among the National Ocean Service, National Centers for Coastal Ocean Science, Center for Coastal Monitoring and Assessment; the University of Hawaii; and Analytical Laboratories of Hawaii, LLC. The goal of the work was to develop coral reef mapping methods and compare benthic habitat maps generated by photointerpreting georeferenced color aerial photography...
Facebook
TwitterThis project was a cooperative effort among the National Ocean Service, National Centers for Coastal Ocean Science, Center for Coastal Monitoring and Assessment; the University of Hawaii; and Analytical Laboratories of Hawaii, LLC. The goal of the work was to develop coral reef mapping methods and compare benthic habitat maps generated by photointerpreting georeferenced color aerial photography, hyperspectral and IKONOS satellite imagery. Twenty-seven distinct benthic habitat types within eleven zones were mapped directly into a GIS system using visual interpretation of orthorectified aerial photographs and hyperspectral imagery. Benthic features were mapped that covered an area of 790 km^2. In all, 204 km^2 of unconsolidated sediment, 171 km^2 of submerged vegetation, and 415 km^2 of coral reef and colonized hardbottom were mapped. The Biogeography program developed an ArcIMS browser to allow users to view maps of the Island of Niihau and perform basis queries of the data over the internet.
Facebook
TwitterThe NOAA Chart Display Service is available in two formats:Esri REST ServiceOGC Web Map Service (WMS)There is also a NOAA Chart Display Service Mapbox Tiles (MBTiles) format for offline applications.Offline maps are useful for applications where users expect to travel through areas with limited data connectivity or who want to save on mobile roaming charges while traveling abroad. MBTiles files are SQLite databases containing tiles and metadata tables for storing tilesets. More information about the MBTiles specification is at GitHub.To download ENC-based offline tiles, visit the NOAA Chart Display Service MBTile Download site, select a region, select the Baseline link, and save the MBTiles file to your computer. Baseline MBTiles packages are updated weekly.
Facebook
TwitterPublic Domain Mark 1.0https://creativecommons.org/publicdomain/mark/1.0/
License information was derived automatically
This copy of the underlying data for the Coastal Ecosystems Map was downloaded on April 17, 2025 before the map viewer was decommissioned on May 5, 2025. The directory structure follows the order that the original map layers were in (Physical Data, Biotic Data, Living Marine Resources, Socioeconomic Conditions, Environmental Quality, Jurisdictions). You can view what the original map viewer looked like here https://web.archive.org/web/20250423220047/https://www.ncei.noaa.gov/maps/coastal-ecosystems/viewer.htm but note that the original functionality might not work through the Wayback Machine. The original url (https://www.ncei.noaa.gov/maps/coastal-ecosystems/viewer.htm) now points to a resource called the Gulf Data Atlas, where the data can be viewed and filtered in a map viewer. Each subdirectory contains more subdirectories for various layers. In those, there are directories for metadata and data, along with csvs of the data and metadata links that were used to populate these directories. The links were copied from the original viewer for each layer. Output logs (when present) are of the wget commands used to download data. Sometimes links would 404, and these would be documented in the output logs.
Facebook
TwitterThese data were created as part of the National Oceanic and Atmospheric Administration Office for Coastal Management's efforts to create an online mapping viewer depicting potential sea level rise and its associated impacts on the nation's coastal areas. The purpose of the mapping viewer is to provide coastal managers and scientists with a preliminary look at sea level rise (slr) and coastal fl...
Facebook
TwitterThese data were created as part of the National Oceanic and Atmospheric Administration Office for Coastal Management's efforts to create an online mapping viewer called the NOAA Lake Level Viewer. It depicts potential lake level rise and fall and its associated impacts on the nation's coastal areas. The purpose of the mapping viewer is to provide coastal managers and scientists with a preliminary look at lake level change, coastal flooding impacts, and exposed lakeshore. The viewer is a screening-level tool that uses nationally consistent data sets and analyses. Data and maps provided can be used at several scales to help gauge trends and prioritize actions for different scenarios. The NOAA Lake Level Viewer may be accessed at: https://coast.noaa.gov/llv. This metadata record describes the Lake Superior digital elevation model (DEM), which is a part of a series of DEMs produced for the National Oceanic and Atmospheric Administration Office for Coastal Management's Lake Level Viewer described above. This DEM includes the best available lidar, US Army Corps of Engineer dredge surveys, and National Park Service multibeam data known to exist at the time of DEM creation that met project specifications. This DEM includes data for Alger, Baraga, Chippewa, Gogebic, Houghton, Keweenaw, Luce, Marquette, and Ontonagon counties in Michigan; Cook, Lake, and St. Louis counties in Minnesota; and Ashland, Bayfield, Douglas, and Iron counties in Wisconsin. The DEM was produced from the following lidar data sets: 1. 2007, USACE NCMP Topobathy Lidar: Lake Superior (Apostle Islands) and Lake Ontario (NY, WI) 2. 2008, USACE NCMP Topobathy Lidar: Lake Superior (Wisconsin and Michigan) 3. 2009, USACE NCMP Topobathy Lidar: Lake Superior (Duluth, MN) 4. 2009, USACE NCMP Topobathy Lidar: Isle Royale (MI) 5. 2009, USACE NCMP Topobathy Lidar: Apostle Islands, Wisconsin 6. 2009, USACE Lidar: Duluth, MN and Superior, WI (Including shoreline in Douglas, Bayfield, Ashland, and Iron Counties) 7. 2010, EPA Great Lakes Restoration Initiative (GLRI) Bathymetric Lidar: Lake Superior (MI, MN, WI) 8. 2011, USACE NCMP Topobathy Lidar: MI/NY Great Lakes 9. 2011, Northeast Minnesota / Arrowhead Lidar 10. 2013, USACE NCMP Topobathy Lidar: Stamp Sands, Lake Superior (MI) 11. 2013, USACE NCMP Topobathy Lidar: St. Marys River (MI) 12. 2013, USACE NCMP Topobathy Lidar: Lake Superior (MI) 13. 2015, FEMA Ashland County 14. 2016, USACE NCMP Topobathy Lidar: Stamp Sands (MI) The DEM was produced from the following sonar data sets: 15. USACE Harbor Dredge Surveys (9 surveys) 16. 2013, National Park Service, Pictured Rocks National Lakeshore Multibeam Sonar 17. 2014, National Park Service, Pictured Rocks National Lakeshore Multibeam Sonar The DEM is referenced vertically to the North American Vertical Datum of 1988 (NAVD88) with vertical units of meters and horizontally to the North American Datum of 1983 (NAD83). The resolution of the DEM is approximately 3 meters.
Facebook
TwitterThe Daily Observational Data Map Viewer provided by NOAA's National Centers for Environmental Information (NCEI) is an interactive map providing access to metadata, data, and images about daily weather stations from numerous networks.
Layers available on the interactive map GHCN Daily Global Summary of the Day Daily Climate Normals
Usage Tips Click on map to identify data of interest (or use the available tools to define a rectangular area) Results will appear on left, showing samples near the click point. Mouse-over the list to highlight data on the map In the results, click on an entry to view the station details and to access data
Facebook
TwitterThese data were created as part of the National Oceanic and Atmospheric Administration Office for Coastal Management's efforts to create an online mapping viewer depicting potential sea level rise and its associated impacts on the nation's coastal areas. The purpose of the mapping viewer is to provide coastal managers and scientists with a preliminary look at sea level rise (slr) and coastal flooding impacts. The viewer is a screening-level tool that uses nationally consistent data sets and analyses. Data and maps provided can be used at several scales to help gauge trends and prioritize actions for different scenarios. The Sea Level Rise and Coastal Flooding Impacts Viewer may be accessed at: https://www.coast.noaa.gov/slr These data depict the mapping confidence of the associated Sea Level Rise inundation data, for the sea level rise amount specified. Areas that have a low degree of confidence, or high uncertainty, represent locations that may be mapped correctly (either as inundated or dry) less than 8 out of 10 times. Areas that have a high degree of confidence, or low uncertainty, represent locations that will be correctly mapped (either as inundated or dry) more than 8 out of 10 times or that there is an 80 percent degree of confidence that these areas are correctly mapped. Areas mapped as dry (no inundation) with a high confidence or low uncertainty are coded as 0. Areas mapped as dry or wet with a low confidence or high uncertainty are coded as 1. Areas mapped as wet (inundation) with a high confidence or low uncertainty are coded as 2. The NOAA Office for Coastal Management has tentatively adopted an 80 percent rank (as either inundated or not inundated) as the zone of relative confidence. The use of 80 percent has no special significance but is a commonly used rule of thumb measure to describe economic systems (Epstein and Axtell, 1996). In short, the method includes the uncertainty in the lidar derived elevation data (root mean square error, or RMSE) and the uncertainty in the modeled tidal surface from the NOAA VDATUM model (RMSE). This uncertainty is combined and mapped to show that the inundation depicted in this data is not really a hard line, but rather a zone with greater and lesser chances of getting wet. For a detailed description of the confidence level and its computation, please see the Mapping Inundation Uncertainty document available at: https://coast.noaa.gov/data/digitalcoast/pdf/mapping-inundation-uncertainty.pdf
Facebook
TwitterThe Historical Map and Chart Collection of the Office of Coast Survey contains over 35000 historical maps and charts from the mid 1700s up through the 2020s, including the final cancelled editions of NOAA's raster charts. These images are available for viewing or download through the image catalog at https://historicalcharts.noaa.gov/. The Collection includes some of the nation's earliest nauti...
Facebook
TwitterNOAA Electronic Navigational Charts (NOAA ENC®) are in International Hydrographic Organization (IHO) S-57 format, which is the standard used for the exchange of digital hydrographic data. NOAA ENC Online optimizes the viewing of the entire ENC suite, using the display rules defined by the IHO S-52 Specifications for Chart Content and Display Aspects of ECDIS.
While features in a single NOAA ENC represent the geographic region that is depicted in that particular ENC cell, NOAA ENC Online provides a continuous depiction of the U.S. coastal waters as displayed on electronic chart systems. (See U.S. Chart No. 1for legend.)
ENCs are updated weekly and include all of the latest Notice to Mariners corrections.
The NOAA ENC Online viewer is powered by Esri Maritime Chart Server technology. The technology provides features that can be leveraged in various GIS and OGC WMS compliant applications.
ENC data may also be
accessed as a map service or web mapping service (WMS) from the "https://gis.charttools.noaa.gov/arcgis/rest/services/encdirect">encdirect
service link. The services vary in spatial coverage and layer
contents. For local or offline access, utilize the geoprocessing service
tools in the service link.
Facebook
TwitterThis layer is deprecated as of April 3, 2023. Use this layer as a replacement: https://noaa.maps.arcgis.com/home/item.html?id=b0cdf263cea24544b0da2fc00fb2b259This nowCOAST time-enabled map service provides maps of NOAA/National Weather Service RIDGE2 mosaics of base reflectivity images across the Continental United States (CONUS) as well as Puerto Rico, Hawaii, Guam and Alaska with a 2 kilometer (1.25 mile) horizontal resolution. The mosaics are compiled by combining regional base reflectivity radar data obtained from 158 Weather Surveillance Radar 1988 Doppler (WSR-88D) also known as NEXt-generation RADar (NEXRAD) sites across the country operated by the NWS and the Dept. of Defense and also from data from Terminal Doppler Weather Radars (TDWR) at major airports. The colors on the map represent the strength of the energy reflected back toward the radar. The reflected intensities (echoes) are measured in dBZ (decibels of z). The color scale is very similar to the one used by the NWS RIDGE2 map viewer. The radar data itself is updated by the NWS every 10 minutes during non-precipitation mode, but every 4-6 minutes during precipitation mode. To ensure nowCOAST is displaying the most recent data possible, the latest mosaics are downloaded every 5 minutes. For more detailed information about the update schedule, see: https://new.nowcoast.noaa.gov/help/#section=updateschedule
Background Information
Reflectivity is related to the power, or intensity, of the reflected radiation that is sensed by the radar antenna. Reflectivity is expressed on a logarithmic scale in units called dBZ. The "dB" in the dBz scale is logarithmic and is unit less, but is used only to express a ratio. The "z" is the ratio of the density of water drops (measured in millimeters, raised to the 6th power) in each cubic meter (mm^6/m^3). When the "z" is large (many drops in a cubic meter), the reflected power is large. A small "z" means little returned energy. In fact, "z" can be less than 1 mm^6/m^3 and since it is logarithmic, dBz values will become negative, as often in the case when the radar is in clear air mode and indicated by earth tone colors. dBZ values are related to the intensity of rainfall. The higher the dBZ, the stronger the rain rate. A value of 20 dBZ is typically the point at which light rain begins. The values of 60 to 65 dBZ is about the level where 3/4 inch hail can occur. However, a value of 60 to 65 dBZ does not mean that severe weather is occurring at that location. The best reflectivity is lowest (1/2 degree elevation angle) reflectivity scan from the radar. The source of the base reflectivity mosaics is the NWS Southern Region Radar Integrated Display with Geospatial Elements (RIDGE2).
Time Information
This map is time-enabled, meaning that each individual layer contains time-varying data and can be utilized by clients capable of making map requests that include a time component.
This particular service can be queried with or without the use of a time component. If the time parameter is specified in a request, the data or imagery most relevant to the provided time value, if any, will be returned. If the time parameter is not specified in a request, the latest data or imagery valid for the present system time will be returned to the client. If the time parameter is not specified and no data or imagery is available for the present time, no data will be returned.
In addition to ArcGIS Server REST access, time-enabled OGC WMS 1.3.0 access is also provided by this service.
Due to software limitations, the time extent of the service and map layers displayed below does not provide the most up-to-date start and end times of available data. Instead, users have three options for determining the latest time information about the service:
Issue a returnUpdates=true request for an individual layer or for
the service itself, which will return the current start and end times of
available data, in epoch time format (milliseconds since 00:00 January 1,
1970). To see an example, click on the "Return Updates" link at the bottom of
this page under "Supported Operations". Refer to the ArcGIS REST API Map Service Documentation for more information.
Issue an Identify (ArcGIS REST) or GetFeatureInfo (WMS) request against
the proper layer corresponding with the target dataset. For raster
data, this would be the "Image Footprints with Time Attributes" layer
in the same group as the target "Image" layer being displayed. For
vector (point, line, or polygon) data, the target layer can be queried
directly. In either case, the attributes returned for the matching
raster(s) or vector feature(s) will include the following:
validtime: Valid timestamp.
starttime: Display start time.
endtime: Display end time.
reftime: Reference time (sometimes reffered to as
issuance time, cycle time, or initialization time).
projmins: Number of minutes from reference time to valid
time.
desigreftime: Designated reference time; used as a
common reference time for all items when individual reference
times do not match.
desigprojmins: Number of minutes from designated
reference time to valid time.
Query the nowCOAST LayerInfo web service, which has been created to
provide additional information about each data layer in a service,
including a list of all available "time stops" (i.e. "valid times"),
individual timestamps, or the valid time of a layer's latest available
data (i.e. "Product Time"). For more information about the LayerInfo
web service, including examples of various types of requests, refer to
the nowCOAST help documentation at:https://new.nowcoast.noaa.gov/help/#section=layerinfo
References
NWS, 2003: NWS Product Description Document for Radar Integrated Display with Geospatial Elements Version 2- RIDGE2, NWS/SRH, Fort Worth, Texas (Available at https://products.weather.gov/PDD/RIDGE_II_PDD_ver2.pdf). NWS, 2013: Radar Images for GIS Software (https://www.srh.noaa.gov/jetstream/doppler/gis.htm).
Facebook
TwitterThese data were created as part of the National Oceanic and Atmospheric Administration Office for Coastal Management's efforts to create an online mapping viewer called the Sea Level Rise and Coastal Flooding Impacts Viewer. It depicts potential sea level rise and its associated impacts on the nation's coastal areas. The purpose of the mapping viewer is to provide coastal managers and scientist...
Facebook
TwitterThese data were created as part of the National Oceanic and Atmospheric Administration Office for Coastal Management's efforts to create an online mapping viewer called the Sea Level Rise and Coastal Flooding Impacts Viewer. It depicts potential sea level rise and its associated impacts on the nation's coastal areas. The purpose of the mapping viewer is to provide coastal managers and scientists with a preliminary look at sea level rise and coastal flooding impacts. The viewer is a screening-level tool that uses nationally consistent data sets and analyses. Data and maps provided can be used at several scales to help gauge trends and prioritize actions for different scenarios. The Sea Level Rise and Coastal Flooding Impacts Viewer may be accessed at: https://coast.noaa.gov/slr. This metadata record describes the New Hampshire digital elevation model (DEM), which is a part of a series of DEMs produced for the National Oceanic and Atmospheric Administration Office for Coastal Management's Sea Level Rise and Coastal Flooding Impacts Viewer described above. This DEM includes the best available lidar known to exist at the time of DEM creation that met project specifications. This DEM includes data for Rockingham and Strafford Counties. The DEM was produced from the following lidar data sets: 1. 2013 - 2014 USGS Hurricane Sandy Supplemental for NE (RI, MA, NH) 2. 2011 USGS ARRA Lidar for the Northeast: Massachusetts The DEM is referenced vertically to the North American Vertical Datum of 1988 (NAVD88, Geoid12B) with vertical units of meters and horizontally to the North American Datum of 1983 (NAD83). The resolution of the DEM is approximately 3 meters.
Facebook
TwitterNOAA nowCOAST is a Geographic Information System (GIS)-based Web mapping portal which provides users with an integrated, one-stop access to online, real-time coastal environmental observations and NOAA forecasts for any region in the coastal United States. The information includes 1) displays of the latest surface weather and ocean observations, satellite cloud imagery, weather radar reflectivity mosaic, sea surface temperature and meteorological analyses, gridded weather forecasts, short-duration weather warnings, and tropical cyclone track forecasts and 2) geo-referenced hyperlinks to over fifteen thousands web pages providing current observations from meteorological, oceanographic, river, water and air quality observing networks and NOAA forecast products. Users can access nowCOAST via its map viewer using a web browser or web map services.
Facebook
TwitterThe National Bathymetric Source (NBS) project creates and maintains high-resolution bathymetry composed of the best available data. This project enables the creation of next-generation nautical charts while also providing support for modeling, industry, science, regulation, and public curiosity. Primary sources of bathymetry include NOAA and U.S. Army Corps of Engineers hydrographic surveys and topographic bathymetric (topo-bathy) lidar (light detection and ranging) data. Data submitted through the NOAA Office of Coast Survey’s external source data process are also included, with gaps in deep water filled through Global Multi-Resolution Topography, a merged model of bathymetry. Different vertical datums and file formats are made available to meet various uses. The BlueTopo folder includes multilayer floating point GeoTIFFs with associated Raster Attribute Tables (RAT) containing elevation, vertical uncertainty, with other quality metrics and source information. These files are arranged in a spatial tiling and resolution scheme corresponding to the Electronic Navigational Chart (ENC) but are not for navigation due to the inclusion of additional non-navigation data and non-navigation vertical datums. For navigational datasets please see the S-102 distribution portal. "nowCOAST" provides public access to BlueTopo through the nowCOAST viewer, web map tile services (WMTS), and links to individual datasets.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The Office of Water Prediction (OWP) National Water Center provides water information products from version 2.1 of the National Water Model (NWM). Information about NWM products available through the OWP website can be found in this Product Description Document. Advisory: NWM products do not yet incorporate anthropogenic influence and should be used with some caution. The NWM is currently undergoing extensive validation and verification to identify where scientific updates to the model can make the most improvement. The next version of the NWM will be released in the late spring 2020 time frame. For more information about the NWM, go here.
Please note, the mapping interface and NWM products and web services are experimental. In addition to products from the NWM (streamflow, soil saturation), two products from the National Snow Analysis (snow depth, snow water equivalent) are available, as well as several useful reference maps from various sources. The OWP is seeking to improve the availability and quality of its products and services based on user feedback. Comments regarding any of the experimental NWM products and web services should be submitted through the NWM online survey form.
The OWP also provides a range of NWS official water information through the following web sites.
Official river observations and forecast information: https://water.weather.gov/ahps Snow Information: https://www.nohrsc.noaa.gov Precipitation Frequency Estimates: https://www.weather.gov/owp/hdsc Comments? Questions? Please Contact nws.nwc.ops@noaa.gov.