Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Data normalization is a crucial step in the gene expression analysis as it ensures the validity of its downstream analyses. Although many metrics have been designed to evaluate the existing normalization methods, different metrics or different datasets by the same metric yield inconsistent results, particularly for the single-cell RNA sequencing (scRNA-seq) data. The worst situations could be that one method evaluated as the best by one metric is evaluated as the poorest by another metric, or one method evaluated as the best using one dataset is evaluated as the poorest using another dataset. Here raises an open question: principles need to be established to guide the evaluation of normalization methods. In this study, we propose a principle that one normalization method evaluated as the best by one metric should also be evaluated as the best by another metric (the consistency of metrics) and one method evaluated as the best using scRNA-seq data should also be evaluated as the best using bulk RNA-seq data or microarray data (the consistency of datasets). Then, we designed a new metric named Area Under normalized CV threshold Curve (AUCVC) and applied it with another metric mSCC to evaluate 14 commonly used normalization methods using both scRNA-seq data and bulk RNA-seq data, satisfying the consistency of metrics and the consistency of datasets. Our findings paved the way to guide future studies in the normalization of gene expression data with its evaluation. The raw gene expression data, normalization methods, and evaluation metrics used in this study have been included in an R package named NormExpression. NormExpression provides a framework and a fast and simple way for researchers to select the best method for the normalization of their gene expression data based on the evaluation of different methods (particularly some data-driven methods or their own methods) in the principle of the consistency of metrics and the consistency of datasets.
https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html
R script to reproduce "Improved normalization of species count data in ecology by scaling with ranked subsampling (SRS): application to microbial communities"..
https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html
Background
The Infinium EPIC array measures the methylation status of > 850,000 CpG sites. The EPIC BeadChip uses a two-array design: Infinium Type I and Type II probes. These probe types exhibit different technical characteristics which may confound analyses. Numerous normalization and pre-processing methods have been developed to reduce probe type bias as well as other issues such as background and dye bias.
Methods
This study evaluates the performance of various normalization methods using 16 replicated samples and three metrics: absolute beta-value difference, overlap of non-replicated CpGs between replicate pairs, and effect on beta-value distributions. Additionally, we carried out Pearson’s correlation and intraclass correlation coefficient (ICC) analyses using both raw and SeSAMe 2 normalized data.
Results
The method we define as SeSAMe 2, which consists of the application of the regular SeSAMe pipeline with an additional round of QC, pOOBAH masking, was found to be the best-performing normalization method, while quantile-based methods were found to be the worst performing methods. Whole-array Pearson’s correlations were found to be high. However, in agreement with previous studies, a substantial proportion of the probes on the EPIC array showed poor reproducibility (ICC < 0.50). The majority of poor-performing probes have beta values close to either 0 or 1, and relatively low standard deviations. These results suggest that probe reliability is largely the result of limited biological variation rather than technical measurement variation. Importantly, normalizing the data with SeSAMe 2 dramatically improved ICC estimates, with the proportion of probes with ICC values > 0.50 increasing from 45.18% (raw data) to 61.35% (SeSAMe 2).
Methods
Study Participants and Samples
The whole blood samples were obtained from the Health, Well-being and Aging (Saúde, Ben-estar e Envelhecimento, SABE) study cohort. SABE is a cohort of census-withdrawn elderly from the city of São Paulo, Brazil, followed up every five years since the year 2000, with DNA first collected in 2010. Samples from 24 elderly adults were collected at two time points for a total of 48 samples. The first time point is the 2010 collection wave, performed from 2010 to 2012, and the second time point was set in 2020 in a COVID-19 monitoring project (9±0.71 years apart). The 24 individuals were 67.41±5.52 years of age (mean ± standard deviation) at time point one; and 76.41±6.17 at time point two and comprised 13 men and 11 women.
All individuals enrolled in the SABE cohort provided written consent, and the ethic protocols were approved by local and national institutional review boards COEP/FSP/USP OF.COEP/23/10, CONEP 2044/2014, CEP HIAE 1263-10, University of Toronto RIS 39685.
Blood Collection and Processing
Genomic DNA was extracted from whole peripheral blood samples collected in EDTA tubes. DNA extraction and purification followed manufacturer’s recommended protocols, using Qiagen AutoPure LS kit with Gentra automated extraction (first time point) or manual extraction (second time point), due to discontinuation of the equipment but using the same commercial reagents. DNA was quantified using Nanodrop spectrometer and diluted to 50ng/uL. To assess the reproducibility of the EPIC array, we also obtained technical replicates for 16 out of the 48 samples, for a total of 64 samples submitted for further analyses. Whole Genome Sequencing data is also available for the samples described above.
Characterization of DNA Methylation using the EPIC array
Approximately 1,000ng of human genomic DNA was used for bisulphite conversion. Methylation status was evaluated using the MethylationEPIC array at The Centre for Applied Genomics (TCAG, Hospital for Sick Children, Toronto, Ontario, Canada), following protocols recommended by Illumina (San Diego, California, USA).
Processing and Analysis of DNA Methylation Data
The R/Bioconductor packages Meffil (version 1.1.0), RnBeads (version 2.6.0), minfi (version 1.34.0) and wateRmelon (version 1.32.0) were used to import, process and perform quality control (QC) analyses on the methylation data. Starting with the 64 samples, we first used Meffil to infer the sex of the 64 samples and compared the inferred sex to reported sex. Utilizing the 59 SNP probes that are available as part of the EPIC array, we calculated concordance between the methylation intensities of the samples and the corresponding genotype calls extracted from their WGS data. We then performed comprehensive sample-level and probe-level QC using the RnBeads QC pipeline. Specifically, we (1) removed probes if their target sequences overlap with a SNP at any base, (2) removed known cross-reactive probes (3) used the iterative Greedycut algorithm to filter out samples and probes, using a detection p-value threshold of 0.01 and (4) removed probes if more than 5% of the samples having a missing value. Since RnBeads does not have a function to perform probe filtering based on bead number, we used the wateRmelon package to extract bead numbers from the IDAT files and calculated the proportion of samples with bead number < 3. Probes with more than 5% of samples having low bead number (< 3) were removed. For the comparison of normalization methods, we also computed detection p-values using out-of-band probes empirical distribution with the pOOBAH() function in the SeSAMe (version 1.14.2) R package, with a p-value threshold of 0.05, and the combine.neg parameter set to TRUE. In the scenario where pOOBAH filtering was carried out, it was done in parallel with the previously mentioned QC steps, and the resulting probes flagged in both analyses were combined and removed from the data.
Normalization Methods Evaluated
The normalization methods compared in this study were implemented using different R/Bioconductor packages and are summarized in Figure 1. All data was read into R workspace as RG Channel Sets using minfi’s read.metharray.exp() function. One sample that was flagged during QC was removed, and further normalization steps were carried out in the remaining set of 63 samples. Prior to all normalizations with minfi, probes that did not pass QC were removed. Noob, SWAN, Quantile, Funnorm and Illumina normalizations were implemented using minfi. BMIQ normalization was implemented with ChAMP (version 2.26.0), using as input Raw data produced by minfi’s preprocessRaw() function. In the combination of Noob with BMIQ (Noob+BMIQ), BMIQ normalization was carried out using as input minfi’s Noob normalized data. Noob normalization was also implemented with SeSAMe, using a nonlinear dye bias correction. For SeSAMe normalization, two scenarios were tested. For both, the inputs were unmasked SigDF Sets converted from minfi’s RG Channel Sets. In the first, which we call “SeSAMe 1”, SeSAMe’s pOOBAH masking was not executed, and the only probes filtered out of the dataset prior to normalization were the ones that did not pass QC in the previous analyses. In the second scenario, which we call “SeSAMe 2”, pOOBAH masking was carried out in the unfiltered dataset, and masked probes were removed. This removal was followed by further removal of probes that did not pass previous QC, and that had not been removed by pOOBAH. Therefore, SeSAMe 2 has two rounds of probe removal. Noob normalization with nonlinear dye bias correction was then carried out in the filtered dataset. Methods were then compared by subsetting the 16 replicated samples and evaluating the effects that the different normalization methods had in the absolute difference of beta values (|β|) between replicated samples.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
DBNorm test script. Code of how we test DBNorm package. (TXT 2Â kb)
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
1000 simulated data sets stored in a list of R dataframes used in support of Reisetter et al. (submitted) 'Mixture model normalization for non-targeted gas chromatography / mass spectrometry metabolomics data'. These are results after normalization using quantile normalization (Bolstad et al. 2003).
1000 simulated data sets stored in a list of R dataframes used in support of Reisetter et al. (submitted) 'Mixture model normalization for non-targeted gas chromatography / mass spectrometry metabolomics data'. These are results after normalization using median scaling as described in Reisetter et al.
1000 simulated data sets stored in a list of R dataframes used in support of Reisetter et al. (submitted) 'Mixture model normalization for non-targeted gas chromatography / mass spectrometry metabolomics data'. These are results after normalization using EigenMS (Karpievitch et al. 2014).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
DBNorm installation. Describes how to install DBNorm via devtools in R. (TXT 4Â kb)
Fanno Creek is a tributary to the Tualatin River and flows though parts of the southwest Portland metropolitan area. The stream is heavily influenced by urban runoff and shows characteristic flashy streamflow and poor water quality commonly associated with urban streams. This data set represents the Normalized Difference Vegetation Index (NDVI), or "greenness" of the Fanno Creek floodplain study area. Aerial photography was used to isolate areas of vegetation based on comparing different bandwidths within the imagery. In this case, the NDVI is calculated as the quotient of the near infrared band minus the red band divided by the near infared plus the red band. NDVI = (NIR - R)/(NIR + R).
Scaling with ranked subsampling (SRS) is an algorithm for the normalization of species count data in ecology. So far, SRS has successfully been applied to microbial community data. "SRS is now available on CRAN: https://CRAN.R-project.org/package=SRS" An implementation of SRS in R is available for download: https://metadata.bonares.de/smartEditor/rest/upload/ID_7049_2020_05_13_SRS_function_v1_0_R.zip
SRS consists of two steps. In the first step, the counts for all OTUs (operational taxonomic untis) are divided by a scaling factor chosen in such a way that the sum of the scaled counts (Cscaled with integer or non-integer values) equals Cmin. In the second step, the non-integer count values are converted into integers by an algorithm that we dub ranked subsampling. The scaled count Cscaled for each OTU is split into the integer-part Cint by truncating the digits after the decimal separator (Cint = floor(Cscaled)) and the fractional part Cfrac (Cfrac = Cscaled - Cint). Since ΣCint ≤ Cmin, additional ∆C = Cmin - ΣCint counts have to be added to the library to reach the total count of Cmin. This is achieved as follows. OTUs are ranked in the descending order of their Cfrac values. Beginning with the OTU of the highest rank, single count per OTU is added to the normalized library until the total number of added counts reaches ∆C and the sum of all counts in the normalized library equals Cmin. When the lowest Cfrag involved in picking ∆C counts is shared by several OTUs, the OTUs used for adding a single count to the library are selected in the order of their Cint values. This selection minimizes the effect of normalization on the relative frequencies of OTUs. OTUs with identical Cfrag as well as Cint are sampled randomly without replacement.
Nonstationary streamflow due to environmental and human-induced causes can affect water quality over time, yet these effects are poorly accounted for in water-quality trend models. This data release provides instream water-quality trends and estimates of two components of change, for sites across the Nation previously presented in Oelsner et al. (2017). We used previously calibrated Weighted Regressions on Time, Discharge, and Season (WRTDS) models published in De Cicco et al. (2017) to estimate instream water-quality trends and associated uncertainties with the generalized flow normalization procedure available in EGRET version 3.0 (Hirsch et al., 2018a) and EGRETci version 2.0 (Hirsch et al., 2018b). The procedure allows for nonstationarity in the flow regime, whereas previous versions of EGRET assumed streamflow stationarity. Water-quality trends of annual mean concentrations and loads (also referred to as fluxes) are provided as an annual series and the change between the start and end year for four trend periods (1972-2012, 1982-2012, 1992-2012, and 2002-2012). Information about the sites, including the collecting agency and associated streamflow gage, and information about site selection and the data screening process can be found in Oelsner et al. (2017). This data release includes results for 19 water-quality parameters including nutrients (ammonia, nitrate, filtered and unfiltered orthophosphate, total nitrogen, total phosphorus), major ions (calcium, chloride, magnesium, potassium, sodium, sulfate), salinity indicators (specific conductance, total dissolved solids), carbon (alkalinity, dissolved organic carbon, total organic carbon), and sediment (total suspended solids, suspended-sediment concentration) at over 1,200 sites. Note, the number of parameters with data varies by site with most sites having data for 1-4 parameters. Each water-quality trend was parsed into two components of change: (1) the streamflow trend component (QTC) and (2) the watershed management trend component (MTC). The QTC is an indicator of the amount of change in the water-quality trend attributed to changes in the streamflow regime, and the MTC is an indicator of the amount of change in the water-quality trend that may be attributed to human actions and changes in point and non-point sources in a watershed. Note, the MTC is referred to as the concentration-discharge trend component (CQTC) in the EGRET version 3.0 software. For our work, we chose to refer to this trend component as the MTC because it provides a more conceptual description (Murphy and Sprague, 2019). The trend results presented here expand upon the results in De Cicco et al. (2017) and Oelsner et al. (2017), which were analyzed using flow-normalization under the stationary streamflow assumption. The results presented in this data release are intended to complement these previously published results and support investigations into natural and human effects on water-quality trends across the United States. Data preparation information and WRTDS model specifications are described in Oelsner et al. (2017) and Murphy and Sprague (2019). This work was completed as part of the National Water-Quality Assessment (NAWQA) project of the National Water-Quality Program. De Cicco, L.A., Sprague, L.A., Murphy, J.C., Riskin, M.L., Falcone, J.A., Stets, E.G., Oelsner, G.P., and Johnson, H.M., 2017, Water-quality and streamflow datasets used in the Weighted Regressions on Time, Discharge, and Season (WRTDS) models to determine trends in the Nation’s rivers and streams, 1972-2012 (ver. 1.1 July 7, 2017): U.S. Geological Survey data release, https://doi.org/10.5066/F7KW5D4H. Hirsch, R., De Cicco, L., Watkins, D., Carr, L., and Murphy, J., 2018a, EGRET: Exploration and Graphics for RivEr Trends, version 3.0, https://CRAN.R-project.org/package=EGRET. Hirsch, R., De Cicco, L., and Murphy, J., 2018b, EGRETci: Exploration and Graphics for RivEr Trends (EGRET) Confidence Intervals, version 2.0. https://CRAN.R-project.org/package=EGRETci. Murphy, J.C., and Sprague, L.A., 2019, Water-quality trends in US rivers: Exploring effects from streamflow trends and changes in watershed management: The Science of the total environment, ISSN: 1879-1026, Vol: 656, Page: 645-658, https://doi.org/10.1016/j.scitotenv.2018.11.255. Oelsner, G.P., Sprague, L.A., Murphy, J.C., Zuellig, R.E., Johnson, H.M., Ryberg, K.R., Falcone, J.A., Stets, E.G., Vecchia, A.V., Riskin, M.L., De Cicco, L.A., Mills, T.J., and Farmer, W.H., 2017, Water-quality trends in the Nation’s rivers and streams, 1972–2012—Data preparation, statistical methods, and trend results (ver. 2.0, October 2017): U.S. Geological Survey Scientific Investigations Report 2017–5006, 136 p., https://doi.org/10.3133/sir20175006.
Normalization of RNA-sequencing data is essential for accurate downstream inference, but the assumptions upon which most methods are based do not hold in the single-cell setting. Consequently, applying existing normalization methods to single-cell RNA-seq data introduces artifacts that bias downstream analyses. To address this, we introduce SCnorm for accurate and efficient normalization of scRNA-seq data. Total 183 single cells (92 H1 cells, 91 H9 cells), sequenced twice, were used to evaluate SCnorm in normalizing single cell RNA-seq experiments. Total 48 bulk H1 samples were used to compare bulk and single cell properties. For single-cell RNA-seq, the identical single-cell indexed and fragmented cDNA were pooled at 96 cells per lane or at 24 cells per lane to test the effects of sequencing depth, resulting in approximately 1 million and 4 million mapped reads per cell in the two pooling groups, respectively.
TRIUMF. DOUBLE SCATTERING TO MEASURE ABSOLUTE NORMALIZATION OF POLARIZATION.
1000 simulated data sets stored in a list of R dataframes used in support of Reisetter et al. (submitted) 'Mixture model normalization for non-targeted gas chromatography / mass spectrometry metabolomics data'. These are results after normalization using mixnorm as described in Reisetter et al.
Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
License information was derived automatically
To achieve high quality omics results, systematic variability in mass spectrometry (MS) data must be adequately addressed. Effective data normalization is essential for minimizing this variability. The abundance of approaches and the data-dependent nature of normalization have led some researchers to develop open-source academic software for choosing the best approach. While these tools are certainly beneficial to the community, none of them meet all of the needs of all users, particularly users who want to test new strategies that are not available in these products. Herein, we present a simple and straightforward workflow that facilitates the identification of optimal normalization strategies using straightforward evaluation metrics, employing both supervised and unsupervised machine learning. The workflow offers a “DIY” aspect, where the performance of any normalization strategy can be evaluated for any type of MS data. As a demonstration of its utility, we apply this workflow on two distinct datasets, an ESI-MS dataset of extracted lipids from latent fingerprints and a cancer spheroid dataset of metabolites ionized by MALDI-MSI, for which we identified the best-performing normalization strategies.
Dataset Card for DAGW Word Frequencies (normalized)
Paper: Derczynski, L., Ciosici, M. R., Baglini, R., Christiansen, M. H., Dalsgaard, J. A., Fusaroli, R., ... & Varab, D. (2021). The Danish Gigaword Corpus. In Proceedings of the 23rd Nordic Conference on Computational Linguistics (NoDaLiDa) (pp. 413-421). Point of Contact: Kenneth Enevoldsen (Kennethcenevoldsen (at) gmail (dot) com )
This is a list of word frequencies derived from the Danish Gigaword (collected before… See the full description on the dataset page: https://huggingface.co/datasets/chcaa/dagw-word-frequencies-normalized-by-domain.
The zip-file contains supplementary files (normalized data sets and R-codes) to reproduce the analyses presented in the paper "Use of pre-transformation to cope with extreme values in important candidate features" by Boulesteix, Guillemot & Sauerbrei (Biometrical Journal, 2011). The raw data (CEL-files) are publicly available and described in the following papers: - Ancona et al, 2006. On the statistical assessment of classifiers using DNA microarray data. BMC Bioinformatics 7, 387. - Miller et al, 2005. An expression signature for p53 status in human breast cancer predicts mutation status, transcriptional effects, and patient survival. Proceedings of the National Academy of Science 102, 13550–13555. - Minn et al, 2005. Genes that mediate breast cancer metastasis to lung. Nature 436, 518–524. - Pawitan et al, 2005. Gene expression profiling spares early breast cancer patients from adjuvant therapy: derived and validated in two population-based cohorts. Breast Cancer Research 7, R953–964. - Scherzer et al, 2007. Molecular markers of early parkinsons disease based on gene expression in blood. Proceedings of the National Academy of Science 104, 955-960. - Singh et al, 2002. Gene expression correlates of clinical prostate cancer behavior. Cancer Cell 1, 203–209. - Sotiriou et al, 2006. Gene expression profiling in breast cancer: understanding the molecular basis of histologic grade to improve prognosis. Journal of the National Cancer Institute 98, 262–272. - Tang et al, 2009. Gene-expression profiling of peripheral blood mononuclear cells in sepsis. Critical Care Medicine 37, 882–888. - Wang et al, 2005. Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer. Lancet 365, 671–679. - Irizarry, 2003. Summaries of Affymetrix GeneChip probe level data. Nucleic Acids Res 31 (4), e15. - Irizarry et al, 2006. Comparison of Affymetrix GeneChip expression measures. Bioinformatics 22 (7), 789–794.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The reported parameters were used to normalize the raw scores according to Eq. (8).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
H.sapien normalized counts RNA seq data matrix from NASA Genelab's open science data repository. Created using R.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Data normalization is a crucial step in the gene expression analysis as it ensures the validity of its downstream analyses. Although many metrics have been designed to evaluate the existing normalization methods, different metrics or different datasets by the same metric yield inconsistent results, particularly for the single-cell RNA sequencing (scRNA-seq) data. The worst situations could be that one method evaluated as the best by one metric is evaluated as the poorest by another metric, or one method evaluated as the best using one dataset is evaluated as the poorest using another dataset. Here raises an open question: principles need to be established to guide the evaluation of normalization methods. In this study, we propose a principle that one normalization method evaluated as the best by one metric should also be evaluated as the best by another metric (the consistency of metrics) and one method evaluated as the best using scRNA-seq data should also be evaluated as the best using bulk RNA-seq data or microarray data (the consistency of datasets). Then, we designed a new metric named Area Under normalized CV threshold Curve (AUCVC) and applied it with another metric mSCC to evaluate 14 commonly used normalization methods using both scRNA-seq data and bulk RNA-seq data, satisfying the consistency of metrics and the consistency of datasets. Our findings paved the way to guide future studies in the normalization of gene expression data with its evaluation. The raw gene expression data, normalization methods, and evaluation metrics used in this study have been included in an R package named NormExpression. NormExpression provides a framework and a fast and simple way for researchers to select the best method for the normalization of their gene expression data based on the evaluation of different methods (particularly some data-driven methods or their own methods) in the principle of the consistency of metrics and the consistency of datasets.