Geospatial data about NOAA Ocean Reports Sea Surface Height Annual Mean. Export to CAD, GIS, PDF, CSV and access via API.
This map service provides maps depicting the latest surface weather and marine weather observations at observing sites using the international station model. The station model is a method for representing information collected at an observing station using symbols and numbers. The station model depicts current weather conditions, cloud cover, wind speed, wind direction, visibility, air temperature, dew point temperature, sea surface water temperature, significant wave height, air pressure adjusted to mean sea level, and the change in air pressure over the last 3 hours. The circle in the model is centered over the latitude and longitude coordinates of the station. The total cloud cover is expressed as a fraction of cloud covering the sky and is indicated by the amount of circle filled in; Wind speed and direction are represented by a wind barb whose line extends from the cover cloud circle towards the direction from which the wind is blowing. The observations included in this map service are organized into three separate group layers: 1) Wind velocity (wind barb) observations, 2) Cloud Cover observations, and 3) All other observations, which are displayed as numerical values (e.g. Air Temperature, Wind Gust, Visibility, Sea Surface Temperature, etc.). Additionally, due to the density of weather/ocean observations in this map service, each of these group data layers has been split into ten individual "Scale Band" layers, with each one visible for a certain range of map scales. Thus, to ensure observations are displayed at any scale, users should make sure to always specify all six corresponding scale band layers in every map request. This will result in the scale band most appropriate for your present zoom level being shown, resulting in a clean, uncluttered display. As you zoom in, additional observations will appear. The observations in this service are updated approximately every 10 minutes. However, since the reporting frequency varies by network or station, the observations for a particular station may update only once per hour.
Timeseries data from 'Wanaque River at Wanaque Reservoir elevation (New Jersey)' (urn:ioos:station:gov.noaa.water:WRDN4) cdm_data_type=TimeSeries cdm_timeseries_variables=station,longitude,latitude contributor_email=feedback@axiomdatascience.com contributor_name=Axiom Data Science contributor_role=processor contributor_role_vocabulary=NERC contributor_url=https://www.axiomdatascience.com Conventions=IOOS-1.2, CF-1.6, ACDD-1.3, NCCSV-1.1 defaultDataQuery=z,time,height_geoid_local_station_datum,water_surface_height_above_reference_datum_geoid_localstationdatum&time>=max(time)-3days Easternmost_Easting=-74.293056 featureType=TimeSeries geospatial_lat_max=41.045 geospatial_lat_min=41.045 geospatial_lat_units=degrees_north geospatial_lon_max=-74.293056 geospatial_lon_min=-74.293056 geospatial_lon_units=degrees_east geospatial_vertical_max=0.0 geospatial_vertical_min=0.0 geospatial_vertical_positive=up geospatial_vertical_units=m history=Downloaded from NOAA Water Resources Regions, National Weather Service at id=37871 infoUrl=https://sensors.ioos.us/#metadata/37871/station institution=NOAA Water Resources Regions, National Weather Service naming_authority=com.axiomdatascience Northernmost_Northing=41.045 platform=fixed platform_name=Wanaque River at Wanaque Reservoir elevation (New Jersey) platform_vocabulary=http://mmisw.org/ont/ioos/platform processing_level=Level 2 references=https://water.weather.gov/ahps2/hydrograph.php?gage=WRDN4,, sourceUrl=https://sensors.axds.co/api/ Southernmost_Northing=41.045 standard_name_vocabulary=CF Standard Name Table v72 time_coverage_end=2023-02-14T12:00:00Z time_coverage_start=2015-05-05T12:45:00Z Westernmost_Easting=-74.293056
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
National Ocean Service Hydrographic Surveys CollectionThis feature layer, utilizing National Geospatial Data Asset (NGDA) data from the National Oceanic and Atmospheric Administration (NOAA), displays National Ocean Service (NOS) Hydrographic Surveys. Per NOAA, “hydrographic survey data primarily consist of water depths, but may also include features (e.g. rocks, wrecks), navigation aids, shoreline identification, and bottom type information.”Survey H03203 (Moose Point to Point Possession)Data currency: This cached Esri federal service is checked weekly for updates from its enterprise federal source (Web Mercator/NOS Hydro Dynamic) and will support mapping, analysis, data exports and OGC API – Feature access.NGDAID: 45 (NOS Hydrographic Surveys Collection)OGC API Features Link: (National Ocean Service Hydrographic Surveys Collection - OGC Features) copy this link to embed it in OGC Compliant viewersFor more information: Hydrographic Survey Data; NOS Hydrographic Survey DataFor feedback please contact: Esri_US_Federal_Data@esri.comNGDA Data SetThis data set is part of the NGDA Elevation Theme Community. Per the Federal Geospatial Data Committee (FGDC), Elevation is defined as "the measured vertical position of the earth surface and other landscape or bathymetric features relative to a reference datum typically related to sea level. These points normally describe bare-earth positions but may also describe the top surface of buildings and other objects, vegetation structure, or submerged objects. Elevation data can be stored as a three-dimensional array or as a continuous surface such as a raster, triangulated irregular network, or contours. Elevation data may also be represented in other derivative forms such as slope, aspect, ridge and drainage lines, and shaded relief."For other NGDA Content: Esri Federal Datasets
This nowCOAST time-enabled map service provides maps depicting NWS gridded forecasts of the following selected sensible surface weather variables or elements: air temperature (including daily maximum and minimum), apparent air temperature, dew point temperature, relative humidity, wind velocity, wind speed, wind gust, total sky cover, and significant wave height for the next 6-7 days. Additional forecast maps are available for 6-hr quantitative precipitation (QPF), 6-hr quantitative snowfall, and 12-hr probability of precipitation. These NWS forecasts are from the National Digital Forecast Database (NDFD) at a 2.5 km horizontal spatial resolution. Surface is defined as 10 m (33 feet) above ground level (AGL) for wind variables and 2 m (5.5 ft) AGL for air temperature, dew point temperature, and relative humidity variables. The forecasts extend out to 7 days from 0000 UTC on Day 1 (current day). The forecasts are updated in the nowCOAST map service four times per day. For more detailed information about the update schedule, please see: https://new.nowcoast.noaa.gov/help/#section=updateschedule
The forecast projection availability times listed below are generally accurate, however forecast interval and forecast horizon vary by region and variable. For the most up-to-date information, please see https://graphical.weather.gov/docs/datamanagement.php.
The forecasts of the air, apparent, and dew point temperatures are displayed using different colors at 2 degree Fahrenheit increments from -30 to 130 degrees F in order to use the same color legend throughout the year for the United States. This is the same color scale used for displaying the NDFD maximum and minimum air temperature forecasts. Air and dew point temperature forecasts are available every hour out to +36 hours from forecast issuance time, at 3-hour intervals from +36 to +72 hours, and at 6-hour intervals from +72 to +168 hours (7 days). Maximum and minimum air temperature forecasts are each available every 24 hours out to +168 hours (7 days) from 0000 UTC on Day 1 (current day).
The relative humidity (RH) forecasts are depicted using different colors for every 5-percent interval. The increment and color scale used to display the RH forecasts were developed to highlight NWS local fire weather watch/red flag warning RH criteria at the low end (e.g. 15, 25, & 35% thresholds) and important high end RH thresholds for other users (e.g. agricultural producers) such as 95%. The RH forecasts are available every hour out to +36 hours from 0000 UTC on Day 1 (current day), at 3-hour intervals from +36 to +72 hours, and at 6-hour intervals from +72 to +168 hours (7 days).
The 6-hr total precipitation amount forecasts or QPFs are symbolized using different colors at 0.01, 0.10, 0.25 inch intervals, at 1/4 inch intervals up to 4.0 (e.g. 0.50, 0.75, 1.00, 1.25, etc.), at 1-inch intervals from 4 to 10 inches and then at 2-inch intervals up to 14 inches. The increments from 0.01 to 1.00 or 2.00 inches are similar to what are used on NCEP/Weather Prediction Center's QPF products and the NWS River Forecast Center (RFC) daily precipitation analysis. Precipitation forecasts are available for each 6-hour period out to +72 hours (3 days) from 0000 UTC on Day 1 (current day).
The 6-hr total snowfall amount forecasts are depicted using different colors at 1-inch intervals for snowfall greater than 0.01 inches. Snowfall forecasts are available for each 6-hour period out to +48 hours (2 days) from 0000 UTC on Day 1 (current day).
The 12-hr probability of precipitation (PoP) forecasts are displayed for probabilities over 10 percent using different colors at 10, 20, 30, 60, and 85+ percent. The probability of precipitation forecasts are available for each 12-hour period out to +72 hours (3 days) from 0000 UTC on Day 1 (current day).
The wind speed and wind gust forecasts are depicted using different colors at 5 knots increment up to 115 knots. The legend includes tick marks for both knots and miles per hour. The same color scale is used for displaying the RTMA surface wind speed forecasts. The wind velocity is depicted by curved wind barbs along streamlines. The direction of the wind is indicated with an arrowhead on the wind barb. The flags on the wind barb are the standard meteorological convention in units of knots. The wind speed and wind velocity forecasts are available hourly out to +36 hours from 00:00 UTC on Day 1 (current day), at 3-hour intervals out to +72 hours, and at 6-hour intervals from +72 to +168 hours (7 days). The wind gust forecasts are available hourly out to +36 hours from 0000 UTC on Day 1 (current day) and at 3-hour intervals out to +72 hours (3 days).
The total sky cover forecasts are displayed using progressively darker shades of gray for 10, 30, 60, and 80+ percentage values. Sky cover values under 10 percent are shown as transparent. The sky cover forecasts are available for each hour out to +36 hours from 0000 UTC on Day 1 (current day), every 3 hours from +36 to +72 hours, and every 6 hours from +72 to +168 hours (7 days).
The significant wave height forecasts are symbolized with different colors at 1-foot intervals up to 20 feet and at 5-foot intervals from 20 feet to 35+ feet. The significant wave height forecasts are available for each hour out to +36 hours from 0000 UTC on Day 1 (current day), every 3 hours from +36 to +72 hours, and every 6 hours from +72 to +144 hours (6 days).
Background Information
The NDFD is a seamless composite or mosaic of gridded forecasts from individual NWS Weather Forecast Offices (WFOs) from around the U.S.
as well as the NCEP/Ocean
Prediction Center and National Hurricane Center/TAFB. NDFD has a spatial resolution of 2.5 km. The 2.5km resolution NDFD forecasts are presently experimental,
but are scheduled to become operational in May/June 2014.
The time resolution of forecast projections varies by variable (element)
based on user needs, forecast skill, and forecaster workload. Each WFO prepares gridded NDFD forecasts for their specific geographic area of
responsibility. When these locally generated forecasts are merged into a national mosaic, occasionally areas of discontinuity will be evident.
Staff at NWS forecast offices attempt to resolve discontinuities along the boundaries of the forecasts by coordinating with forecasters at
surrounding WFOs and using workstation forecast tools that identify and resolve
some of these differences. The NWS is making progress in this area, and recognizes that this is a significant issue in which improvements are still needed.
The NDFD was developed by NWS Meteorological Development Laboratory.
As mentioned above, a curved wind barb with an arrow head is used to display the wind velocity forecasts instead of the traditional wind barb.
The curved wind barb was developed and evaluated
at the Data Visualization Laboratory of the NOAA-UNH Joint Hydrographic Center/Center for Coastal and Ocean Mapping (Ware et al., 2014).
The curved wind barb combines the best features of the wind barb, that it displays speed in a readable form, with the best features of
the streamlines which shows wind patterns. The arrow
head helps to convey the flow direction.
Time Information
This map is time-enabled, meaning that each individual layer contains time-varying data and can be utilized by clients capable of making map requests that include a time component.
This particular service can be queried with or without the use of a time component. If the time parameter is specified in a request, the data or imagery most relevant to the provided time value, if any, will be returned. If the time parameter is not specified in a request, the latest data or imagery valid for the present system time will be returned to the client. If the time parameter is not specified and no data or imagery is available for the present time, no data will be returned.
In addition to ArcGIS Server REST access, time-enabled OGC WMS 1.3.0 access is also provided by this service.
Due to software limitations, the time extent of the service and map layers displayed below does not provide the most up-to-date start and end times of available data. Instead, users have three options for determining the latest time information about the service:
[Metadata] Tropical storms, hurricanes, and tsunamis create waves that flood low-lying coastal areas. The National Flood Insurance Program (NFIP) produces flood insurance rate maps (FIRMs) that depict flood risk zones referred to as Special Flood Hazard Areas (SFHA) based modeling 1%-annual-chance flood event also referred to as a 100-year flood. The purpose of the FIRM is twofold: (1) to provide the basis for application of regulatory standards and (2) to provide the basis for insurance rating.SFHAs identify areas at risk from infrequent but severe storm-induced wave events and riverine flood events that are based upon historical record. By law (44 Code of Federal Regulations [CFR] 60.3), FEMA can only map flood risk that will be utilized for land use regulation or insurance rating based on historical data, therefore, future conditions with sea level rise and other impacts of climate change are not considered in FIRMs. It is important to note that FEMA can produce Flood Insurance Rate Maps that include future condition floodplains, but these would be considered “awareness” zones and not to be used for regulatory of insurance rating purposes.The State of Hawai‘i 2018 Hazard Mitigation Plan incorporated the results of modeling and an assessment of vulnerability to coastal flooding from storm-induced wave events with sea level rise (Tetra Tech Inc., 2018). The 1% annual-chance-coastal flood zone with sea level rise (1%CFZ) was modeled to estimate coastal flood extents and wave heights for wave-generating events with sea level rise. Modeling was conducted by Sobis Inc. under State of Hawaiʻi Department of Land and Natural Resources Contract No: 64064. The 1%CFZ with 3.2 feet of sea level rise was utilized to assess vulnerability to coastal event-based flooding in mid to - late century.The 1%CFZ with sea level rise would greatly expand the impacts from a 100-year flood event meaning that more coastal land area will be exposed to damaging waves. For example, over 120 critical infrastructure facilities in the City and County of Honolulu, including water, waste, and wastewater systems and communication and energy facilities would be impacted in the 1%CFZ with 3.2 feet of sea level rise (Tetra Tech Inc., 2018). This is double the number of facilities in the SFHA which includes the impacts of riverine flooding.A simplified version of the Wave Height Analysis for Flood Insurance Studies (WHAFIS) extension (FEMA, 2019b) included in Hazus-MH, was used to create the 1% annual chance coastal floodplain. Hazus is a nationally applicable standardized methodology that contains models for estimating potential losses from earthquakes, floods, tsunamis, and hurricanes (FEMA, 2019a). The current 1%-annual-chance stillwater elevations were collected using the most current flood insurance studies (FIS) for each island conducted by FEMA (FEMA, 2004, 2010, 2014, 2015). The FIS calculates the 1%-annual-chance stillwater elevation, wave setup, and wave run-up (called maximum wave crest) at regularly-spaced transects around the islands based on historical data. Modeling for the 1%CFZ used the NOAA 3-meter digital elevation model (DEM) which incorporates LiDAR data sets collected between 2003 and 2007 from NOAA, FEMA, the State of Hawaiʻi Emergency Management Agency, and the USACE (NOAA National Centers for Environmental Information, 2017).Before Hazus was run for future conditions, it was run for the current conditions and compared to the FEMA regulatory floodplain to determine model accuracy. This also helped determine the stillwater elevation for the large gaps between some transects in the FIS. Hazus was run at 0.5-foot stillwater level intervals and the results were compared to the existing Flood Insurance Rate Map (FIRM). The interval of 0.5-feet was chosen as a small enough step to result in a near approximation of the FIRM while not being too impractically narrow to require the testing of dozens of input elevations. The elevation which matched up best was used as the current base flood elevation.Key steps in modeling the projected 1%CFZ with sea level rise include: (1) generating a contiguous (no gaps along the shoreline) and present-day 1%-annual-chance stillwater elevation based on the most recent FIS, (2) elevating the present-day 1%-annual-chance stillwater elevation by adding projected sea level rise heights, and (3) modeling the projected 1%-annual-chance coastal flood with sea level rise in HAZUS using the 1%-annual-chance wave setup and run-up from the FIS. The 1%CFZ extent and depth was generated using the HAZUS 3.2 coastal flood risk assessment model, 3-meter DEM, the FIS for each island, and the IPCC AR5 upper sea level projection for RCP 8.5 scenario for 0.6 feet, 1.0 feet, 2.0 feet, and 3.2 feet of sea level rise above MHHW (IPCC, 2014). The HAZUS output includes the estimated spatial extent of coastal flooding as well as an estimated flood depth map grid for the four sea level rise projections.Using the current floodplain generated with Hazus, the projected 1%-annual-chance stillwater elevation was generated using the four sea level rise projections. This stillwater elevation with sea level rise was used as a basis for modeling. The projected 1%-annual coastal flood with sea level rise was modeled in Hazus using the current 1%-annual-chance wave setup and run-up from the FIS and the projected 1%-annual-chance stillwater elevation with sea level rise. Statewide GIS Program staff extracted individual island layers for ease of downloading. A statewide layer is also available as a REST service, and is available for download from the Statewide GIS geoportal at https://geoportal.hawaii.gov/, or at the Program's legacy download site at https://planning.hawaii.gov/gis/download-gis-data-expanded/#009. For additional information, please refer to summary metadata at https://files.hawaii.gov/dbedt/op/gis/data/coastal_flood_zones_summary.pdf or contact Hawaii Statewide GIS Program, Office of Planning and Sustainable Development, State of Hawaii; PO Box 2359, Honolulu, Hi. 96804; (808) 587-2846; email: gis@hawaii.gov.
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Geospatial data about NOAA Ocean Reports Sea Surface Height Annual Mean. Export to CAD, GIS, PDF, CSV and access via API.