56 datasets found
  1. H

    Growth Strategies (Normalized)

    • datasetcatalog.nlm.nih.gov
    • search.dataone.org
    Updated May 6, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Anez, Diomar; Anez, Dimar (2025). Growth Strategies (Normalized) [Dataset]. http://doi.org/10.7910/DVN/OW8GOW
    Explore at:
    Dataset updated
    May 6, 2025
    Authors
    Anez, Diomar; Anez, Dimar
    Description

    This dataset provides processed and normalized/standardized indices for the management tool group focused on 'Growth Strategies'. Derived from five distinct raw data sources, these indices are specifically designed for comparative longitudinal analysis, enabling the examination of trends and relationships across different empirical domains (web search, literature, academic publishing, and executive adoption). The data presented here represent transformed versions of the original source data, aimed at achieving metric comparability. Users requiring the unprocessed source data should consult the corresponding Growth Strategies dataset in the Management Tool Source Data (Raw Extracts) Dataverse. Data Files and Processing Methodologies: Google Trends File (Prefix: GT_): Normalized Relative Search Interest (RSI) Input Data: Native monthly RSI values from Google Trends (Jan 2004 - Jan 2025) for the query "growth strategies" + "growth strategy" + "growth strategies business". Processing: None. Utilizes the original base-100 normalized Google Trends index. Output Metric: Monthly Normalized RSI (Base 100). Frequency: Monthly. Google Books Ngram Viewer File (Prefix: GB_): Normalized Relative Frequency Input Data: Annual relative frequency values from Google Books Ngram Viewer (1950-2022, English corpus, no smoothing) for the query Growth Strategies + Growth Strategy. Processing: Annual relative frequency series normalized (peak year = 100). Output Metric: Annual Normalized Relative Frequency Index (Base 100). Frequency: Annual. Crossref.org File (Prefix: CR_): Normalized Relative Publication Share Index Input Data: Absolute monthly publication counts matching Growth Strategies-related keywords [("growth strategies" OR ...) AND (...) - see raw data for full query] in titles/abstracts (1950-2025), alongside total monthly Crossref publications. Deduplicated via DOIs. Processing: Monthly relative share calculated (Growth Strat. Count / Total Count). Monthly relative share series normalized (peak month's share = 100). Output Metric: Monthly Normalized Relative Publication Share Index (Base 100). Frequency: Monthly. Bain & Co. Survey - Usability File (Prefix: BU_): Normalized Usability Index Input Data: Original usability percentages (%) from Bain surveys for specific years: Growth Strategies (1996, 1999, 2000, 2002, 2004); Growth Strategy Tools (2006, 2008). Note: Not reported after 2008. Processing: Semantic Grouping: Data points for "Growth Strategies" and "Growth Strategy Tools" were treated as a single conceptual series. Normalization: Combined series normalized relative to its historical peak (Max % = 100). Output Metric: Biennial Estimated Normalized Usability Index (Base 100 relative to historical peak). Frequency: Biennial (Approx.). Bain & Co. Survey - Satisfaction File (Prefix: BS_): Standardized Satisfaction Index Input Data: Original average satisfaction scores (1-5 scale) from Bain surveys for specific years: Growth Strategies (1996-2004); Growth Strategy Tools (2006, 2008). Note: Not reported after 2008. Processing: Semantic Grouping: Data points treated as a single conceptual series. Standardization (Z-scores): Using Z = (X - 3.0) / 0.891609. Index Scale Transformation: Index = 50 + (Z * 22). Output Metric: Biennial Standardized Satisfaction Index (Center=50, Range?[1,100]). Frequency: Biennial (Approx.). File Naming Convention: Files generally follow the pattern: PREFIX_Tool_Processed.csv or similar, where the PREFIX indicates the data source (GT_, GB_, CR_, BU_, BS_). Consult the parent Dataverse description (Management Tool Comparative Indices) for general context and the methodological disclaimer. For original extraction details (specific keywords, URLs, etc.), refer to the corresponding Growth Strategies dataset in the Raw Extracts Dataverse. Comprehensive project documentation provides full details on all processing steps.

  2. LibriTTS Clean 100 Raw Normalize

    • kaggle.com
    zip
    Updated Nov 8, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Nguyễn Thanh (2025). LibriTTS Clean 100 Raw Normalize [Dataset]. https://www.kaggle.com/datasets/lookingformyself/libritts-clean-100-raw-normalize
    Explore at:
    zip(7525325886 bytes)Available download formats
    Dataset updated
    Nov 8, 2025
    Authors
    Nguyễn Thanh
    Description

    Dataset

    This dataset was created by Nguyễn Thanh

    Contents

  3. H

    Benchmarking (Normalized)

    • datasetcatalog.nlm.nih.gov
    • search.dataone.org
    Updated May 6, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Anez, Dimar; Anez, Diomar (2025). Benchmarking (Normalized) [Dataset]. http://doi.org/10.7910/DVN/VW7AAX
    Explore at:
    Dataset updated
    May 6, 2025
    Authors
    Anez, Dimar; Anez, Diomar
    Description

    This dataset provides processed and normalized/standardized indices for the management tool 'Benchmarking'. Derived from five distinct raw data sources, these indices are specifically designed for comparative longitudinal analysis, enabling the examination of trends and relationships across different empirical domains (web search, literature, academic publishing, and executive adoption). The data presented here represent transformed versions of the original source data, aimed at achieving metric comparability. Users requiring the unprocessed source data should consult the corresponding Benchmarking dataset in the Management Tool Source Data (Raw Extracts) Dataverse. Data Files and Processing Methodologies: Google Trends File (Prefix: GT_): Normalized Relative Search Interest (RSI) Input Data: Native monthly RSI values from Google Trends (Jan 2004 - Jan 2025) for the query "benchmarking" + "benchmarking management". Processing: None. Utilizes the original base-100 normalized Google Trends index. Output Metric: Monthly Normalized RSI (Base 100). Frequency: Monthly. Google Books Ngram Viewer File (Prefix: GB_): Normalized Relative Frequency Input Data: Annual relative frequency values from Google Books Ngram Viewer (1950-2022, English corpus, no smoothing) for the query Benchmarking. Processing: Annual relative frequency series normalized (peak year = 100). Output Metric: Annual Normalized Relative Frequency Index (Base 100). Frequency: Annual. Crossref.org File (Prefix: CR_): Normalized Relative Publication Share Index Input Data: Absolute monthly publication counts matching Benchmarking-related keywords ["benchmarking" AND (...) - see raw data for full query] in titles/abstracts (1950-2025), alongside total monthly Crossref publications. Deduplicated via DOIs. Processing: Monthly relative share calculated (Benchmarking Count / Total Count). Monthly relative share series normalized (peak month's share = 100). Output Metric: Monthly Normalized Relative Publication Share Index (Base 100). Frequency: Monthly. Bain & Co. Survey - Usability File (Prefix: BU_): Normalized Usability Index Input Data: Original usability percentages (%) from Bain surveys for specific years: Benchmarking (1993, 1996, 1999, 2000, 2002, 2004, 2006, 2008, 2010, 2012, 2014, 2017). Note: Not reported in 2022 survey data. Processing: Normalization: Original usability percentages normalized relative to its historical peak (Max % = 100). Output Metric: Biennial Estimated Normalized Usability Index (Base 100 relative to historical peak). Frequency: Biennial (Approx.). Bain & Co. Survey - Satisfaction File (Prefix: BS_): Standardized Satisfaction Index Input Data: Original average satisfaction scores (1-5 scale) from Bain surveys for specific years: Benchmarking (1993-2017). Note: Not reported in 2022 survey data. Processing: Standardization (Z-scores): Using Z = (X - 3.0) / 0.891609. Index Scale Transformation: Index = 50 + (Z * 22). Output Metric: Biennial Standardized Satisfaction Index (Center=50, Range?[1,100]). Frequency: Biennial (Approx.). File Naming Convention: Files generally follow the pattern: PREFIX_Tool_Processed.csv or similar, where the PREFIX indicates the data source (GT_, GB_, CR_, BU_, BS_). Consult the parent Dataverse description (Management Tool Comparative Indices) for general context and the methodological disclaimer. For original extraction details (specific keywords, URLs, etc.), refer to the corresponding Benchmarking dataset in the Raw Extracts Dataverse. Comprehensive project documentation provides full details on all processing steps.

  4. H

    Price Optimization (Normalized)

    • dataverse.harvard.edu
    • search.dataone.org
    Updated May 6, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Diomar Anez; Dimar Anez (2025). Price Optimization (Normalized) [Dataset]. http://doi.org/10.7910/DVN/URFT2I
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    May 6, 2025
    Dataset provided by
    Harvard Dataverse
    Authors
    Diomar Anez; Dimar Anez
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    This dataset provides processed and normalized/standardized indices for the management tool group focused on 'Price Optimization', including related concepts like Dynamic Pricing and Price Optimization Models. Derived from five distinct raw data sources, these indices are specifically designed for comparative longitudinal analysis, enabling the examination of trends and relationships across different empirical domains (web search, literature, academic publishing, and executive adoption). The data presented here represent transformed versions of the original source data, aimed at achieving metric comparability. Users requiring the unprocessed source data should consult the corresponding Price Optimization dataset in the Management Tool Source Data (Raw Extracts) Dataverse. Data Files and Processing Methodologies: Google Trends File (Prefix: GT_): Normalized Relative Search Interest (RSI) Input Data: Native monthly RSI values from Google Trends (Jan 2004 - Jan 2025) for the query "price optimization" + "dynamic pricing" + "price optimization strategy". Processing: None. Utilizes the original base-100 normalized Google Trends index. Output Metric: Monthly Normalized RSI (Base 100). Frequency: Monthly. Google Books Ngram Viewer File (Prefix: GB_): Normalized Relative Frequency Input Data: Annual relative frequency values from Google Books Ngram Viewer (1950-2022, English corpus, no smoothing) for the query Price Optimization + Pricing Optimization + Dynamic Pricing Models + Optimal Pricing + Dynamic Pricing. Processing: Annual relative frequency series normalized (peak year = 100). Output Metric: Annual Normalized Relative Frequency Index (Base 100). Frequency: Annual. Crossref.org File (Prefix: CR_): Normalized Relative Publication Share Index Input Data: Absolute monthly publication counts matching Price Optimization-related keywords [("price optimization" OR ...) AND (...) - see raw data for full query] in titles/abstracts (1950-2025), alongside total monthly Crossref publications. Deduplicated via DOIs. Processing: Monthly relative share calculated (Price Opt. Count / Total Count). Monthly relative share series normalized (peak month's share = 100). Output Metric: Monthly Normalized Relative Publication Share Index (Base 100). Frequency: Monthly. Bain & Co. Survey - Usability File (Prefix: BU_): Normalized Usability Index Input Data: Original usability percentages (%) from Bain surveys for specific years: Price Optimization Models (2004, 2008, 2010, 2012, 2014, 2017). Note: Not reported before 2004 or after 2017. Processing: Normalization: Original usability percentages normalized relative to its historical peak (Max % = 100). Output Metric: Biennial Estimated Normalized Usability Index (Base 100 relative to historical peak). Frequency: Biennial (Approx.). Bain & Co. Survey - Satisfaction File (Prefix: BS_): Standardized Satisfaction Index Input Data: Original average satisfaction scores (1-5 scale) from Bain surveys for specific years: Price Optimization Models (2004-2017). Note: Not reported before 2004 or after 2017. Processing: Standardization (Z-scores): Using Z = (X - 3.0) / 0.891609. Index Scale Transformation: Index = 50 + (Z * 22). Output Metric: Biennial Standardized Satisfaction Index (Center=50, Range?[1,100]). Frequency: Biennial (Approx.). File Naming Convention: Files generally follow the pattern: PREFIX_Tool_Processed.csv or similar, where the PREFIX indicates the data source (GT_, GB_, CR_, BU_, BS_). Consult the parent Dataverse description (Management Tool Comparative Indices) for general context and the methodological disclaimer. For original extraction details (specific keywords, URLs, etc.), refer to the corresponding Price Optimization dataset in the Raw Extracts Dataverse. Comprehensive project documentation provides full details on all processing steps.

  5. NORMALIZE STATIC ATTENTION 100k step traincontinue

    • kaggle.com
    zip
    Updated Jun 30, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    VMHieu02 (2024). NORMALIZE STATIC ATTENTION 100k step traincontinue [Dataset]. https://www.kaggle.com/datasets/vmhieu02/normalize-static-attention-100k-step-traincontinue
    Explore at:
    zip(1071022430 bytes)Available download formats
    Dataset updated
    Jun 30, 2024
    Authors
    VMHieu02
    Description

    Dataset

    This dataset was created by VMHieu02

    Contents

  6. d

    Knowledge Management (Normalized)

    • search.dataone.org
    • datasetcatalog.nlm.nih.gov
    Updated Oct 29, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Anez, Diomar; Anez, Dimar (2025). Knowledge Management (Normalized) [Dataset]. http://doi.org/10.7910/DVN/BAPIEP
    Explore at:
    Dataset updated
    Oct 29, 2025
    Dataset provided by
    Harvard Dataverse
    Authors
    Anez, Diomar; Anez, Dimar
    Description

    This dataset provides processed and normalized/standardized indices for the management tool 'Knowledge Management' (KM), including related concepts like Intellectual Capital Management and Knowledge Transfer. Derived from five distinct raw data sources, these indices are specifically designed for comparative longitudinal analysis, enabling the examination of trends and relationships across different empirical domains (web search, literature, academic publishing, and executive adoption). The data presented here represent transformed versions of the original source data, aimed at achieving metric comparability. Users requiring the unprocessed source data should consult the corresponding KM dataset in the Management Tool Source Data (Raw Extracts) Dataverse. Data Files and Processing Methodologies: Google Trends File (Prefix: GT_): Normalized Relative Search Interest (RSI) Input Data: Native monthly RSI values from Google Trends (Jan 2004 - Jan 2025) for the query "knowledge management" + "knowledge management organizational". Processing: None. Utilizes the original base-100 normalized Google Trends index. Output Metric: Monthly Normalized RSI (Base 100). Frequency: Monthly. Google Books Ngram Viewer File (Prefix: GB_): Normalized Relative Frequency Input Data: Annual relative frequency values from Google Books Ngram Viewer (1950-2022, English corpus, no smoothing) for the query Knowledge Management + Intellectual Capital Management + Knowledge Transfer. Processing: Annual relative frequency series normalized (peak year = 100). Output Metric: Annual Normalized Relative Frequency Index (Base 100). Frequency: Annual. Crossref.org File (Prefix: CR_): Normalized Relative Publication Share Index Input Data: Absolute monthly publication counts matching KM-related keywords [("knowledge management" OR ...) AND (...) - see raw data for full query] in titles/abstracts (1950-2025), alongside total monthly Crossref publications. Deduplicated via DOIs. Processing: Monthly relative share calculated (KM Count / Total Count). Monthly relative share series normalized (peak month's share = 100). Output Metric: Monthly Normalized Relative Publication Share Index (Base 100). Frequency: Monthly. Bain & Co. Survey - Usability File (Prefix: BU_): Normalized Usability Index Input Data: Original usability percentages (%) from Bain surveys for specific years: Knowledge Management (1999, 2000, 2002, 2004, 2006, 2008, 2010). Note: Not reported after 2010. Processing: Normalization: Original usability percentages normalized relative to its historical peak (Max % = 100). Output Metric: Biennial Estimated Normalized Usability Index (Base 100 relative to historical peak). Frequency: Biennial (Approx.). Bain & Co. Survey - Satisfaction File (Prefix: BS_): Standardized Satisfaction Index Input Data: Original average satisfaction scores (1-5 scale) from Bain surveys for specific years: Knowledge Management (1999-2010). Note: Not reported after 2010. Processing: Standardization (Z-scores): Using Z = (X - 3.0) / 0.891609. Index Scale Transformation: Index = 50 + (Z * 22). Output Metric: Biennial Standardized Satisfaction Index (Center=50, Range?[1,100]). Frequency: Biennial (Approx.). File Naming Convention: Files generally follow the pattern: PREFIX_Tool_Processed.csv or similar, where the PREFIX indicates the data source (GT_, GB_, CR_, BU_, BS_). Consult the parent Dataverse description (Management Tool Comparative Indices) for general context and the methodological disclaimer. For original extraction details (specific keywords, URLs, etc.), refer to the corresponding KM dataset in the Raw Extracts Dataverse. Comprehensive project documentation provides full details on all processing steps.

  7. H

    Scenario Planning (Normalized)

    • datasetcatalog.nlm.nih.gov
    • search.dataone.org
    Updated May 6, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Anez, Diomar; Anez, Dimar (2025). Scenario Planning (Normalized) [Dataset]. http://doi.org/10.7910/DVN/YX7VBS
    Explore at:
    Dataset updated
    May 6, 2025
    Authors
    Anez, Diomar; Anez, Dimar
    Description

    This dataset provides processed and normalized/standardized indices for the management tool group 'Scenario Planning', including related concepts like Scenario Analysis and Contingency Planning. Derived from five distinct raw data sources, these indices are specifically designed for comparative longitudinal analysis, enabling the examination of trends and relationships across different empirical domains (web search, literature, academic publishing, and executive adoption). The data presented here represent transformed versions of the original source data, aimed at achieving metric comparability. Users requiring the unprocessed source data should consult the corresponding Scenario Planning dataset in the Management Tool Source Data (Raw Extracts) Dataverse. Data Files and Processing Methodologies: Google Trends File (Prefix: GT_): Normalized Relative Search Interest (RSI) Input Data: Native monthly RSI values from Google Trends (Jan 2004 - Jan 2025) for the query "scenario planning" + "scenario analysis" + "contingency planning" + "scenario planning business". Processing: None. Utilizes the original base-100 normalized Google Trends index. Output Metric: Monthly Normalized RSI (Base 100). Frequency: Monthly. Google Books Ngram Viewer File (Prefix: GB_): Normalized Relative Frequency Input Data: Annual relative frequency values from Google Books Ngram Viewer (1950-2022, English corpus, no smoothing) for the query Scenario Planning + Scenario Analysis + Contingency Planning + Scenario and Contingency Planning. Processing: Annual relative frequency series normalized (peak year = 100). Output Metric: Annual Normalized Relative Frequency Index (Base 100). Frequency: Annual. Crossref.org File (Prefix: CR_): Normalized Relative Publication Share Index Input Data: Absolute monthly publication counts matching Scenario Planning-related keywords [("scenario planning" OR ...) AND ("management" OR ...) - see raw data for full query] in titles/abstracts (1950-2025), alongside total monthly Crossref publications. Deduplicated via DOIs. Processing: Monthly relative share calculated (Scenario Planning Count / Total Count). Monthly relative share series normalized (peak month's share = 100). Output Metric: Monthly Normalized Relative Publication Share Index (Base 100). Frequency: Monthly. Bain & Co. Survey - Usability File (Prefix: BU_): Normalized Usability Index Input Data: Original usability percentages (%) from Bain surveys for specific years: Scenario Planning (1993, 1999, 2000); Scenario and Contingency Planning (2004, 2006, 2008, 2010, 2012, 2014, 2017); Scenario Analysis and Contingency Planning (2022). Processing: Semantic Grouping: Data points across the different naming conventions were treated as a single conceptual series. Normalization: Combined series normalized relative to its historical peak (Max % = 100). Output Metric: Biennial Estimated Normalized Usability Index (Base 100 relative to historical peak). Frequency: Biennial (Approx.). Bain & Co. Survey - Satisfaction File (Prefix: BS_): Standardized Satisfaction Index Input Data: Original average satisfaction scores (1-5 scale) from Bain surveys for specific years: Scenario Planning (1993, 1999, 2000); Scenario and Contingency Planning (2004, 2006, 2008, 2010, 2012, 2014, 2017); Scenario Analysis and Contingency Planning (2022). Processing: Semantic Grouping: Data points treated as a single conceptual series. Standardization (Z-scores): Using Z = (X - 3.0) / 0.891609. Index Scale Transformation: Index = 50 + (Z * 22). Output Metric: Biennial Standardized Satisfaction Index (Center=50, Range?[1,100]). Frequency: Biennial (Approx.). File Naming Convention: Files generally follow the pattern: PREFIX_Tool_Processed.csv or similar, where the PREFIX indicates the data source (GT_, GB_, CR_, BU_, BS_). Consult the parent Dataverse description (Management Tool Comparative Indices) for general context and the methodological disclaimer. For original extraction details (specific keywords, URLs, etc.), refer to the corresponding Scenario Planning dataset in the Raw Extracts Dataverse. Comprehensive project documentation provides full details on all processing steps.

  8. d

    Mission and Vision Statements (Normalized)

    • search.dataone.org
    • datasetcatalog.nlm.nih.gov
    Updated Oct 29, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Anez, Diomar; Anez, Dimar (2025). Mission and Vision Statements (Normalized) [Dataset]. http://doi.org/10.7910/DVN/SFKSW0
    Explore at:
    Dataset updated
    Oct 29, 2025
    Dataset provided by
    Harvard Dataverse
    Authors
    Anez, Diomar; Anez, Dimar
    Description

    This dataset provides processed and normalized/standardized indices for the management tool group focused on 'Mission and Vision Statements', including related concepts like Purpose Statements. Derived from five distinct raw data sources, these indices are specifically designed for comparative longitudinal analysis, enabling the examination of trends and relationships across different empirical domains (web search, literature, academic publishing, and executive adoption). The data presented here represent transformed versions of the original source data, aimed at achieving metric comparability. Users requiring the unprocessed source data should consult the corresponding Mission/Vision dataset in the Management Tool Source Data (Raw Extracts) Dataverse. Data Files and Processing Methodologies: Google Trends File (Prefix: GT_): Normalized Relative Search Interest (RSI) Input Data: Native monthly RSI values from Google Trends (Jan 2004 - Jan 2025) for the query "mission statement" + "vision statement" + "mission and vision corporate". Processing: None. Utilizes the original base-100 normalized Google Trends index. Output Metric: Monthly Normalized RSI (Base 100). Frequency: Monthly. Google Books Ngram Viewer File (Prefix: GB_): Normalized Relative Frequency Input Data: Annual relative frequency values from Google Books Ngram Viewer (1950-2022, English corpus, no smoothing) for the query Mission Statements + Vision Statements + Purpose Statements + Mission and Vision. Processing: Annual relative frequency series normalized (peak year = 100). Output Metric: Annual Normalized Relative Frequency Index (Base 100). Frequency: Annual. Crossref.org File (Prefix: CR_): Normalized Relative Publication Share Index Input Data: Absolute monthly publication counts matching Mission/Vision-related keywords [("mission statement" OR ...) AND (...) - see raw data for full query] in titles/abstracts (1950-2025), alongside total monthly Crossref publications. Deduplicated via DOIs. Processing: Monthly relative share calculated (Mission/Vision Count / Total Count). Monthly relative share series normalized (peak month's share = 100). Output Metric: Monthly Normalized Relative Publication Share Index (Base 100). Frequency: Monthly. Bain & Co. Survey - Usability File (Prefix: BU_): Normalized Usability Index Input Data: Original usability percentages (%) from Bain surveys for specific years: Mission/Vision (1993); Mission Statements (1996); Mission and Vision Statements (1999-2017); Purpose, Mission, and Vision Statements (2022). Processing: Semantic Grouping: Data points across the different naming conventions were treated as a single conceptual series. Normalization: Combined series normalized relative to its historical peak (Max % = 100). Output Metric: Biennial Estimated Normalized Usability Index (Base 100 relative to historical peak). Frequency: Biennial (Approx.). Bain & Co. Survey - Satisfaction File (Prefix: BS_): Standardized Satisfaction Index Input Data: Original average satisfaction scores (1-5 scale) from Bain surveys for specific years (same names/years as Usability). Processing: Semantic Grouping: Data points treated as a single conceptual series. Standardization (Z-scores): Using Z = (X - 3.0) / 0.891609. Index Scale Transformation: Index = 50 + (Z * 22). Output Metric: Biennial Standardized Satisfaction Index (Center=50, Range?[1,100]). Frequency: Biennial (Approx.). File Naming Convention: Files generally follow the pattern: PREFIX_Tool_Processed.csv or similar, where the PREFIX indicates the data source (GT_, GB_, CR_, BU_, BS_). Consult the parent Dataverse description (Management Tool Comparative Indices) for general context and the methodological disclaimer. For original extraction details (specific keywords, URLs, etc.), refer to the corresponding Mission/Vision dataset in the Raw Extracts Dataverse. Comprehensive project documentation provides full details on all processing steps.

  9. H

    Talent & Employee Engagement (Normalized)

    • dataverse.harvard.edu
    • search.dataone.org
    Updated May 6, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Diomar Anez; Dimar Anez (2025). Talent & Employee Engagement (Normalized) [Dataset]. http://doi.org/10.7910/DVN/MOCGHM
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    May 6, 2025
    Dataset provided by
    Harvard Dataverse
    Authors
    Diomar Anez; Dimar Anez
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    This dataset provides processed and normalized/standardized indices for the management tool group focused on 'Talent & Employee Engagement', including concepts like Employee Engagement Surveys/Systems and Corporate Codes of Ethics. Derived from five distinct raw data sources, these indices are specifically designed for comparative longitudinal analysis, enabling the examination of trends and relationships across different empirical domains (web search, literature, academic publishing, and executive adoption). The data presented here represent transformed versions of the original source data, aimed at achieving metric comparability. Users requiring the unprocessed source data should consult the corresponding Talent/Engagement dataset in the Management Tool Source Data (Raw Extracts) Dataverse. Data Files and Processing Methodologies: Google Trends File (Prefix: GT_): Normalized Relative Search Interest (RSI) Input Data: Native monthly RSI values from Google Trends (Jan 2004 - Jan 2025) for the query "corporate code of ethics" + "employee engagement" + "employee engagement management". Processing: None. Utilizes the original base-100 normalized Google Trends index. Output Metric: Monthly Normalized RSI (Base 100). Frequency: Monthly. Google Books Ngram Viewer File (Prefix: GB_): Normalized Relative Frequency Input Data: Annual relative frequency values from Google Books Ngram Viewer (1950-2022, English corpus, no smoothing) for the query Corporate Code of Ethics+Employee Engagement Programs+Employee Engagement Surveys+Employee Engagement. Processing: Annual relative frequency series normalized (peak year = 100). Output Metric: Annual Normalized Relative Frequency Index (Base 100). Frequency: Annual. Crossref.org File (Prefix: CR_): Normalized Relative Publication Share Index Input Data: Absolute monthly publication counts matching Engagement/Ethics-related keywords [("corporate code of ethics" OR ...) AND (...) - see raw data for full query] in titles/abstracts (1950-2025), alongside total monthly Crossref publications. Deduplicated via DOIs. Processing: Monthly relative share calculated (Engage/Ethics Count / Total Count). Monthly relative share series normalized (peak month's share = 100). Output Metric: Monthly Normalized Relative Publication Share Index (Base 100). Frequency: Monthly. Bain & Co. Survey - Usability File (Prefix: BU_): Normalized Usability Index Input Data: Original usability percentages (%) from Bain surveys for specific years: Corporate Code of Ethics (2002); Employee Engagement Surveys (2012, 2014); Employee Engagement Systems (2017, 2022). Processing: Semantic Grouping: Data points across related names treated as a single conceptual series representing Talent/Engagement focus. Normalization: Combined series normalized relative to its historical peak (Max % = 100). Output Metric: Biennial Estimated Normalized Usability Index (Base 100 relative to historical peak). Frequency: Biennial (Approx.). Bain & Co. Survey - Satisfaction File (Prefix: BS_): Standardized Satisfaction Index Input Data: Original average satisfaction scores (1-5 scale) from Bain surveys for specific years (same names/years as Usability). Processing: Semantic Grouping: Data points treated as a single conceptual series. Standardization (Z-scores): Using Z = (X - 3.0) / 0.891609. Index Scale Transformation: Index = 50 + (Z * 22). Output Metric: Biennial Standardized Satisfaction Index (Center=50, Range?[1,100]). Frequency: Biennial (Approx.). File Naming Convention: Files generally follow the pattern: PREFIX_Tool_Processed.csv or similar, where the PREFIX indicates the data source (GT_, GB_, CR_, BU_, BS_). Consult the parent Dataverse description (Management Tool Comparative Indices) for general context and the methodological disclaimer. For original extraction details (specific keywords, URLs, etc.), refer to the corresponding Talent/Engagement dataset in the Raw Extracts Dataverse. Comprehensive project documentation provides full details on all processing steps.

  10. f

    Data from: Normalization Method Utilizing Endogenous Proteins for...

    • acs.figshare.com
    xls
    Updated Jun 7, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kai Yan; Yueying Yang; Yunpeng Zhang; Wanbing Zhao; Lujian Liao (2023). Normalization Method Utilizing Endogenous Proteins for Quantitative Proteomics [Dataset]. http://doi.org/10.1021/jasms.0c00012.s002
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 7, 2023
    Dataset provided by
    ACS Publications
    Authors
    Kai Yan; Yueying Yang; Yunpeng Zhang; Wanbing Zhao; Lujian Liao
    License

    Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
    License information was derived automatically

    Description

    We developed a normalization method utilizing the expression levels of a panel of endogenous proteins as normalization standards (EPNS herein). We tested the validity of the method using two sets of tandem mass tag (TMT)-labeled data and found that this normalization method effectively reduced global intensity bias at the protein level. The coefficient of variation (CV) of the overall median was reduced by 55% and 82% on average, compared to the reduction by 72% and 86% after normalization using the upper quartile. Furthermore, we used differential protein expression analysis and statistical learning to identify biomarkers for colorectal cancer from a CPTAC data set. The expression changes of a panel of proteins, including NUP205, GTPBP4, CNN2, GNL3, and S100A11, all of which highly correlate with colorectal cancer. Applying these five proteins as model features, random forest modeling obtained prediction results with the maximum AUC of 0.9998 using EPNS-normalized data, comparing favorably to the AUC of 0.9739 using the raw data. Thus, the normalization method based on EPNS reduced the global intensity bias and is applicable for quantitative proteomic analysis.

  11. d

    Business Process Reengineering (Normalized)

    • search.dataone.org
    Updated Oct 29, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Anez, Diomar; Anez, Dimar (2025). Business Process Reengineering (Normalized) [Dataset]. http://doi.org/10.7910/DVN/QBP0E9
    Explore at:
    Dataset updated
    Oct 29, 2025
    Dataset provided by
    Harvard Dataverse
    Authors
    Anez, Diomar; Anez, Dimar
    Description

    This dataset provides processed and normalized/standardized indices for the management tool 'Business Process Reengineering' (BPR). Derived from five distinct raw data sources, these indices are specifically designed for comparative longitudinal analysis, enabling the examination of trends and relationships across different empirical domains (web search, literature, academic publishing, and executive adoption). The data presented here represent transformed versions of the original source data, aimed at achieving metric comparability. Users requiring the unprocessed source data should consult the corresponding BPR dataset in the Management Tool Source Data (Raw Extracts) Dataverse. Data Files and Processing Methodologies: Google Trends File (Prefix: GT_): Normalized Relative Search Interest (RSI) Input Data: Native monthly RSI values from Google Trends (Jan 2004 - Jan 2025) for the query "business process reengineering" + "process reengineering" + "reengineering management". Processing: None. The dataset utilizes the original Google Trends index, which is base-100 normalized against the peak search interest for the specified terms and period. Output Metric: Monthly Normalized RSI (Base 100). Frequency: Monthly. Google Books Ngram Viewer File (Prefix: GB_): Normalized Relative Frequency Input Data: Annual relative frequency values from Google Books Ngram Viewer (1950-2022, English corpus, no smoothing) for the query Reengineering + Business Process Reengineering + Process Reengineering. Processing: The annual relative frequency series was normalized by setting the year with the maximum value to 100 and scaling all other values (years) proportionally. Output Metric: Annual Normalized Relative Frequency Index (Base 100). Frequency: Annual. Crossref.org File (Prefix: CR_): Normalized Relative Publication Share Index Input Data: Absolute monthly publication counts matching BPR-related keywords [("business process reengineering" OR ...) AND ("management" OR ...) - see raw data for full query] in titles/abstracts (1950-2025), alongside total monthly publication counts in Crossref. Data deduplicated via DOIs. Processing: For each month, the relative share of BPR-related publications (BPR Count / Total Crossref Count for that month) was calculated. This monthly relative share series was then normalized by setting the month with the maximum relative share to 100 and scaling all other months proportionally. Output Metric: Monthly Normalized Relative Publication Share Index (Base 100). Frequency: Monthly. Bain & Co. Survey - Usability File (Prefix: BU_): Normalized Usability Index Input Data: Original usability percentages (%) from Bain surveys for specific years: Reengineering (1993, 1996, 2000, 2002); Business Process Reengineering (2004, 2006, 2008, 2010, 2012, 2014, 2017, 2022). Processing: Semantic Grouping: Data points for "Reengineering" and "Business Process Reengineering" were treated as a single conceptual series for BPR. Normalization: The combined series of original usability percentages was normalized relative to its own highest observed historical value across all included years (Max % = 100). Output Metric: Biennial Estimated Normalized Usability Index (Base 100 relative to historical peak). Frequency: Biennial (Approx.). Bain & Co. Survey - Satisfaction File (Prefix: BS_): Standardized Satisfaction Index Input Data: Original average satisfaction scores (1-5 scale) from Bain surveys for specific years: Reengineering (1993, 1996, 2000, 2002); Business Process Reengineering (2004, 2006, 2008, 2010, 2012, 2014, 2017, 2022). Processing: Semantic Grouping: Data points for "Reengineering" and "Business Process Reengineering" were treated as a single conceptual series for BPR. Standardization (Z-scores): Original scores (X) were standardized using Z = (X - ?) / ?, with a theoretically defined neutral mean ?=3.0 and an estimated pooled population standard deviation ??0.891609 (calculated across all tools/years relative to ?=3.0). Index Scale Transformation: Z-scores were transformed to an intuitive index via: Index = 50 + (Z * 22). This scale centers theoretical neutrality (original score: 3.0) at 50 and maps the approximate range [1, 5] to [?1, ?100]. Output Metric: Biennial Standardized Satisfaction Index (Center=50, Range?[1,100]). Frequency: Biennial (Approx.). File Naming Convention: Files generally follow the pattern: PREFIX_Tool_Processed.csv or similar, where the PREFIX indicates the data source (GT_, GB_, CR_, BU_, BS_). Consult the parent Dataverse description (Management Tool Comparative Indices) for general context and the methodological disclaimer. For original extraction details (specific keywords, URLs, etc.), refer to the corresponding BPR dataset in the Raw Extracts Dataverse. Comprehensive project documentation provides full details on all processing steps.

  12. p

    Aarhus University,Danish Centre for Environment and Energy

    • pigma.org
    • sextant.ifremer.fr
    • +1more
    doi, www:download +1
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    EMODnet Chemistry, Aarhus University,Danish Centre for Environment and Energy [Dataset]. https://www.pigma.org/geonetwork/BORDEAUX_METROPOLE_DIR_INFO_GEO/api/records/7bf3d736-cb5e-40d1-9fc8-1be134cd1daf
    Explore at:
    www:link, doi, www:downloadAvailable download formats
    Dataset provided by
    Ifremer, VIGIES (Information Valuation Service for Integrated Management and Monitoring)
    EMODnet Chemistry
    National Institute of Oceanography and Applied Geophysics - OGS, Division of Oceanography
    IFREMER, SISMER, Scientific Information Systems for the SEA
    Time period covered
    Jan 1, 2001 - Aug 11, 2021
    Area covered
    Description

    This visualization product displays the cigarette related items abundance of marine macro-litter (> 2.5cm) per beach per year from non-MSFD monitoring surveys, research & cleaning operations without UNEP-MARLIN data.

    EMODnet Chemistry included the collection of marine litter in its 3rd phase. Since the beginning of 2018, data of beach litter have been gathered and processed in the EMODnet Chemistry Marine Litter Database (MLDB). The harmonization of all the data has been the most challenging task considering the heterogeneity of the data sources, sampling protocols and reference lists used on a European scale.

    Preliminary processing were necessary to harmonize all the data: - Exclusion of OSPAR 1000 protocol: in order to follow the approach of OSPAR that it is not including these data anymore in the monitoring; - Selection of surveys from non-MSFD monitoring, cleaning and research operations; - Exclusion of beaches without coordinates; - Selection of cigarette related items only. The list of selected items is attached to this metadata. This list was created using EU Marine Beach Litter Baselines and EU Threshold Value for Macro Litter on Coastlines from JRC (these two documents are attached to this metadata); - Exclusion of surveys without associated length; - Exclusion of surveys referring to the UNEP-MARLIN list: the UNEP-MARLIN protocol differs from the other types of monitoring in that cigarette butts are surveyed in a 10m square. To avoid comparing abundances from very different protocols, the choice has been made to distinguish in two maps the cigarette related items results associated with the UNEP-MARLIN list from the others; - Normalization of survey lengths to 100m & 1 survey / year: in some case, the survey length was not 100m, so in order to be able to compare the abundance of litter from different beaches a normalization is applied using this formula: Number of cigarette related items of the survey (normalized by 100 m) = Number of cigarette related items of the survey x (100 / survey length) Then, this normalized number of cigarette related items is summed to obtain the total normalized number of cigarette related items for each survey. Finally, the median abundance of cigarette related items for each beach and year is calculated from these normalized abundances of cigarette related items per survey.

    Percentiles 50, 75, 95 & 99 have been calculated taking into account cigarette related items from other sources data (excluding UNEP-MARLIN protocol) for all years.

    More information is available in the attached documents.

    Warning: the absence of data on the map doesn't necessarily mean that they don't exist, but that no information has been entered in the Marine Litter Database for this area.

  13. MicroRNA profiling in plasma samples using qPCR arrays: Recommendations for...

    • figshare.com
    docx
    Updated Jun 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Andreas B. Gevaert; Isabel Witvrouwen; Christiaan J. Vrints; Hein Heidbuchel; Emeline M. Van Craenenbroeck; Steven J. Van Laere; Amaryllis H. Van Craenenbroeck (2023). MicroRNA profiling in plasma samples using qPCR arrays: Recommendations for correct analysis and interpretation [Dataset]. http://doi.org/10.1371/journal.pone.0193173
    Explore at:
    docxAvailable download formats
    Dataset updated
    Jun 1, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Andreas B. Gevaert; Isabel Witvrouwen; Christiaan J. Vrints; Hein Heidbuchel; Emeline M. Van Craenenbroeck; Steven J. Van Laere; Amaryllis H. Van Craenenbroeck
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    MicroRNA (miRNA) regulate gene expression through posttranscriptional mRNA degradation or suppression of translation. Many (pre)analytical issues remain to be resolved for miRNA screening with TaqMan Low Density Arrays (TLDA) in plasma samples, such as optimal RNA isolation, preamplification and data normalization. We optimized the TLDA protocol using three RNA isolation protocols and preamplification dilutions. By using 100μL elution volume during RNA isolation and adding a preamplification step without dilution, 49% of wells were amplified. Informative target miRNA were defined as having quantification cycle values ≤35 in at least 20% of samples and low technical variability (CV across 2 duplicates of 1 sample

  14. p

    Aarhus University,Danish Centre for Environment and Energy

    • pigma.org
    • catalogue.arctic-sdi.org
    doi, ogc:wms +2
    Updated Feb 21, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    EMODnet Chemistry (2025). Aarhus University,Danish Centre for Environment and Energy [Dataset]. https://www.pigma.org/geonetwork/srv/api/records/ee1fe4b7-6a20-4e70-b626-6dbf91974d5d
    Explore at:
    www:link, ogc:wms, www:download, doiAvailable download formats
    Dataset updated
    Feb 21, 2025
    Dataset provided by
    Ifremer, VIGIES (Information Valuation Service for Integrated Management and Monitoring)
    EMODnet Chemistry
    National Institute of Oceanography and Applied Geophysics - OGS, Division of Oceanography
    IFREMER, SISMER, Scientific Information Systems for the SEA
    Time period covered
    Jan 1, 2001 - May 11, 2024
    Area covered
    Description

    This visualization product displays the cigarette related items abundance of marine macro-litter (> 2.5cm) per beach per year from non-MSFD monitoring surveys, research & cleaning operations without UNEP-MARLIN data.

    EMODnet Chemistry included the collection of marine litter in its 3rd phase. Since the beginning of 2018, data of beach litter have been gathered and processed in the EMODnet Chemistry Marine Litter Database (MLDB).

    The harmonization of all the data has been the most challenging task considering the heterogeneity of the data sources, sampling protocols and reference lists used on a European scale.

    Preliminary processings were necessary to harmonize all the data:

    • Exclusion of OSPAR 1000 protocol: in order to follow the approach of OSPAR that it is not including these data anymore in the monitoring;

    • Selection of surveys from non-MSFD monitoring, cleaning and research operations;

    • Exclusion of beaches without coordinates;

    • Selection of plastic bags related items only. The list of selected items is attached to this metadata. This list was created using EU Marine Beach Litter Baselines, the European Threshold Value for Macro Litter on Coastlines and the Joint list of litter categories for marine macro-litter monitoring from JRC (these three documents are attached to this metadata);

    • Exclusion of surveys without associated length;

    • Normalization of survey lengths to 100m & 1 survey / year: in some case, the survey length was not 100m, so in order to be able to compare the abundance of litter from different beaches a normalization is applied using this formula:

    Number of plastic bags related items of the survey (normalized by 100 m) = Number of plastic bags related items of the survey x (100 / survey length)

    Then, this normalized number of plastic bags related items is summed to obtain the total normalized number of plastic bags related items for each survey. Finally, the median abundance of plastic bags related items for each beach and year is calculated from these normalized abundances of plastic bags related items per survey.

    Percentiles 50, 75, 95 & 99 have been calculated taking into account plastic bags related items from other sources data for all years.

    More information is available in the attached documents.

    Warning: the absence of data on the map does not necessarily mean that they do not exist, but that no information has been entered in the Marine Litter Database for this area.

  15. p

    Aarhus University,Danish Centre for Environment and Energy

    • pigma.org
    • catalogue.arctic-sdi.org
    doi, ogc:wms +2
    Updated Feb 21, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    EMODnet Chemistry (2025). Aarhus University,Danish Centre for Environment and Energy [Dataset]. https://www.pigma.org/geonetwork/srv/api/records/9920fa88-bd81-4285-ad2b-0e435c8ce0d6
    Explore at:
    www:link, ogc:wms, doi, www:downloadAvailable download formats
    Dataset updated
    Feb 21, 2025
    Dataset provided by
    Ifremer, VIGIES (Information Valuation Service for Integrated Management and Monitoring)
    National Institute of Oceanography and Applied Geophysics - OGS, Division of Oceanography
    IFREMER, SISMER, Scientific Information Systems for the SEA
    EMODnet Chemistry
    Time period covered
    Jan 1, 2001 - May 11, 2024
    Area covered
    Description

    This visualization product displays marine macro-litter (> 2.5cm) material categories percentages per beach per year from non-MSFD monitoring surveys, research & cleaning operations.

    EMODnet Chemistry included the collection of marine litter in its 3rd phase. Since the beginning of 2018, data of beach litter have been gathered and processed in the EMODnet Chemistry Marine Litter Database (MLDB). The harmonization of all the data has been the most challenging task considering the heterogeneity of the data sources, sampling protocols and reference lists used on a European scale.

    Preliminary processings were necessary to harmonize all the data: - Exclusion of OSPAR 1000 protocol: in order to follow the approach of OSPAR that it is not including these data anymore in the monitoring; - Selection of surveys from non-MSFD monitoring, cleaning and research operations; - Exclusion of beaches without coordinates; - Exclusion of surveys without associated length; - Some litter types like organic litter, small fragments (paraffin and wax; items > 2.5cm) and pollutants have been removed. The list of selected items is attached to this metadata. This list was created using EU Marine Beach Litter Baselines, the European Threshold Value for Macro Litter on Coastlines and the Joint list of litter categories for marine macro-litter monitoring from JRC (these three documents are attached to this metadata); - Exclusion of the "feaces" category: it concerns more exactly the items of dog excrements in bags of the OSPAR (item code: 121) and ITA (item code: IT59) reference lists; - Normalization of survey lengths to 100m & 1 survey / year: in some case, the survey length was not 100m, so in order to be able to compare the abundance of litter from different beaches a normalization is applied using this formula: Number of items (normalized by 100 m) = Number of litter per items x (100 / survey length) Then, this normalized number of items is summed to obtain the total normalized number of litter for each survey.

    To calculate the percentage for each material category, formula applied is: Material (%) = (∑number of items (normalized at 100 m) of each material category)*100 / (∑number of items (normalized at 100 m) of all categories)

    The material categories differ between reference lists (OSPAR, TSG-ML, UNEP, UNEP-MARLIN, JLIST). In order to apply a common procedure for all the surveys, the material categories have been harmonized.

    More information is available in the attached documents.

    Warning: the absence of data on the map does not necessarily mean that they do not exist, but that no information has been entered in the Marine Litter Database for this area.

  16. d

    Outsourcing (Normalized)

    • search.dataone.org
    Updated Oct 29, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Anez, Diomar; Anez, Dimar (2025). Outsourcing (Normalized) [Dataset]. http://doi.org/10.7910/DVN/3N8DO8
    Explore at:
    Dataset updated
    Oct 29, 2025
    Dataset provided by
    Harvard Dataverse
    Authors
    Anez, Diomar; Anez, Dimar
    Description

    This dataset provides processed and normalized/standardized indices for the management practice 'Outsourcing'. Derived from five distinct raw data sources, these indices are specifically designed for comparative longitudinal analysis, enabling the examination of trends and relationships across different empirical domains (web search, literature, academic publishing, and executive adoption). The data presented here represent transformed versions of the original source data, aimed at achieving metric comparability. Users requiring the unprocessed source data should consult the corresponding Outsourcing dataset in the Management Tool Source Data (Raw Extracts) Dataverse. Data Files and Processing Methodologies: Google Trends File (Prefix: GT_): Normalized Relative Search Interest (RSI) Input Data: Native monthly RSI values from Google Trends (Jan 2004 - Jan 2025) for the query "outsourcing" + "outsourcing management". Processing: None. Utilizes the original base-100 normalized Google Trends index. Output Metric: Monthly Normalized RSI (Base 100). Frequency: Monthly. Google Books Ngram Viewer File (Prefix: GB_): Normalized Relative Frequency Input Data: Annual relative frequency values from Google Books Ngram Viewer (1950-2022, English corpus, no smoothing) for the query Outsourcing. Processing: Annual relative frequency series normalized (peak year = 100). Output Metric: Annual Normalized Relative Frequency Index (Base 100). Frequency: Annual. Crossref.org File (Prefix: CR_): Normalized Relative Publication Share Index Input Data: Absolute monthly publication counts matching Outsourcing-related keywords ["outsourcing" AND (...) - see raw data for full query] in titles/abstracts (1950-2025), alongside total monthly Crossref publications. Deduplicated via DOIs. Processing: Monthly relative share calculated (Outsourcing Count / Total Count). Monthly relative share series normalized (peak month's share = 100). Output Metric: Monthly Normalized Relative Publication Share Index (Base 100). Frequency: Monthly. Bain & Co. Survey - Usability File (Prefix: BU_): Normalized Usability Index Input Data: Original usability percentages (%) from Bain surveys for specific years: Outsourcing (1999, 2000, 2002, 2004, 2006, 2008, 2010, 2012, 2014). Note: Not reported after 2014. Processing: Normalization: Original usability percentages normalized relative to its historical peak (Max % = 100). Output Metric: Biennial Estimated Normalized Usability Index (Base 100 relative to historical peak). Frequency: Biennial (Approx.). Bain & Co. Survey - Satisfaction File (Prefix: BS_): Standardized Satisfaction Index Input Data: Original average satisfaction scores (1-5 scale) from Bain surveys for specific years: Outsourcing (1999-2014). Note: Not reported after 2014. Processing: Standardization (Z-scores): Using Z = (X - 3.0) / 0.891609. Index Scale Transformation: Index = 50 + (Z * 22). Output Metric: Biennial Standardized Satisfaction Index (Center=50, Range?[1,100]). Frequency: Biennial (Approx.). File Naming Convention: Files generally follow the pattern: PREFIX_Tool_Processed.csv or similar, where the PREFIX indicates the data source (GT_, GB_, CR_, BU_, BS_). Consult the parent Dataverse description (Management Tool Comparative Indices) for general context and the methodological disclaimer. For original extraction details (specific keywords, URLs, etc.), refer to the corresponding Outsourcing dataset in the Raw Extracts Dataverse. Comprehensive project documentation provides full details on all processing steps.

  17. LibriTTS Dev Clean, Clean 100, Clean 360 22 &16Khz

    • kaggle.com
    zip
    Updated Jul 9, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KC La (2022). LibriTTS Dev Clean, Clean 100, Clean 360 22 &16Khz [Dataset]. https://www.kaggle.com/datasets/kcla1100/libritts
    Explore at:
    zip(61218895829 bytes)Available download formats
    Dataset updated
    Jul 9, 2022
    Authors
    KC La
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    LibriTTS Dev Clean, Clean 100, Clean 360 22Khz & 16Khz. Converted 22050 to 16000 using ffmpeg-normalize utility with wav from normalize in volume level

  18. i

    Aarhus University,Danish Centre for Environment and Energy

    • sextant.ifremer.fr
    • pigma.org
    • +1more
    doi, www:download +1
    Updated May 6, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    EMODnet Chemistry (2021). Aarhus University,Danish Centre for Environment and Energy [Dataset]. https://sextant.ifremer.fr/geonetwork/srv/api/records/0822268e-6d87-488a-9566-57c0a789e6a8
    Explore at:
    www:link, doi, www:downloadAvailable download formats
    Dataset updated
    May 6, 2021
    Dataset provided by
    Ifremer, VIGIES (Information Valuation Service for Integrated Management and Monitoring)
    EMODnet Chemistry
    National Institute of Oceanography and Applied Geophysics - OGS, Division of Oceanography
    IFREMER, SISMER, Scientific Information Systems for the SEA
    Time period covered
    Jan 1, 2001 - Apr 22, 2020
    Area covered
    Description

    This visualization product displays the plastic bags abundance of marine macro-litter (> 2.5cm) per beach per year from non-MSFD monitoring surveys, research & cleaning operations.

    EMODnet Chemistry included the collection of marine litter in its 3rd phase. Since the beginning of 2018, data of beach litter have been gathered and processed in the EMODnet Chemistry Marine Litter Database (MLDB). The harmonization of all the data has been the most challenging task considering the heterogeneity of the data sources, sampling protocols and reference lists used on a European scale.

    Preliminary processing were necessary to harmonize all the data: - Exclusion of OSPAR 1000 protocol: in order to follow the approach of OSPAR that it is not including these data anymore in the monitoring; - Selection of surveys from non-MSFD monitoring, cleaning and research operations; - Exclusion of beaches without coordinates; - Selection of plastic bags related items only. The list of selected items is attached to this metadata. This list was created using EU Marine Beach Litter Baselines and EU Threshold Value for Macro Litter on Coastlines from JRC (these two documents are attached to this metadata); - Exclusion of surveys without associated length; - Normalization of survey lengths to 100m & 1 survey / year: in some case, the survey length was not 100m, so in order to be able to compare the abundance of litter from different beaches a normalization is applied using this formula: Number of plastic bags related items of the survey (normalized by 100 m) = Number of plastic bags related items of the survey x (100 / survey length) Then, this normalized number of plastic bags related items is summed to obtain the total normalized number of plastic bags related items for each survey. Finally, the median abundance of plastic bags related items for each beach and year is calculated from these normalized abundances of plastic bags related items per survey.

    Percentiles 50, 75, 95 & 99 have been calculated taking into account plastic bags related items from other sources data for all years.

    More information is available in the attached documents.

    Warning: the absence of data on the map doesn't necessarily mean that they don't exist, but that no information has been entered in the Marine Litter Database for this area.

  19. f

    Identification of Optimal Reference Genes for Gene Expression Normalization...

    • figshare.com
    • plos.figshare.com
    doc
    Updated Jan 15, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Chiara Romani; Stefano Calza; Paola Todeschini; Renata A. Tassi; Laura Zanotti; Elisabetta Bandiera; Enrico Sartori; Sergio Pecorelli; Antonella Ravaggi; Alessandro D. Santin; Eliana Bignotti (2016). Identification of Optimal Reference Genes for Gene Expression Normalization in a Wide Cohort of Endometrioid Endometrial Carcinoma Tissues [Dataset]. http://doi.org/10.1371/journal.pone.0113781
    Explore at:
    docAvailable download formats
    Dataset updated
    Jan 15, 2016
    Dataset provided by
    PLOS ONE
    Authors
    Chiara Romani; Stefano Calza; Paola Todeschini; Renata A. Tassi; Laura Zanotti; Elisabetta Bandiera; Enrico Sartori; Sergio Pecorelli; Antonella Ravaggi; Alessandro D. Santin; Eliana Bignotti
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Accurate normalization is a primary component of a reliable gene expression analysis based on qRT-PCR technique. While the use of one or more reference genes as internal controls is commonly accepted as the most appropriate normalization strategy, many qPCR-based published studies still contain data poorly normalized and reference genes arbitrarily chosen irrespective of the particular tissue and the specific experimental design. To date, no validated reference genes have been identified for endometrial cancer tissues. In this study, 10 normalization genes (GAPDH, B2M, ACTB, POLR2A, UBC, PPIA, HPRT1, GUSB, TBP, H3F3A) belonging to different functional and abundance classes in various tissues and used in different studies, were analyzed to determine their applicability. In total, 100 endometrioid endometrial cancer samples, which were carefully balanced according to their tumor grade, and 29 normal endometrial tissues were examined using SYBR Green Real-Time RT-PCR. The expression stability of candidate reference genes was determined and compared by means of geNorm and NormFinder softwares. Both algorithms were in agreement in identifying GAPDH, H3F3A, PPIA, and HPRT1 as the most stably expressed genes, only differing in their ranking order. Analysis performed on the expression levels of all candidate genes confirm HPRT1 and PPIA as the most stably expressed in the study groups regardless of sample type, to be used alone or better in combination. As the stable expression of HPRT1 and PPIA between normal and tumor endometrial samples fulfill the basic requirement of a reference gene to be used for normalization purposes, HPRT1 expression showed significant differences between samples from low-grade and high-grade tumors. In conclusion, our results recommend the use of PPIA as a single reference gene to be considered for improved reliability of normalization in gene expression studies involving endometrial tumor samples at different tumor degrees.

  20. o

    Beach Litter - Median of total number of litter items normalized per 100m &...

    • nodc.ogs.it
    Updated 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    EMODnet Chemistry (2021). Beach Litter - Median of total number of litter items normalized per 100m & to 1 survey - Official monitoring 2001/2020 v2021 [Dataset]. http://doi.org/10.13120/a8e66da6-ebac-4c4d-96cb-4542eb66894b
    Explore at:
    Dataset updated
    2021
    Dataset provided by
    datacite
    EMODnet Chemistry
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Dataset funded by
    European Commission
    Description

    This visualization product displays the total abundance of marine macro-litter (> 2.5cm) per beach per year from Marine Strategy Framework Directive (MSFD) monitoring surveys.

    EMODnet Chemistry included the collection of marine litter in its 3rd phase. Since the beginning of 2018, data of beach litter have been gathered and processed in the EMODnet Chemistry Marine Litter Database (MLDB).
    The harmonization of all the data has been the most challenging task considering the heterogeneity of the data sources, sampling protocols and reference lists used on a European scale.


    Preliminary processing were necessary to harmonize all the data:
    - Exclusion of OSPAR 1000 protocol: in order to follow the approach of OSPAR that it is not including these data anymore in the monitoring;
    - Selection of MSFD surveys only (exclusion of other monitoring, cleaning and research operations);
    - Exclusion of beaches without coordinates;
    - Some categories & some litter types like organic litter, small fragments (paraffin and wax; items > 2.5cm) and pollutants have been removed. The list of selected items is attached to this metadata. This list was created using EU Marine Beach Litter Baselines and EU Threshold Value for Macro Litter on Coastlines from JRC (these two documents are attached to this metadata);
    - Normalization of survey lengths to 100m & 1 survey / year: in some case, the survey length was not exactly 100m, so in order to be able to compare the abundance of litter from different beaches a normalization is applied using this formula:
    Number of items (normalized by 100 m) = Number of litter per items x (100 / survey length)
    Then, this normalized number of items is summed to obtain the total normalized number of litter for each survey. Finally, the median abundance for each beach and year is calculated from these normalized abundances per survey.
    Sometimes the survey length was null or equal to 0. Assuming that the MSFD protocol has been applied, the length has been set at 100m in these cases.

    Percentiles 50, 75, 95 & 99 have been calculated taking into account MSFD data for all years.


    More information is available in the attached documents.


    Warning: the absence of data on the map doesn't necessarily mean that they don't exist, but that no information has been entered in the Marine Litter Database for this area.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Anez, Diomar; Anez, Dimar (2025). Growth Strategies (Normalized) [Dataset]. http://doi.org/10.7910/DVN/OW8GOW

Growth Strategies (Normalized)

Explore at:
Dataset updated
May 6, 2025
Authors
Anez, Diomar; Anez, Dimar
Description

This dataset provides processed and normalized/standardized indices for the management tool group focused on 'Growth Strategies'. Derived from five distinct raw data sources, these indices are specifically designed for comparative longitudinal analysis, enabling the examination of trends and relationships across different empirical domains (web search, literature, academic publishing, and executive adoption). The data presented here represent transformed versions of the original source data, aimed at achieving metric comparability. Users requiring the unprocessed source data should consult the corresponding Growth Strategies dataset in the Management Tool Source Data (Raw Extracts) Dataverse. Data Files and Processing Methodologies: Google Trends File (Prefix: GT_): Normalized Relative Search Interest (RSI) Input Data: Native monthly RSI values from Google Trends (Jan 2004 - Jan 2025) for the query "growth strategies" + "growth strategy" + "growth strategies business". Processing: None. Utilizes the original base-100 normalized Google Trends index. Output Metric: Monthly Normalized RSI (Base 100). Frequency: Monthly. Google Books Ngram Viewer File (Prefix: GB_): Normalized Relative Frequency Input Data: Annual relative frequency values from Google Books Ngram Viewer (1950-2022, English corpus, no smoothing) for the query Growth Strategies + Growth Strategy. Processing: Annual relative frequency series normalized (peak year = 100). Output Metric: Annual Normalized Relative Frequency Index (Base 100). Frequency: Annual. Crossref.org File (Prefix: CR_): Normalized Relative Publication Share Index Input Data: Absolute monthly publication counts matching Growth Strategies-related keywords [("growth strategies" OR ...) AND (...) - see raw data for full query] in titles/abstracts (1950-2025), alongside total monthly Crossref publications. Deduplicated via DOIs. Processing: Monthly relative share calculated (Growth Strat. Count / Total Count). Monthly relative share series normalized (peak month's share = 100). Output Metric: Monthly Normalized Relative Publication Share Index (Base 100). Frequency: Monthly. Bain & Co. Survey - Usability File (Prefix: BU_): Normalized Usability Index Input Data: Original usability percentages (%) from Bain surveys for specific years: Growth Strategies (1996, 1999, 2000, 2002, 2004); Growth Strategy Tools (2006, 2008). Note: Not reported after 2008. Processing: Semantic Grouping: Data points for "Growth Strategies" and "Growth Strategy Tools" were treated as a single conceptual series. Normalization: Combined series normalized relative to its historical peak (Max % = 100). Output Metric: Biennial Estimated Normalized Usability Index (Base 100 relative to historical peak). Frequency: Biennial (Approx.). Bain & Co. Survey - Satisfaction File (Prefix: BS_): Standardized Satisfaction Index Input Data: Original average satisfaction scores (1-5 scale) from Bain surveys for specific years: Growth Strategies (1996-2004); Growth Strategy Tools (2006, 2008). Note: Not reported after 2008. Processing: Semantic Grouping: Data points treated as a single conceptual series. Standardization (Z-scores): Using Z = (X - 3.0) / 0.891609. Index Scale Transformation: Index = 50 + (Z * 22). Output Metric: Biennial Standardized Satisfaction Index (Center=50, Range?[1,100]). Frequency: Biennial (Approx.). File Naming Convention: Files generally follow the pattern: PREFIX_Tool_Processed.csv or similar, where the PREFIX indicates the data source (GT_, GB_, CR_, BU_, BS_). Consult the parent Dataverse description (Management Tool Comparative Indices) for general context and the methodological disclaimer. For original extraction details (specific keywords, URLs, etc.), refer to the corresponding Growth Strategies dataset in the Raw Extracts Dataverse. Comprehensive project documentation provides full details on all processing steps.

Search
Clear search
Close search
Google apps
Main menu