https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Global Surface Summary of the Day is derived from The Integrated Surface Hourly (ISH) dataset. The ISH dataset includes global data obtained from the USAF Climatology Center, located in the Federal Climate Complex with NCDC. The latest daily summary data are normally available 1-2 days after the date-time of the observations used in the daily summaries.
Over 9000 stations' data are typically available.
The daily elements included in the dataset (as available from each station) are: Mean temperature (.1 Fahrenheit) Mean dew point (.1 Fahrenheit) Mean sea level pressure (.1 mb) Mean station pressure (.1 mb) Mean visibility (.1 miles) Mean wind speed (.1 knots) Maximum sustained wind speed (.1 knots) Maximum wind gust (.1 knots) Maximum temperature (.1 Fahrenheit) Minimum temperature (.1 Fahrenheit) Precipitation amount (.01 inches) Snow depth (.1 inches)
Indicator for occurrence of: Fog, Rain or Drizzle, Snow or Ice Pellets, Hail, Thunder, Tornado/Funnel
You can use the BigQuery Python client library to query tables in this dataset in Kernels. Note that methods available in Kernels are limited to querying data. Tables are at bigquery-public-data.github_repos.[TABLENAME]
. Fork this kernel to get started to learn how to safely manage analyzing large BigQuery datasets.
This public dataset was created by the National Oceanic and Atmospheric Administration (NOAA) and includes global data obtained from the USAF Climatology Center. This dataset covers GSOD data between 1929 and present, collected from over 9000 stations. Dataset Source: NOAA
Use: This dataset is publicly available for anyone to use under the following terms provided by the Dataset Source — http://www.data.gov/privacy-policy#data_policy — and is provided "AS IS" without any warranty, express or implied, from Google. Google disclaims all liability for any damages, direct or indirect, resulting from the use of the dataset.
Photo by Allan Nygren on Unsplash
The NOAA Weather and Climate Toolkit is an application that provides simple visualization and data export of weather and climatological data archived at NCDC. The Toolkit also provides access to weather and climate web services provided from NCDC and other organizations. The Viewer provides tools for displaying custom data overlay, Web Map Services (WMS), animations and basic filters. The export of images and movies is provided in multiple formats. The Data Exporter allows for data export in both vector point/line/polygon and raster grid formats. Current data types supported include: CF-compliant Fridded NetCDF; Generic CF-compliant Irregularly-Spaced/Curvilinear Gridded NetCDF/HDF; GRIB1, GRIB2, GINI, GEMPAK, HDF(CF-compliant) and more gridded formats; GPES Satellite AREA Files; NEXRAD Radar Data(Level-II and Level-III); U.S. Drought Monitor Service from the National Drought Mitigation Center (NDMC); OPeNDAP support for Gridded Datasets
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Data from this dataset can be downloaded/accessed through this dataset page and Kaggle's API.
Severe weather is defined as a destructive storm or weather. It is usually applied to local, intense, often damaging storms such as thunderstorms, hail storms, and tornadoes, but it can also describe more widespread events such as tropical systems, blizzards, nor'easters, and derechos.
The Severe Weather Data Inventory (SWDI) is an integrated database of severe weather records for the United States. The records in SWDI come from a variety of sources in the NCDC archive. SWDI provides the ability to search through all of these data to find records covering a particular time period and geographic region, and to download the results of your search in a variety of formats. The formats currently supported are Shapefile (for GIS), KMZ (for Google Earth), CSV (comma-separated), and XML.
The current data layers in SWDI are:
- Filtered Storm Cells (Max Reflectivity >= 45 dBZ) from NEXRAD (Level-III Storm Structure Product)
- All Storm Cells from NEXRAD (Level-III Storm Structure Product)
- Filtered Hail Signatures (Max Size > 0 and Probability = 100%) from NEXRAD (Level-III Hail Product)
- All Hail Signatures from NEXRAD (Level-III Hail Product)
- Mesocyclone Signatures from NEXRAD (Level-III Meso Product)
- Digital Mesocyclone Detection Algorithm from NEXRAD (Level-III MDA Product)
- Tornado Signatures from NEXRAD (Level-III TVS Product)
- Preliminary Local Storm Reports from the NOAA National Weather Service
- Lightning Strikes from Vaisala NLDN
Disclaimer:
SWDI provides a uniform way to access data from a variety of sources, but it does not provide any additional quality control beyond the processing which took place when the data were archived. The data sources in SWDI will not provide complete severe weather coverage of a geographic region or time period, due to a number of factors (eg, reports for a location or time period not provided to NOAA). The absence of SWDI data for a particular location and time should not be interpreted as an indication that no severe weather occurred at that time and location. Furthermore, much of the data in SWDI is automatically derived from radar data and represents probable conditions for an event, rather than a confirmed occurrence.
Dataset Source: NOAA. This dataset is publicly available for anyone to use under the following terms provided by the Dataset Source — http://www.data.gov/privacy-policy#data_policy — and is provided "AS IS" without any warranty, express or implied, from Google. Google disclaims all liability for any damages, direct or indirect, resulting from the use of the dataset.
Cover photo by NASA on Unsplash
Unsplash Images are distributed under a unique Unsplash License.
The U.S. Climate Normals are a large suite of data products that provide information about typical climate conditions for thousands of locations across the United States. Normals act both as a ruler to compare today’s weather and tomorrow’s forecast, and as a predictor of conditions in the near future. The official normals are calculated for a uniform 30 year period, and consist of annual/seasonal, monthly, daily, and hourly averages and statistics of temperature, precipitation, and other climatological variables from almost 15,000 U.S. weather stations.
NCEI generates the official U.S. normals every 10 years in keeping with the needs of our user community and the requirements of the World Meteorological Organization (WMO) and National Weather Service (NWS). The 1991–2020 U.S. Climate Normals are the latest in a series of decadal normals first produced in the 1950s. These data allow travelers to pack the right clothes, farmers to plant the best crop varieties, and utilities to plan for seasonal energy usage. Many other important economic decisions that are made beyond the predictive range of standard weather forecasts are either based on or influenced by climate normals.
This dataset replaces the previous Time Bias Corrected Divisional Temperature-Precipitation Drought Index. The new divisional data set (NClimDiv) is based on the Global Historical Climatological Network-Daily (GHCN-D) and makes use of several improvements to the previous data set. For the input data, improvements include additional station networks, quality assurance reviews and temperature bias adjustments. Perhaps the most extensive improvement is to the computational approach, which now employs climatologically aided interpolation. This 5km grid based calculation nCLIMGRID helps to address topographic and network variability. This data set is primarily used by the National Oceanic and Atmospheric Administration (NOAA) National Climatic Data Center (NCDC) to issue State of the Climate Reports on a monthly basis. These reports summarize recent temperature and precipitation conditions and long-term trends at a variety of spatial scales, the smallest being the climate division level. Data at the climate division level are aggregated to compute statewide, regional and national snapshots of climate conditions. For CONUS, the period of record is from 1895-present. Derived quantities such as Standardized precipitation Index (SPI), Palmer Drought Indices (PDSI, PHDI, PMDI, and ZNDX) and degree days are also available for the CONUS sites. In March 2015, data for thirteen Alaskan climate divisions were added to the NClimDiv data set. Data for the new Alaskan climate divisions begin in 1925 through the present and are included in all monthly updates. Alaskan climate data include the following elements for divisional and statewide coverage: average temperature, maximum temperature (highs), minimum temperature (lows), and precipitation. The Alaska NClimDiv data were created and updated using similar methodology as that for the CONUS, but with a different approach to establishing the underlying climatology. The Alaska data are built upon the 1971-2000 PRISM averages whereas the CONUS values utilize a base climatology derived from the NClimGrid data set. As of November 2018, NClimDiv includes county data and additional inventory files.
Note that 2013 and 2014 datasets are available for download in the attachment tab below.The journal article describing GHCN-Daily is: Menne, M.J., I. Durre, R.S. Vose, B.E. Gleason, and T.G. Houston, 2012: An overview of the Global Historical Climatology Network-Daily Database. Journal of Atmospheric and Oceanic Technology, 29, 897-910, doi:10.1175/JTECH-D-11-00103.1.Menne, M.J., I. Durre, B. Korzeniewski, S. McNeal, K. Thomas, X. Yin, S. Anthony, R. Ray, R.S. Vose, B.E.Gleason, and T.G. Houston, 2012: Global Historical Climatology Network - Daily (GHCN-Daily), Version 3. [indicate subset used following decimal, e.g. Version 3.12]. NOAA National Climatic Data Center. http://doi.org/10.7289/V5D21VHZ
https://academictorrents.com/nolicensespecifiedhttps://academictorrents.com/nolicensespecified
A BitTorrent file to download data with the title 'NOAA Weather Data 2000'
In March 2015, data for thirteen Alaskan climate divisions were added to the NClimDiv data set. Data for the new Alaskan climate divisions begin in 1925 through the present and are included in all monthly updates. Alaskan climate data include the following elements for divisional and statewide coverage: average temperature, maximum temperature (highs), minimum temperature (lows), and precipitation. The Alaska NClimDiv data were created and updated using similar methodology as that for the CONUS, but with a different approach to establishing the underlying climatology. The Alaska data are built upon the 1971-2000 PRISM averages whereas the CONUS values utilize a base climatology derived from the NClimGrid data set. In January 2025, the National Centers for Environmental Information (NCEI) began summarizing the State of the Climate for Hawaii. This was made possible through a collaboration between NCEI and the University of Hawaii/Hawaii Climate Data Portal and completes a long-standing gap in NCEI's ability to characterize the State of the Climate for all 50 states. NCEI maintains monthly statewide, divisional, and gridded average temperature, maximum temperatures (highs), minimum temperature (lows) and precipitation data for Hawaii over the period 1991-2025. As of November 2018, NClimDiv includes county data and additional inventory files In March 2015, data for thirteen Alaskan climate divisions were added to the NClimDiv data set. Data for the new Alaskan climate divisions begin in 1925 through the present and are included in all monthly updates. Alaskan climate data include the following elements for divisional and statewide coverage: average temperature, maximum temperature (highs), minimum temperature (lows), and precipitation. The Alaska NClimDiv data were created and updated using similar methodology as that for the CONUS, but with a different approach to establishing the underlying climatology. The Alaska data are built upon the 1971-2000 PRISM averages whereas the CONUS values utilize a base climatology derived from the NClimGrid data set.
As of November 2018, NClimDiv includes county data and additional inventory files.
This archived Paleoclimatology Study is available from the NOAA National Centers for Environmental Information (NCEI), under the World Data Service (WDS) for Paleoclimatology. The associated NCEI study type is Historical. The data include parameters of historical with a geographic location of Massachusetts, United States Of America. The time period coverage is from 330 to 51 in calendar years before present (BP). See metadata information for parameter and study location details. Please cite this study when using the data.
https://academictorrents.com/nolicensespecifiedhttps://academictorrents.com/nolicensespecified
A BitTorrent file to download data with the title 'NOAA Weather Data 2006'
The NOAA Monthly U.S. Climate Gridded Dataset (NClimGrid) consists of four climate variables derived from the GHCN-D dataset: maximum temperature, minimum temperature, average temperature and precipitation. Each file provides monthly values in a 5x5 lat/lon grid for the Continental United States. Data is available from 1895 to the present. On an annual basis, approximately one year of "final" nClimGrid will be submitted to replace the initially supplied "preliminary" data for the same time period. Users should be sure to ascertain which level of data is required for their research.
This map displays the Quantitative Precipitation Forecast (QPF) for the next 72 hours across the contiguous United States. Data are updated hourly from the National Digital Forecast Database produced by the National Weather Service.The dataset includes incremental and cumulative precipitation data in 6-hour intervals. In the ArcGIS Online map viewer you can enable the time animation feature and select either the "Amount by Time" (incremental) layer or the "Accumulation by Time" (cumulative) layer to view a 72-hour animation of forecast precipitation. All times are reported according to your local time zone.Where is the data coming from?The National Digital Forecast Database (NDFD) was designed to provide access to weather forecasts in digital form from a central location. The NDFD produces forecast data of sensible weather elements. NDFD contains a seamless mosaic of digital forecasts from National Weather Service (NWS) field offices working in collaboration with the National Centers for Environmental Prediction (NCEP). All of these organizations are under the administration of the National Oceanic and Atmospheric Administration (NOAA).Source: https://tgftp.nws.noaa.gov/SL.us008001/ST.opnl/DF.gr2/DC.ndfd/AR.conus/VP.001-003/ds.qpf.binWhere can I find other NDFD data?The Source data is downloaded and parsed using the Aggregated Live Feeds methodology to return information that can be served through ArcGIS Server as a map service or used to update Hosted Feature Services in Online or Enterprise.What can you do with this layer?This map service is suitable for data discovery and visualization. Identify features by clicking on the map to reveal the pre-configured pop-ups. View the time-enabled data using the time slider by Enabling Time Animation.This map is provided for informational purposes and is not monitored 24/7 for accuracy and currency.If you would like to be alerted to potential issues or simply see when this Service will update next, please visit our Live Feed Status Page!
NOAA NEXRAD Quantitative Precipitation Estimation (QPE) Climate Data Record (CDR) is created from the Radar Multi-Radar/Multi-Sensor (MRMS) Reanalysis to produce severe weather and precipitation products for improved decision-making capability to improve severe weather forecasts and warnings, hydrology, aviation, and numerical weather prediction. The data cover a time period from 2002-01-01 to 2011-12-31. NOAA's NEXRAD reanalysis consists of two primary components; (1) Severe weather and radar-reflectivity data generation, (2) Quantitative Precipitation Estimate (including associated precipitation variables and merged rain gauge and radar estimation). This document focuses on the second component of NOAA's NEXRAD reanalysis - the Quantitative Precipitation Estimate (QPE). The primary files generated within this data set are radar-only and radar- gauge (ROQPE, GCQPE, and MOS2D) merged precipitation products as well as ancillary information on precipitation type (PRATE and PFLAG) and radar quality (RQIND). The initial data set covers the time period from January 2002 - December 2011. Radar-only reflectivity, Gauge, Precipitation Flag, and Radar Quality Index for 5-minute data at 1km regular grid over CONUS. Radar only Radar-Gauge Quantitative Precipitation Estimates at hourly scale at 1km regular grid over CONUS. MRMS Quantitative Precipitation Estimation (QPE) uses the most advanced radar technologies and provides high-resolution information about precipitation types and amounts for the nation. The data are stored in netCDF version 4.0 files that include the necessary metadata and supplementary data fields. Data set provides information that can be useful for identification of various types of precipitation, estimation of radar reflectivity, recognition of storm patterns, forecasting technologies for rainfall estimation, and associating different phases of precipitation such as hail freezing rain and snow with radar observations.
Hourly Precipitation Data (HPD) is digital data set DSI-3240, archived at the National Climatic Data Center (NCDC). The primary source of data for this file is approximately 5,500 US National Weather Service (NWS), Federal Aviation Administration (FAA), and cooperative observer stations in the United States of America, Puerto Rico, the US Virgin Islands, and various Pacific Islands. The earliest data dates vary considerably by state and region: Maine, Pennsylvania, and Texas have data since 1900. The western Pacific region that includes Guam, American Samoa, Marshall Islands, Micronesia, and Palau have data since 1978. Other states and regions have earliest dates between those extremes. The latest data in all states and regions is from the present day. The major parameter in DSI-3240 is precipitation amounts, which are measurements of hourly or daily precipitation accumulation. Accumulation was for longer periods of time if for any reason the rain gauge was out of service or no observer was present. DSI 3240_01 contains data grouped by state; DSI 3240_02 contains data grouped by year.
This data package contains locally verified daily meteorological observations from a NOAA National Weather Service station located at the USDA Jornada Experimental Range headquarters in southern New Mexico, USA. Daily data has been collected there by USDA staff since 1914 for minimum and maximum air temperature and daily accumulated precipitation using standard U.S. climatological service instrumentation and procedures. The included data were verified and transcribed directly from the original paper data sheets and have undergone quality control and assurance procedures different than those in place at NOAA. These data therefore differ from those directly downloadable from NOAA servers. Local verification and transcription of observations from the data sheets ceased in 2006 and data are now directly entered to the NOAA system. Therefore, this dataset is complete and will no longer be added to.All observations from this weather station have also undergone NOAA QA/QC procedures and those data are available by accessing the Jornada Experimental Range, NM US GHCN station through the National Climatic Data Center portal (https://www.ncdc.noaa.gov/cdo-web/datasets/GHCND/stations/GHCND:USC00294426/detail - daily and monthly data are available).
The NOAA Monthly U.S. Climate Gridded Dataset (NClimGrid) consists of four climate variables derived from the GHCN-D dataset: maximum temperature, minimum temperature, average temperature and precipitation. Each file provides monthly values in a 5x5 lat/lon grid for the Continental United States. Data is available from 1895 to the present. In March 2015, new Alaska data was included in the nClimDiv dataset. The Alaska nClimDiv data were created and updated using similar methodology as that for the CONUS. It includes maximum temperature, minimum temperature, average temperature and precipitation. In January 2025, the National Centers for Environmental Information (NCEI) began summarizing the State of the Climate for Hawaii. This was made possible through a collaboration between NCEI and the University of Hawaii/Hawaii Climate Data Portal and completes a long-standing gap in NCEI's ability to characterize the State of the Climate for all 50 states. NCEI maintains monthly statewide, divisional, and gridded average temperature, maximum temperatures (highs), minimum temperature (lows) and precipitation data for Hawaii over the period 1991-2025.
NOAA's Climate Data Records (CDRs) are robust, sustainable, and scientifically sound climate records that provide trustworthy information on how, where, and to what extent the land, oceans, atmosphere and ice sheets are changing. These datasets are thoroughly vetted time series measurements with the longevity, consistency, and continuity to assess and measure climate variability and change. NOAA CDRs are vetted using standards established by the National Research Council (NRC).
Climate Data Records are created by merging data from surface, atmosphere, and space-based systems across decades. NOAA’s Climate Data Records provides authoritative and traceable long-term climate records. NOAA developed CDRs by applying modern data analysis methods to historical global satellite data. This process can clarify the underlying climate trends within the data and allows researchers and other users to identify economic and scientific value in these records. NCEI maintains and extends CDRs by applying the same methods to present-day and future satellite measurements.
Terrestrial CDRs are composed of sensor data that have been improved and quality controlled over time, together with ancillary calibration data.
*This version has been superseded by a newer version. It is highly recommended for users to access the current version. Users should only access this superseded version for special cases, such as reproducing studies. If necessary, this version can be accessed by contacting NCEI.*The Integrated Surface Dataset (ISD) is composed of worldwide surface weather observations from over 35,000 stations, though the best spatial coverage is evident in North America, Europe, Australia, and parts of Asia. Parameters included are: air quality, atmospheric pressure, atmospheric temperature/dew point, atmospheric winds, clouds, precipitation, ocean waves, tides and more. ISD refers to the data contained within the digital database as well as the format in which the hourly, synoptic (3-hourly), and daily weather observations are stored. The format conforms to Federal Information Processing Standards (FIPS). ISD provides hourly data that can be used in a wide range of climatological applications. For some stations, data may go as far back as 1901, though most data show a substantial increase in volume in the 1940s and again in the early 1970s. Currently, there are over 14,000 "active" stations updated daily in the database.
For user convenience, a subset of just the hourly data is available to users for download. It is referred to as Integrated Surface Global Hourly data, see associated download links for access to this subset.
National Weather Service (NWS) Station Information System (SIS) contains observing station metadata from November 2016 to present. These are renditions are used for daily updates to the Historical Observing Metadata Repository (HOMR). Within this dataset there are embedded PDFs which are loaded into Environmental Document Access and Display System (EDADS) Version 2 (EV2) in the Cooperative Station History library and the JSON formatted machine readable version of the information on the PDFs which are integrated into HOMR. The station updates contain station profile information, and changes in location, instrumentation, obstructions, observers, and observation times. NCEI only receives these files when something is changed on the station, or every 3 years for a NWS-mandated update. Version 2 of this dataset includes new equipment hierarchy and minor changes to how observer information is structured in the JSON interface files.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Global Surface Summary of the Day is derived from The Integrated Surface Hourly (ISH) dataset. The ISH dataset includes global data obtained from the USAF Climatology Center, located in the Federal Climate Complex with NCDC. The latest daily summary data are normally available 1-2 days after the date-time of the observations used in the daily summaries.
Over 9000 stations' data are typically available.
The daily elements included in the dataset (as available from each station) are: Mean temperature (.1 Fahrenheit) Mean dew point (.1 Fahrenheit) Mean sea level pressure (.1 mb) Mean station pressure (.1 mb) Mean visibility (.1 miles) Mean wind speed (.1 knots) Maximum sustained wind speed (.1 knots) Maximum wind gust (.1 knots) Maximum temperature (.1 Fahrenheit) Minimum temperature (.1 Fahrenheit) Precipitation amount (.01 inches) Snow depth (.1 inches)
Indicator for occurrence of: Fog, Rain or Drizzle, Snow or Ice Pellets, Hail, Thunder, Tornado/Funnel
You can use the BigQuery Python client library to query tables in this dataset in Kernels. Note that methods available in Kernels are limited to querying data. Tables are at bigquery-public-data.github_repos.[TABLENAME]
. Fork this kernel to get started to learn how to safely manage analyzing large BigQuery datasets.
This public dataset was created by the National Oceanic and Atmospheric Administration (NOAA) and includes global data obtained from the USAF Climatology Center. This dataset covers GSOD data between 1929 and present, collected from over 9000 stations. Dataset Source: NOAA
Use: This dataset is publicly available for anyone to use under the following terms provided by the Dataset Source — http://www.data.gov/privacy-policy#data_policy — and is provided "AS IS" without any warranty, express or implied, from Google. Google disclaims all liability for any damages, direct or indirect, resulting from the use of the dataset.
Photo by Allan Nygren on Unsplash