10 datasets found
  1. f

    Data_Sheet_1_NormExpression: An R Package to Normalize Gene Expression Data...

    • frontiersin.figshare.com
    application/cdfv2
    Updated Jun 1, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Zhenfeng Wu; Weixiang Liu; Xiufeng Jin; Haishuo Ji; Hua Wang; Gustavo Glusman; Max Robinson; Lin Liu; Jishou Ruan; Shan Gao (2023). Data_Sheet_1_NormExpression: An R Package to Normalize Gene Expression Data Using Evaluated Methods.doc [Dataset]. http://doi.org/10.3389/fgene.2019.00400.s001
    Explore at:
    application/cdfv2Available download formats
    Dataset updated
    Jun 1, 2023
    Dataset provided by
    Frontiers
    Authors
    Zhenfeng Wu; Weixiang Liu; Xiufeng Jin; Haishuo Ji; Hua Wang; Gustavo Glusman; Max Robinson; Lin Liu; Jishou Ruan; Shan Gao
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Data normalization is a crucial step in the gene expression analysis as it ensures the validity of its downstream analyses. Although many metrics have been designed to evaluate the existing normalization methods, different metrics or different datasets by the same metric yield inconsistent results, particularly for the single-cell RNA sequencing (scRNA-seq) data. The worst situations could be that one method evaluated as the best by one metric is evaluated as the poorest by another metric, or one method evaluated as the best using one dataset is evaluated as the poorest using another dataset. Here raises an open question: principles need to be established to guide the evaluation of normalization methods. In this study, we propose a principle that one normalization method evaluated as the best by one metric should also be evaluated as the best by another metric (the consistency of metrics) and one method evaluated as the best using scRNA-seq data should also be evaluated as the best using bulk RNA-seq data or microarray data (the consistency of datasets). Then, we designed a new metric named Area Under normalized CV threshold Curve (AUCVC) and applied it with another metric mSCC to evaluate 14 commonly used normalization methods using both scRNA-seq data and bulk RNA-seq data, satisfying the consistency of metrics and the consistency of datasets. Our findings paved the way to guide future studies in the normalization of gene expression data with its evaluation. The raw gene expression data, normalization methods, and evaluation metrics used in this study have been included in an R package named NormExpression. NormExpression provides a framework and a fast and simple way for researchers to select the best method for the normalization of their gene expression data based on the evaluation of different methods (particularly some data-driven methods or their own methods) in the principle of the consistency of metrics and the consistency of datasets.

  2. d

    Methods for normalizing microbiome data: an ecological perspective

    • search.dataone.org
    • data.niaid.nih.gov
    • +1more
    Updated Apr 11, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Donald T. McKnight; Roger Huerlimann; Deborah S. Bower; Lin Schwarzkopf; Ross A. Alford; Kyall R. Zenger (2025). Methods for normalizing microbiome data: an ecological perspective [Dataset]. http://doi.org/10.5061/dryad.tn8qs35
    Explore at:
    Dataset updated
    Apr 11, 2025
    Dataset provided by
    Dryad Digital Repository
    Authors
    Donald T. McKnight; Roger Huerlimann; Deborah S. Bower; Lin Schwarzkopf; Ross A. Alford; Kyall R. Zenger
    Time period covered
    Oct 24, 2019
    Description
    1. Microbiome sequencing data often need to be normalized due to differences in read depths, and recommendations for microbiome analyses generally warn against using proportions or rarefying to normalize data and instead advocate alternatives, such as upper quartile, CSS, edgeR-TMM, or DESeq-VS. Those recommendations are, however, based on studies that focused on differential abundance testing and variance standardization, rather than community-level comparisons (i.e., beta diversity), Also, standardizing the within-sample variance across samples may suppress differences in species evenness, potentially distorting community-level patterns. Furthermore, the recommended methods use log transformations, which we expect to exaggerate the importance of differences among rare OTUs, while suppressing the importance of differences among common OTUs. 2. We tested these theoretical predictions via simulations and a real-world data set. 3. Proportions and rarefying produced more accurate compariso...
  3. m

    R codes and dataset for Visualisation of Diachronic Constructional Change...

    • bridges.monash.edu
    • researchdata.edu.au
    zip
    Updated May 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Gede Primahadi Wijaya Rajeg (2023). R codes and dataset for Visualisation of Diachronic Constructional Change using Motion Chart [Dataset]. http://doi.org/10.26180/5c844c7a81768
    Explore at:
    zipAvailable download formats
    Dataset updated
    May 30, 2023
    Dataset provided by
    Monash University
    Authors
    Gede Primahadi Wijaya Rajeg
    License

    Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
    License information was derived automatically

    Description

    PublicationPrimahadi Wijaya R., Gede. 2014. Visualisation of diachronic constructional change using Motion Chart. In Zane Goebel, J. Herudjati Purwoko, Suharno, M. Suryadi & Yusuf Al Aried (eds.). Proceedings: International Seminar on Language Maintenance and Shift IV (LAMAS IV), 267-270. Semarang: Universitas Diponegoro. doi: https://doi.org/10.4225/03/58f5c23dd8387Description of R codes and data files in the repositoryThis repository is imported from its GitHub repo. Versioning of this figshare repository is associated with the GitHub repo's Release. So, check the Releases page for updates (the next version is to include the unified version of the codes in the first release with the tidyverse).The raw input data consists of two files (i.e. will_INF.txt and go_INF.txt). They represent the co-occurrence frequency of top-200 infinitival collocates for will and be going to respectively across the twenty decades of Corpus of Historical American English (from the 1810s to the 2000s).These two input files are used in the R code file 1-script-create-input-data-raw.r. The codes preprocess and combine the two files into a long format data frame consisting of the following columns: (i) decade, (ii) coll (for "collocate"), (iii) BE going to (for frequency of the collocates with be going to) and (iv) will (for frequency of the collocates with will); it is available in the input_data_raw.txt. Then, the script 2-script-create-motion-chart-input-data.R processes the input_data_raw.txt for normalising the co-occurrence frequency of the collocates per million words (the COHA size and normalising base frequency are available in coha_size.txt). The output from the second script is input_data_futurate.txt.Next, input_data_futurate.txt contains the relevant input data for generating (i) the static motion chart as an image plot in the publication (using the script 3-script-create-motion-chart-plot.R), and (ii) the dynamic motion chart (using the script 4-script-motion-chart-dynamic.R).The repository adopts the project-oriented workflow in RStudio; double-click on the Future Constructions.Rproj file to open an RStudio session whose working directory is associated with the contents of this repository.

  4. f

    Table_2_Comparison of Normalization Methods for Analysis of TempO-Seq...

    • figshare.com
    • frontiersin.figshare.com
    xlsx
    Updated Jun 2, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Pierre R. Bushel; Stephen S. Ferguson; Sreenivasa C. Ramaiahgari; Richard S. Paules; Scott S. Auerbach (2023). Table_2_Comparison of Normalization Methods for Analysis of TempO-Seq Targeted RNA Sequencing Data.xlsx [Dataset]. http://doi.org/10.3389/fgene.2020.00594.s002
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Jun 2, 2023
    Dataset provided by
    Frontiers
    Authors
    Pierre R. Bushel; Stephen S. Ferguson; Sreenivasa C. Ramaiahgari; Richard S. Paules; Scott S. Auerbach
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Analysis of bulk RNA sequencing (RNA-Seq) data is a valuable tool to understand transcription at the genome scale. Targeted sequencing of RNA has emerged as a practical means of assessing the majority of the transcriptomic space with less reliance on large resources for consumables and bioinformatics. TempO-Seq is a templated, multiplexed RNA-Seq platform that interrogates a panel of sentinel genes representative of genome-wide transcription. Nuances of the technology require proper preprocessing of the data. Various methods have been proposed and compared for normalizing bulk RNA-Seq data, but there has been little to no investigation of how the methods perform on TempO-Seq data. We simulated count data into two groups (treated vs. untreated) at seven-fold change (FC) levels (including no change) using control samples from human HepaRG cells run on TempO-Seq and normalized the data using seven normalization methods. Upper Quartile (UQ) performed the best with regard to maintaining FC levels as detected by a limma contrast between treated vs. untreated groups. For all FC levels, specificity of the UQ normalization was greater than 0.84 and sensitivity greater than 0.90 except for the no change and +1.5 levels. Furthermore, K-means clustering of the simulated genes normalized by UQ agreed the most with the FC assignments [adjusted Rand index (ARI) = 0.67]. Despite having an assumption of the majority of genes being unchanged, the DESeq2 scaling factors normalization method performed reasonably well as did simple normalization procedures counts per million (CPM) and total counts (TCs). These results suggest that for two class comparisons of TempO-Seq data, UQ, CPM, TC, or DESeq2 normalization should provide reasonably reliable results at absolute FC levels ≥2.0. These findings will help guide researchers to normalize TempO-Seq gene expression data for more reliable results.

  5. Z

    Assessing the impact of hints in learning formal specification: Research...

    • data.niaid.nih.gov
    • explore.openaire.eu
    • +1more
    Updated Jan 29, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Margolis, Iara (2024). Assessing the impact of hints in learning formal specification: Research artifact [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_10450608
    Explore at:
    Dataset updated
    Jan 29, 2024
    Dataset provided by
    Sousa, Emanuel
    Campos, José Creissac
    Cunha, Alcino
    Macedo, Nuno
    Margolis, Iara
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    This artifact accompanies the SEET@ICSE article "Assessing the impact of hints in learning formal specification", which reports on a user study to investigate the impact of different types of automated hints while learning a formal specification language, both in terms of immediate performance and learning retention, but also in the emotional response of the students. This research artifact provides all the material required to replicate this study (except for the proprietary questionnaires passed to assess the emotional response and user experience), as well as the collected data and data analysis scripts used for the discussion in the paper.

    Dataset

    The artifact contains the resources described below.

    Experiment resources

    The resources needed for replicating the experiment, namely in directory experiment:

    alloy_sheet_pt.pdf: the 1-page Alloy sheet that participants had access to during the 2 sessions of the experiment. The sheet was passed in Portuguese due to the population of the experiment.

    alloy_sheet_en.pdf: a version the 1-page Alloy sheet that participants had access to during the 2 sessions of the experiment translated into English.

    docker-compose.yml: a Docker Compose configuration file to launch Alloy4Fun populated with the tasks in directory data/experiment for the 2 sessions of the experiment.

    api and meteor: directories with source files for building and launching the Alloy4Fun platform for the study.

    Experiment data

    The task database used in our application of the experiment, namely in directory data/experiment:

    Model.json, Instance.json, and Link.json: JSON files with to populate Alloy4Fun with the tasks for the 2 sessions of the experiment.

    identifiers.txt: the list of all (104) available participant identifiers that can participate in the experiment.

    Collected data

    Data collected in the application of the experiment as a simple one-factor randomised experiment in 2 sessions involving 85 undergraduate students majoring in CSE. The experiment was validated by the Ethics Committee for Research in Social and Human Sciences of the Ethics Council of the University of Minho, where the experiment took place. Data is shared the shape of JSON and CSV files with a header row, namely in directory data/results:

    data_sessions.json: data collected from task-solving in the 2 sessions of the experiment, used to calculate variables productivity (PROD1 and PROD2, between 0 and 12 solved tasks) and efficiency (EFF1 and EFF2, between 0 and 1).

    data_socio.csv: data collected from socio-demographic questionnaire in the 1st session of the experiment, namely:

    participant identification: participant's unique identifier (ID);

    socio-demographic information: participant's age (AGE), sex (SEX, 1 through 4 for female, male, prefer not to disclosure, and other, respectively), and average academic grade (GRADE, from 0 to 20, NA denotes preference to not disclosure).

    data_emo.csv: detailed data collected from the emotional questionnaire in the 2 sessions of the experiment, namely:

    participant identification: participant's unique identifier (ID) and the assigned treatment (column HINT, either N, L, E or D);

    detailed emotional response data: the differential in the 5-point Likert scale for each of the 14 measured emotions in the 2 sessions, ranging from -5 to -1 if decreased, 0 if maintained, from 1 to 5 if increased, or NA denoting failure to submit the questionnaire. Half of the emotions are positive (Admiration1 and Admiration2, Desire1 and Desire2, Hope1 and Hope2, Fascination1 and Fascination2, Joy1 and Joy2, Satisfaction1 and Satisfaction2, and Pride1 and Pride2), and half are negative (Anger1 and Anger2, Boredom1 and Boredom2, Contempt1 and Contempt2, Disgust1 and Disgust2, Fear1 and Fear2, Sadness1 and Sadness2, and Shame1 and Shame2). This detailed data was used to compute the aggregate data in data_emo_aggregate.csv and in the detailed discussion in Section 6 of the paper.

    data_umux.csv: data collected from the user experience questionnaires in the 2 sessions of the experiment, namely:

    participant identification: participant's unique identifier (ID);

    user experience data: summarised user experience data from the UMUX surveys (UMUX1 and UMUX2, as a usability metric ranging from 0 to 100).

    participants.txt: the list of participant identifiers that have registered for the experiment.

    Analysis scripts

    The analysis scripts required to replicate the analysis of the results of the experiment as reported in the paper, namely in directory analysis:

    analysis.r: An R script to analyse the data in the provided CSV files; each performed analysis is documented within the file itself.

    requirements.r: An R script to install the required libraries for the analysis script.

    normalize_task.r: A Python script to normalize the task JSON data from file data_sessions.json into the CSV format required by the analysis script.

    normalize_emo.r: A Python script to compute the aggregate emotional response in the CSV format required by the analysis script from the detailed emotional response data in the CSV format of data_emo.csv.

    Dockerfile: Docker script to automate the analysis script from the collected data.

    Setup

    To replicate the experiment and the analysis of the results, only Docker is required.

    If you wish to manually replicate the experiment and collect your own data, you'll need to install:

    A modified version of the Alloy4Fun platform, which is built in the Meteor web framework. This version of Alloy4Fun is publicly available in branch study of its repository at https://github.com/haslab/Alloy4Fun/tree/study.

    If you wish to manually replicate the analysis of the data collected in our experiment, you'll need to install:

    Python to manipulate the JSON data collected in the experiment. Python is freely available for download at https://www.python.org/downloads/, with distributions for most platforms.

    R software for the analysis scripts. R is freely available for download at https://cran.r-project.org/mirrors.html, with binary distributions available for Windows, Linux and Mac.

    Usage

    Experiment replication

    This section describes how to replicate our user study experiment, and collect data about how different hints impact the performance of participants.

    To launch the Alloy4Fun platform populated with tasks for each session, just run the following commands from the root directory of the artifact. The Meteor server may take a few minutes to launch, wait for the "Started your app" message to show.

    cd experimentdocker-compose up

    This will launch Alloy4Fun at http://localhost:3000. The tasks are accessed through permalinks assigned to each participant. The experiment allows for up to 104 participants, and the list of available identifiers is given in file identifiers.txt. The group of each participant is determined by the last character of the identifier, either N, L, E or D. The task database can be consulted in directory data/experiment, in Alloy4Fun JSON files.

    In the 1st session, each participant was given one permalink that gives access to 12 sequential tasks. The permalink is simply the participant's identifier, so participant 0CAN would just access http://localhost:3000/0CAN. The next task is available after a correct submission to the current task or when a time-out occurs (5mins). Each participant was assigned to a different treatment group, so depending on the permalink different kinds of hints are provided. Below are 4 permalinks, each for each hint group:

    Group N (no hints): http://localhost:3000/0CAN

    Group L (error locations): http://localhost:3000/CA0L

    Group E (counter-example): http://localhost:3000/350E

    Group D (error description): http://localhost:3000/27AD

    In the 2nd session, likewise the 1st session, each permalink gave access to 12 sequential tasks, and the next task is available after a correct submission or a time-out (5mins). The permalink is constructed by prepending the participant's identifier with P-. So participant 0CAN would just access http://localhost:3000/P-0CAN. In the 2nd sessions all participants were expected to solve the tasks without any hints provided, so the permalinks from different groups are undifferentiated.

    Before the 1st session the participants should answer the socio-demographic questionnaire, that should ask the following information: unique identifier, age, sex, familiarity with the Alloy language, and average academic grade.

    Before and after both sessions the participants should answer the standard PrEmo 2 questionnaire. PrEmo 2 is published under an Attribution-NonCommercial-NoDerivatives 4.0 International Creative Commons licence (CC BY-NC-ND 4.0). This means that you are free to use the tool for non-commercial purposes as long as you give appropriate credit, provide a link to the license, and do not modify the original material. The original material, namely the depictions of the diferent emotions, can be downloaded from https://diopd.org/premo/. The questionnaire should ask for the unique user identifier, and for the attachment with each of the depicted 14 emotions, expressed in a 5-point Likert scale.

    After both sessions the participants should also answer the standard UMUX questionnaire. This questionnaire can be used freely, and should ask for the user unique identifier and answers for the standard 4 questions in a 7-point Likert scale. For information about the questions, how to implement the questionnaire, and how to compute the usability metric ranging from 0 to 100 score from the answers, please see the original paper:

    Kraig Finstad. 2010. The usability metric for user experience. Interacting with computers 22, 5 (2010), 323–327.

    Analysis of other applications of the experiment

    This section describes how to replicate the analysis of the data collected in an application of the experiment described in Experiment replication.

    The analysis script expects data in 4 CSV files,

  6. d

    (high-temp) No 8. Metadata Analysis (16S rRNA/ITS) Output

    • search.dataone.org
    Updated Aug 15, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jarrod Scott (2024). (high-temp) No 8. Metadata Analysis (16S rRNA/ITS) Output [Dataset]. https://search.dataone.org/view/urn%3Auuid%3A718e0794-b5ff-4919-95ef-4a90a7890a5b
    Explore at:
    Dataset updated
    Aug 15, 2024
    Dataset provided by
    Smithsonian Research Data Repository
    Authors
    Jarrod Scott
    Description

    Output files from the 8. Metadata Analysis Workflow page of the SWELTR high-temp study. In this workflow, we compared environmental metadata with microbial communities. The workflow is split into two parts.

    metadata_ssu18_wf.rdata : Part 1 contains all variables and objects for the 16S rRNA analysis. To see the Objects, in R run _load("metadata_ssu18_wf.rdata", verbose=TRUE)_

    metadata_its18_wf.rdata : Part 2 contains all variables and objects for the ITS analysis. To see the Objects, in R run _load("metadata_its18_wf.rdata", verbose=TRUE)_
    Additional files:

    In both workflows, we run the following steps:

    1) Metadata Normality Tests: Shapiro-Wilk Normality Test to test whether each matadata parameter is normally distributed.
    2) Normalize Parameters: R package bestNormalize to find and execute the best normalizing transformation.
    3) Split Metadata parameters into groups: a) Environmental and edaphic properties, b) Microbial functional responses, and c) Temperature adaptation properties.
    4) Autocorrelation Tests: Test all possible pair-wise comparisons, on both normalized and non-normalized data sets, for each group.
    5) Remove autocorrelated parameters from each group.
    6) Dissimilarity Correlation Tests: Use Mantel Tests to see if any on the metadata groups are significantly correlated with the community data.
    7) Best Subset of Variables: Determine which of the metadata parameters from each group are the most strongly correlated with the community data. For this we use the bioenv function from the vegan package.
    8) Distance-based Redundancy Analysis: Ordination analysis of samples and metadata vector overlays using capscale, also from the vegan package.

    Source code for the workflow can be found here:
    https://github.com/sweltr/high-temp/blob/master/metadata.Rmd

  7. d

    Underway Data (SAS) from R/V Roger Revelle KNOX22RR in the Patagonian Shelf...

    • search.dataone.org
    • bco-dmo.org
    • +1more
    Updated Dec 5, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    William M. Balch (2021). Underway Data (SAS) from R/V Roger Revelle KNOX22RR in the Patagonian Shelf (SW South Atlantic) from 2008-2009 (COPAS08 project) [Dataset]. https://search.dataone.org/view/http%3A%2F%2Flod.bco-dmo.org%2Fid%2Fdataset%2F3356
    Explore at:
    Dataset updated
    Dec 5, 2021
    Dataset provided by
    Biological and Chemical Oceanography Data Management Office (BCO-DMO)
    Authors
    William M. Balch
    Description

    Along track temperature, Salinity, backscatter, Chlorophyll Fluoresence, and normalized water leaving radiance (nLw).

    On the bow of the R/V Roger Revelle was a Satlantic SeaWiFS Aircraft Simulator (MicroSAS) system, used to estimate water-leaving radiance from the ship, analogous to to the nLw derived by the SeaWiFS and MODIS satellite sensors, but free from atmospheric error (hence, it can provide data below clouds).

    The system consisted of a down-looking radiance sensor and a sky-viewing radiance sensor, both mounted on a steerable holder on the bow. A downwelling irradiance sensor was mounted at the top of the ship's meterological mast, on the bow, far from any potentially shading structures. These data were used to estimate normalized water-leaving radiance as a function of wavelength. The radiance detector was set to view the water at 40deg from nadir as recommended by Mueller et al. [2003b]. The water radiance sensor was able to view over an azimuth range of ~180deg across the ship's heading with no viewing of the ship's wake. The direction of the sensor was adjusted to view the water 90-120deg from the sun's azimuth, to minimize sun glint. This was continually adjusted as the time and ship's gyro heading were used to calculate the sun's position using an astronomical solar position subroutine interfaced with a stepping motor which was attached to the radiometer mount (designed and fabricated at Bigelow Laboratory for Ocean Sciences). Protocols for operation and calibration were performed according to Mueller [Mueller et al., 2003a; Mueller et al., 2003b; Mueller et al., 2003c]. Before 1000h and after 1400h, data quality was poorer as the solar zenith angle was too low. Post-cruise, the 10Hz data were filtered to remove as much residual white cap and glint as possible (we accept the lowest 5% of the data). Reflectance plaque measurements were made several times at local apparent noon on sunny days to verify the radiometer calibrations.

    Within an hour of local apparent noon each day, a Satlantic OCP sensor was deployed off the stern of the R/V Revelle after the ship oriented so that the sun was off the stern. The ship would secure the starboard Z-drive, and use port Z-drive and bow thruster to move the ship ahead at about 25cm s-1. The OCP was then trailed aft and brought to the surface ~100m aft of the ship, then allowed to sink to 100m as downwelling spectral irradiance and upwelling spectral radiance were recorded continuously along with temperature and salinity. This procedure ensured there were no ship shadow effects in the radiometry.

    Instruments include a WETLabs wetstar fluorometer, a WETLabs ECOTriplet and a SeaBird microTSG.
    Radiometry was done using a Satlantic 7 channel microSAS system with Es, Lt and Li sensors.

    Chl data is based on inter calibrating surface discrete Chlorophyll measure with the temporally closest fluorescence measurement and applying the regression results to all fluorescence data.

    Data have been corrected for instrument biofouling and drift based on weekly purewater calibrations of the system. Radiometric data has been processed using standard Satlantic processing software and has been checked with periodic plaque measurements using a 2% spectralon standard.

    Lw is calculated from Lt and Lsky and is "what Lt would be if the
    sensor were looking straight down". Since our sensors are mounted at
    40o, based on various NASA protocols, we need to do that conversion.

    Lwn adds Es to the mix. Es is used to normalize Lw. Nlw is related to Rrs, Remote Sensing Reflectance

    Techniques used are as described in:
    Balch WM, Drapeau DT, Bowler BC, Booth ES, Windecker LA, Ashe A (2008) Space-time variability of carbon standing stocks and fixation rates in the Gulf of Maine, along the GNATS transect between Portland, ME, USA, and Yarmouth, Nova Scotia, Canada. J Plankton Res 30:119-139

  8. Z

    Example subjects for Mobilise-D data standardization

    • data.niaid.nih.gov
    Updated Oct 11, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Del Din, Silvia (2022). Example subjects for Mobilise-D data standardization [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_7185428
    Explore at:
    Dataset updated
    Oct 11, 2022
    Dataset provided by
    Cereatti, Andrea
    D'Ascanio, Ilaria
    Del Din, Silvia
    Kirk, Cameron
    Hansen, Clint
    Salis, Francesca
    Paraschiv-Ionescu, Anisoara
    Bertuletti, Stefano
    Gazit, Eran
    Micó-Amigo, Encarna
    Chiari, Lorenzo
    Hiden, Hugo
    Küderle, Arne
    Ullrich, Martin
    Reggi, Luca
    Bonci, Tecla
    Palmerini, Luca
    on behalf of the Mobilise-D consortium
    Mazzà, Claudia
    Kluge, Felix
    Soltani, Abolfazl
    Rochester, Lynn
    Caruso, Marco
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Standardized data from Mobilise-D participants (YAR dataset) and pre-existing datasets (ICICLE, MSIPC2, Gait in Lab and real-life settings, MS project, UNISS-UNIGE) are provided in the shared folder, as an example of the procedures proposed in the publication "Mobility recorded by wearable devices and gold standards: the Mobilise-D procedure for data standardization" that is currently under review in Scientific data. Please refer to that publication for further information. Please cite that publication if using these data.

    The code to standardize an example subject (for the ICICLE dataset) and to open the standardized Matlab files in other languages (Python, R) is available in github (https://github.com/luca-palmerini/Procedure-wearable-data-standardization-Mobilise-D).

  9. Additional file 4 of Bayesian modeling of plant drought resistance pathway

    • springernature.figshare.com
    txt
    Updated May 30, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Aditya Lahiri; Priyadharshini S. Venkatasubramani; Aniruddha Datta (2023). Additional file 4 of Bayesian modeling of plant drought resistance pathway [Dataset]. http://doi.org/10.6084/m9.figshare.7842695.v1
    Explore at:
    txtAvailable download formats
    Dataset updated
    May 30, 2023
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    Aditya Lahiri; Priyadharshini S. Venkatasubramani; Aniruddha Datta
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    R code to normalize the data. (R 1 kb)

  10. f

    Data from: A Machine Learning Strategy for Drug Discovery Identifies...

    • acs.figshare.com
    • figshare.com
    xlsx
    Updated May 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kimberley M. Zorn; Shengxi Sun; Cecelia L. McConnon; Kelley Ma; Eric K. Chen; Daniel H. Foil; Thomas R. Lane; Lawrence J. Liu; Nelly El-Sakkary; Danielle E. Skinner; Sean Ekins; Conor R. Caffrey (2023). A Machine Learning Strategy for Drug Discovery Identifies Anti-Schistosomal Small Molecules [Dataset]. http://doi.org/10.1021/acsinfecdis.0c00754.s002
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    May 30, 2023
    Dataset provided by
    ACS Publications
    Authors
    Kimberley M. Zorn; Shengxi Sun; Cecelia L. McConnon; Kelley Ma; Eric K. Chen; Daniel H. Foil; Thomas R. Lane; Lawrence J. Liu; Nelly El-Sakkary; Danielle E. Skinner; Sean Ekins; Conor R. Caffrey
    License

    Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
    License information was derived automatically

    Description

    Schistosomiasis is a chronic and painful disease of poverty caused by the flatworm parasite Schistosoma. Drug discovery for antischistosomal compounds predominantly employs in vitro whole organism (phenotypic) screens against two developmental stages of Schistosoma mansoni, post-infective larvae (somules) and adults. We generated two rule books and associated scoring systems to normalize 3898 phenotypic data points to enable machine learning. The data were used to generate eight Bayesian machine learning models with the Assay Central software according to parasite’s developmental stage and experimental time point (≤24, 48, 72, and >72 h). The models helped predict 56 active and nonactive compounds from commercial compound libraries for testing. When these were screened against S. mansoni in vitro, the prediction accuracy for active and inactives was 61% and 56% for somules and adults, respectively; also, hit rates were 48% and 34%, respectively, far exceeding the typical 1–2% hit rate for traditional high throughput screens.

  11. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Zhenfeng Wu; Weixiang Liu; Xiufeng Jin; Haishuo Ji; Hua Wang; Gustavo Glusman; Max Robinson; Lin Liu; Jishou Ruan; Shan Gao (2023). Data_Sheet_1_NormExpression: An R Package to Normalize Gene Expression Data Using Evaluated Methods.doc [Dataset]. http://doi.org/10.3389/fgene.2019.00400.s001

Data_Sheet_1_NormExpression: An R Package to Normalize Gene Expression Data Using Evaluated Methods.doc

Related Article
Explore at:
application/cdfv2Available download formats
Dataset updated
Jun 1, 2023
Dataset provided by
Frontiers
Authors
Zhenfeng Wu; Weixiang Liu; Xiufeng Jin; Haishuo Ji; Hua Wang; Gustavo Glusman; Max Robinson; Lin Liu; Jishou Ruan; Shan Gao
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

Data normalization is a crucial step in the gene expression analysis as it ensures the validity of its downstream analyses. Although many metrics have been designed to evaluate the existing normalization methods, different metrics or different datasets by the same metric yield inconsistent results, particularly for the single-cell RNA sequencing (scRNA-seq) data. The worst situations could be that one method evaluated as the best by one metric is evaluated as the poorest by another metric, or one method evaluated as the best using one dataset is evaluated as the poorest using another dataset. Here raises an open question: principles need to be established to guide the evaluation of normalization methods. In this study, we propose a principle that one normalization method evaluated as the best by one metric should also be evaluated as the best by another metric (the consistency of metrics) and one method evaluated as the best using scRNA-seq data should also be evaluated as the best using bulk RNA-seq data or microarray data (the consistency of datasets). Then, we designed a new metric named Area Under normalized CV threshold Curve (AUCVC) and applied it with another metric mSCC to evaluate 14 commonly used normalization methods using both scRNA-seq data and bulk RNA-seq data, satisfying the consistency of metrics and the consistency of datasets. Our findings paved the way to guide future studies in the normalization of gene expression data with its evaluation. The raw gene expression data, normalization methods, and evaluation metrics used in this study have been included in an R package named NormExpression. NormExpression provides a framework and a fast and simple way for researchers to select the best method for the normalization of their gene expression data based on the evaluation of different methods (particularly some data-driven methods or their own methods) in the principle of the consistency of metrics and the consistency of datasets.

Search
Clear search
Close search
Google apps
Main menu