96 datasets found
  1. Data from: Scaling and Normalization

    • kaggle.com
    Updated Feb 2, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Engr Yasir Hussain (2024). Scaling and Normalization [Dataset]. https://www.kaggle.com/datasets/mryasirturi/scaling-and-normalization
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Feb 2, 2024
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Engr Yasir Hussain
    Description

    Dataset

    This dataset was created by Engr Yasir Hussain

    Contents

  2. A comparison of per sample global scaling and per gene normalization methods...

    • plos.figshare.com
    pdf
    Updated Jun 5, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Xiaohong Li; Guy N. Brock; Eric C. Rouchka; Nigel G. F. Cooper; Dongfeng Wu; Timothy E. O’Toole; Ryan S. Gill; Abdallah M. Eteleeb; Liz O’Brien; Shesh N. Rai (2023). A comparison of per sample global scaling and per gene normalization methods for differential expression analysis of RNA-seq data [Dataset]. http://doi.org/10.1371/journal.pone.0176185
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Jun 5, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Xiaohong Li; Guy N. Brock; Eric C. Rouchka; Nigel G. F. Cooper; Dongfeng Wu; Timothy E. O’Toole; Ryan S. Gill; Abdallah M. Eteleeb; Liz O’Brien; Shesh N. Rai
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Normalization is an essential step with considerable impact on high-throughput RNA sequencing (RNA-seq) data analysis. Although there are numerous methods for read count normalization, it remains a challenge to choose an optimal method due to multiple factors contributing to read count variability that affects the overall sensitivity and specificity. In order to properly determine the most appropriate normalization methods, it is critical to compare the performance and shortcomings of a representative set of normalization routines based on different dataset characteristics. Therefore, we set out to evaluate the performance of the commonly used methods (DESeq, TMM-edgeR, FPKM-CuffDiff, TC, Med UQ and FQ) and two new methods we propose: Med-pgQ2 and UQ-pgQ2 (per-gene normalization after per-sample median or upper-quartile global scaling). Our per-gene normalization approach allows for comparisons between conditions based on similar count levels. Using the benchmark Microarray Quality Control Project (MAQC) and simulated datasets, we performed differential gene expression analysis to evaluate these methods. When evaluating MAQC2 with two replicates, we observed that Med-pgQ2 and UQ-pgQ2 achieved a slightly higher area under the Receiver Operating Characteristic Curve (AUC), a specificity rate > 85%, the detection power > 92% and an actual false discovery rate (FDR) under 0.06 given the nominal FDR (≤0.05). Although the top commonly used methods (DESeq and TMM-edgeR) yield a higher power (>93%) for MAQC2 data, they trade off with a reduced specificity (

  3. m

    MFCCs Feature Scaling Images for Multi-class Human Action Analysis : A...

    • data.mendeley.com
    • researchdata.edu.au
    Updated Jul 25, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Muhammad Bilal Shaikh (2023). MFCCs Feature Scaling Images for Multi-class Human Action Analysis : A Benchmark Dataset [Dataset]. http://doi.org/10.17632/6d8v9jmvgm.1
    Explore at:
    Dataset updated
    Jul 25, 2023
    Authors
    Muhammad Bilal Shaikh
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    his dataset comprises an array of Mel Frequency Cepstral Coefficients (MFCCs) that have undergone feature scaling, representing a variety of human actions. Feature scaling, or data normalization, is a preprocessing technique used to standardize the range of features in the dataset. For MFCCs, this process helps ensure all coefficients contribute equally to the learning process, preventing features with larger scales from overshadowing those with smaller scales.

    In this dataset, the audio signals correspond to diverse human actions such as walking, running, jumping, and dancing. The MFCCs are calculated via a series of signal processing stages, which capture key characteristics of the audio signal in a manner that closely aligns with human auditory perception. The coefficients are then standardized or scaled using methods such as MinMax Scaling or Standardization, thereby normalizing their range. Each normalized MFCC vector corresponds to a segment of the audio signal.

    The dataset is meticulously designed for tasks including human action recognition, classification, segmentation, and detection based on auditory cues. It serves as an essential resource for training and evaluating machine learning models focused on interpreting human actions from audio signals. This dataset proves particularly beneficial for researchers and practitioners in fields such as signal processing, computer vision, and machine learning, who aim to craft algorithms for human action analysis leveraging audio signals.

  4. H

    Data and Code for: "Universal Adaptive Normalization Scale (AMIS):...

    • dataverse.harvard.edu
    • search.dataone.org
    Updated Nov 12, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Gennady Kravtsov (2025). Data and Code for: "Universal Adaptive Normalization Scale (AMIS): Integration of Heterogeneous Metrics into a Unified System" [Dataset]. http://doi.org/10.7910/DVN/BISM0N
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Nov 12, 2025
    Dataset provided by
    Harvard Dataverse
    Authors
    Gennady Kravtsov
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    Dataset Title: Data and Code for: "Universal Adaptive Normalization Scale (AMIS): Integration of Heterogeneous Metrics into a Unified System" Description: This dataset contains source data and processing results for validating the Adaptive Multi-Interval Scale (AMIS) normalization method. Includes educational performance data (student grades), economic statistics (World Bank GDP), and Python implementation of the AMIS algorithm with graphical interface. Contents: - Source data: educational grades and GDP statistics - AMIS normalization results (3, 5, 9, 17-point models) - Comparative analysis with linear normalization - Ready-to-use Python code for data processing Applications: - Educational data normalization and analysis - Economic indicators comparison - Development of unified metric systems - Methodology research in data scaling Technical info: Python code with pandas, numpy, scipy, matplotlib dependencies. Data in Excel format.

  5. H

    GC/MS Simulated Data Sets normalized using median scaling

    • dataverse.harvard.edu
    Updated Jan 25, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Denise Scholtens (2017). GC/MS Simulated Data Sets normalized using median scaling [Dataset]. http://doi.org/10.7910/DVN/OYOLXD
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jan 25, 2017
    Dataset provided by
    Harvard Dataverse
    Authors
    Denise Scholtens
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    1000 simulated data sets stored in a list of R dataframes used in support of Reisetter et al. (submitted) 'Mixture model normalization for non-targeted gas chromatography / mass spectrometry metabolomics data'. These are results after normalization using median scaling as described in Reisetter et al.

  6. The datasets used in this research.

    • plos.figshare.com
    xls
    Updated Dec 6, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Chantha Wongoutong (2024). The datasets used in this research. [Dataset]. http://doi.org/10.1371/journal.pone.0310839.t001
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Dec 6, 2024
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Chantha Wongoutong
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Despite the popularity of k-means clustering, feature scaling before applying it can be an essential yet often neglected step. In this study, feature scaling via five methods: Z-score, Min-Max normalization, Percentile transformation, Maximum absolute scaling, or RobustScaler beforehand was compared with using the raw (i.e., non-scaled) data to analyze datasets having features with different or the same units via k-means clustering. The results of an experimental study show that, for features with different units, scaling them before k-means clustering provided better accuracy, precision, recall, and F-score values than when using the raw data. Meanwhile, when features in the dataset had the same unit, scaling them beforehand provided similar results to using the raw data. Thus, scaling the features beforehand is a very important step for datasets with different units, which improves the clustering results and accuracy. Of the five feature-scaling methods used in the dataset with different units, Z-score standardization and Percentile transformation provided similar performances that were superior to the other or using the raw data. While Maximum absolute scaling, slightly more performances than the other scaling methods and raw data when the dataset contains features with the same unit, the improvement was not significant.

  7. f

    File S1 - Normalization of RNA-Sequencing Data from Samples with Varying...

    • datasetcatalog.nlm.nih.gov
    • figshare.com
    Updated Feb 25, 2014
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Collas, Philippe; Rognes, Torbjørn; Aanes, Håvard; Winata, Cecilia; Moen, Lars F.; Aleström, Peter; Østrup, Olga; Mathavan, Sinnakaruppan (2014). File S1 - Normalization of RNA-Sequencing Data from Samples with Varying mRNA Levels [Dataset]. https://datasetcatalog.nlm.nih.gov/dataset?q=0001266682
    Explore at:
    Dataset updated
    Feb 25, 2014
    Authors
    Collas, Philippe; Rognes, Torbjørn; Aanes, Håvard; Winata, Cecilia; Moen, Lars F.; Aleström, Peter; Østrup, Olga; Mathavan, Sinnakaruppan
    Description

    Table S1 and Figures S1–S6. Table S1. List of primers. Forward and reverse primers used for qPCR. Figure S1. Changes in total and polyA+ RNA during development. a) Amount of total RNA per embryo at different developmental stages. b) Amount of polyA+ RNA per 100 embryos at different developmental stages. Vertical bars represent standard errors. Figure S2. The TMM scaling factor. a) The TMM scaling factor estimated using dataset 1 and 2. We observe very similar values. b) The TMM scaling factor obtained using the replicates in dataset 2. The TMM values are very reproducible. c) The TMM scale factor when RNA-seq data based on total RNA was used. Figure S3. Comparison of scales. We either square-root transformed or used that scales directly and compared the normalized fold-changes to RT-qPCR results. a) Transcripts with dynamic change pre-ZGA. b) Transcripts with decreased abundance post-ZGA. c) Transcripts with increased expression post-ZGA. Vertical bars represent standard deviations. Figure S4. Comparison of RT-qPCR results depending on RNA template (total or poly+ RNA) and primers (random or oligo(dT) primers) for setd3 (a), gtf2e2 (b) and yy1a (c). The increase pre-ZGA is dependent on template (setd3 and gtf2e2) and not primer type. Figure S5. Efficiency calibrated fold-changes for a subset of transcripts. Vertical bars represent standard deviations. Figure S6. Comparison normalization methods using dataset 2 for transcripts with decreased expression post-ZGA (a) and increased expression post-ZGA (b). Vertical bars represent standard deviations. (PDF)

  8. 🔢🖊️ Digital Recognition: MNIST Dataset

    • kaggle.com
    zip
    Updated Nov 13, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Wasiq Ali (2025). 🔢🖊️ Digital Recognition: MNIST Dataset [Dataset]. https://www.kaggle.com/datasets/wasiqaliyasir/digital-mnist-dataset
    Explore at:
    zip(2278207 bytes)Available download formats
    Dataset updated
    Nov 13, 2025
    Authors
    Wasiq Ali
    License

    Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
    License information was derived automatically

    Description

    Handwritten Digits Pixel Dataset - Documentation

    Overview

    The Handwritten Digits Pixel Dataset is a collection of numerical data representing handwritten digits from 0 to 9. Unlike image datasets that store actual image files, this dataset contains pixel intensity values arranged in a structured tabular format, making it ideal for machine learning and data analysis applications.

    Dataset Description

    Basic Information

    • Format: CSV (Comma-Separated Values)
    • Total Samples: [Number of rows based on your dataset]
    • Features: 784 pixel columns (28×28 pixels) + 1 label column
    • Label Range: Digits 0-9
    • Pixel Value Range: 0-255 (grayscale intensity)

    File Structure

    Column Description

    • label: The target variable representing the digit (0-9)
    • pixel columns: 784 columns named in format [row]xcolumn
    • Each pixel column contains integer values from 0-255 representing grayscale intensity

    Data Characteristics

    Label Distribution

    The dataset contains handwritten digit samples with the following distribution:

    • Digit 0: [X] samples
    • Digit 1: [X] samples
    • Digit 2: [X] samples
    • Digit 3: [X] samples
    • Digit 4: [X] samples
    • Digit 5: [X] samples
    • Digit 6: [X] samples
    • Digit 7: [X] samples
    • Digit 8: [X] samples
    • Digit 9: [X] samples

    (Note: Actual distribution counts would be calculated from your specific dataset)

    Data Quality

    • Missing Values: No missing values detected
    • Data Type: All values are integers
    • Normalization: Pixel values range from 0-255 (can be normalized to 0-1 for ML models)
    • Consistency: Uniform 28×28 grid structure across all samples

    Technical Specifications

    Data Preprocessing Requirements

    • Normalization: Scale pixel values from 0-255 to 0-1 range
    • Reshaping: Convert 1D pixel arrays to 2D 28×28 matrices for visualization
    • Train-Test Split: Recommended 80-20 or 70-30 split for model development

    Recommended Machine Learning Approaches

    Classification Algorithms:

    • Random Forest
    • Support Vector Machines (SVM)
    • Neural Networks
    • K-Nearest Neighbors (KNN)

    Deep Learning Architectures:

    • Convolutional Neural Networks (CNNs)
    • Multi-layer Perceptrons (MLPs)

    Dimensionality Reduction:

    • PCA (Principal Component Analysis)
    • t-SNE for visualization

    Usage Examples

    Loading the Dataset

    import pandas as pd
    
    # Load the dataset
    df = pd.read_csv('/kaggle/input/handwritten_digits_pixel_dataset/mnist.csv')
    
    # Separate features and labels
    X = df.drop('label', axis=1)
    y = df['label']
    
    # Normalize pixel values
    X_normalized = X / 255.0
    
  9. WikiMed and PubMedDS: Two large-scale datasets for medical concept...

    • zenodo.org
    • data.niaid.nih.gov
    zip
    Updated Dec 4, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Shikhar Vashishth; Shikhar Vashishth; Denis Newman-Griffis; Denis Newman-Griffis; Rishabh Joshi; Ritam Dutt; Carolyn P Rosé; Rishabh Joshi; Ritam Dutt; Carolyn P Rosé (2021). WikiMed and PubMedDS: Two large-scale datasets for medical concept extraction and normalization research [Dataset]. http://doi.org/10.5281/zenodo.5753476
    Explore at:
    zipAvailable download formats
    Dataset updated
    Dec 4, 2021
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Shikhar Vashishth; Shikhar Vashishth; Denis Newman-Griffis; Denis Newman-Griffis; Rishabh Joshi; Ritam Dutt; Carolyn P Rosé; Rishabh Joshi; Ritam Dutt; Carolyn P Rosé
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Two large-scale, automatically-created datasets of medical concept mentions, linked to the Unified Medical Language System (UMLS).

    WikiMed

    Derived from Wikipedia data. Mappings of Wikipedia page identifiers to UMLS Concept Unique Identifiers (CUIs) was extracted by crosswalking Wikipedia, Wikidata, Freebase, and the NCBI Taxonomy to reach existing mappings to UMLS CUIs. This created a 1:1 mapping of approximately 60,500 Wikipedia pages to UMLS CUIs. Links to these pages were then extracted as mentions of the corresponding UMLS CUIs.

    WikiMed contains:

    • 393,618 Wikipedia page texts
    • 1,067,083 mentions of medical concepts
    • 57,739 unique UMLS CUIs

    Manual evaluation of 100 random samples of WikiMed found 91% accuracy in the automatic annotations at the level of UMLS CUIs, and 95% accuracy in terms of semantic type.

    PubMedDS

    Derived from biomedical literature abstracts from PubMed. Mentions were automatically identified using distant supervision based on Medical Subject Heading (MeSH) headers assigned to the papers in PubMed, and recognition of medical concept mentions using the high-performance scispaCy model. MeSH header codes are included as well as their mappings to UMLS CUIs.

    PubMedDS contains:

    • 13,197,430 abstract texts
    • 57,943,354 medical concept mentions
    • 44,881 unique UMLS CUIs

    Comparison with existing manually-annotated datasets (NCBI Disease Corpus, BioCDR, and MedMentions) found 75-90% precision in automatic annotations. Please note this dataset is not a comprehensive annotation of medical concept mentions in these abstracts (only mentions located through distant supervision from MeSH headers were included), but is intended as data for concept normalization research.

    Due to its size, PubMedDS is distributed as 30 individual files of approximately 1.5 million mentions each.

    Data format

    Both datasets use JSON format with one document per line. Each document has the following structure:

    {
      "_id": "A unique identifier of each document",
      "text": "Contains text over which mentions are ",
      "title": "Title of Wikipedia/PubMed Article",
      "split": "[Not in PubMedDS] Dataset split: 

  10. H

    Knowledge Management (Normalized)

    • datasetcatalog.nlm.nih.gov
    • search.dataone.org
    Updated May 6, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Anez, Diomar; Anez, Dimar (2025). Knowledge Management (Normalized) [Dataset]. http://doi.org/10.7910/DVN/BAPIEP
    Explore at:
    Dataset updated
    May 6, 2025
    Authors
    Anez, Diomar; Anez, Dimar
    Description

    This dataset provides processed and normalized/standardized indices for the management tool 'Knowledge Management' (KM), including related concepts like Intellectual Capital Management and Knowledge Transfer. Derived from five distinct raw data sources, these indices are specifically designed for comparative longitudinal analysis, enabling the examination of trends and relationships across different empirical domains (web search, literature, academic publishing, and executive adoption). The data presented here represent transformed versions of the original source data, aimed at achieving metric comparability. Users requiring the unprocessed source data should consult the corresponding KM dataset in the Management Tool Source Data (Raw Extracts) Dataverse. Data Files and Processing Methodologies: Google Trends File (Prefix: GT_): Normalized Relative Search Interest (RSI) Input Data: Native monthly RSI values from Google Trends (Jan 2004 - Jan 2025) for the query "knowledge management" + "knowledge management organizational". Processing: None. Utilizes the original base-100 normalized Google Trends index. Output Metric: Monthly Normalized RSI (Base 100). Frequency: Monthly. Google Books Ngram Viewer File (Prefix: GB_): Normalized Relative Frequency Input Data: Annual relative frequency values from Google Books Ngram Viewer (1950-2022, English corpus, no smoothing) for the query Knowledge Management + Intellectual Capital Management + Knowledge Transfer. Processing: Annual relative frequency series normalized (peak year = 100). Output Metric: Annual Normalized Relative Frequency Index (Base 100). Frequency: Annual. Crossref.org File (Prefix: CR_): Normalized Relative Publication Share Index Input Data: Absolute monthly publication counts matching KM-related keywords [("knowledge management" OR ...) AND (...) - see raw data for full query] in titles/abstracts (1950-2025), alongside total monthly Crossref publications. Deduplicated via DOIs. Processing: Monthly relative share calculated (KM Count / Total Count). Monthly relative share series normalized (peak month's share = 100). Output Metric: Monthly Normalized Relative Publication Share Index (Base 100). Frequency: Monthly. Bain & Co. Survey - Usability File (Prefix: BU_): Normalized Usability Index Input Data: Original usability percentages (%) from Bain surveys for specific years: Knowledge Management (1999, 2000, 2002, 2004, 2006, 2008, 2010). Note: Not reported after 2010. Processing: Normalization: Original usability percentages normalized relative to its historical peak (Max % = 100). Output Metric: Biennial Estimated Normalized Usability Index (Base 100 relative to historical peak). Frequency: Biennial (Approx.). Bain & Co. Survey - Satisfaction File (Prefix: BS_): Standardized Satisfaction Index Input Data: Original average satisfaction scores (1-5 scale) from Bain surveys for specific years: Knowledge Management (1999-2010). Note: Not reported after 2010. Processing: Standardization (Z-scores): Using Z = (X - 3.0) / 0.891609. Index Scale Transformation: Index = 50 + (Z * 22). Output Metric: Biennial Standardized Satisfaction Index (Center=50, Range?[1,100]). Frequency: Biennial (Approx.). File Naming Convention: Files generally follow the pattern: PREFIX_Tool_Processed.csv or similar, where the PREFIX indicates the data source (GT_, GB_, CR_, BU_, BS_). Consult the parent Dataverse description (Management Tool Comparative Indices) for general context and the methodological disclaimer. For original extraction details (specific keywords, URLs, etc.), refer to the corresponding KM dataset in the Raw Extracts Dataverse. Comprehensive project documentation provides full details on all processing steps.

  11. d

    Mission and Vision Statements (Normalized)

    • search.dataone.org
    • datasetcatalog.nlm.nih.gov
    Updated Oct 29, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Anez, Diomar; Anez, Dimar (2025). Mission and Vision Statements (Normalized) [Dataset]. http://doi.org/10.7910/DVN/SFKSW0
    Explore at:
    Dataset updated
    Oct 29, 2025
    Dataset provided by
    Harvard Dataverse
    Authors
    Anez, Diomar; Anez, Dimar
    Description

    This dataset provides processed and normalized/standardized indices for the management tool group focused on 'Mission and Vision Statements', including related concepts like Purpose Statements. Derived from five distinct raw data sources, these indices are specifically designed for comparative longitudinal analysis, enabling the examination of trends and relationships across different empirical domains (web search, literature, academic publishing, and executive adoption). The data presented here represent transformed versions of the original source data, aimed at achieving metric comparability. Users requiring the unprocessed source data should consult the corresponding Mission/Vision dataset in the Management Tool Source Data (Raw Extracts) Dataverse. Data Files and Processing Methodologies: Google Trends File (Prefix: GT_): Normalized Relative Search Interest (RSI) Input Data: Native monthly RSI values from Google Trends (Jan 2004 - Jan 2025) for the query "mission statement" + "vision statement" + "mission and vision corporate". Processing: None. Utilizes the original base-100 normalized Google Trends index. Output Metric: Monthly Normalized RSI (Base 100). Frequency: Monthly. Google Books Ngram Viewer File (Prefix: GB_): Normalized Relative Frequency Input Data: Annual relative frequency values from Google Books Ngram Viewer (1950-2022, English corpus, no smoothing) for the query Mission Statements + Vision Statements + Purpose Statements + Mission and Vision. Processing: Annual relative frequency series normalized (peak year = 100). Output Metric: Annual Normalized Relative Frequency Index (Base 100). Frequency: Annual. Crossref.org File (Prefix: CR_): Normalized Relative Publication Share Index Input Data: Absolute monthly publication counts matching Mission/Vision-related keywords [("mission statement" OR ...) AND (...) - see raw data for full query] in titles/abstracts (1950-2025), alongside total monthly Crossref publications. Deduplicated via DOIs. Processing: Monthly relative share calculated (Mission/Vision Count / Total Count). Monthly relative share series normalized (peak month's share = 100). Output Metric: Monthly Normalized Relative Publication Share Index (Base 100). Frequency: Monthly. Bain & Co. Survey - Usability File (Prefix: BU_): Normalized Usability Index Input Data: Original usability percentages (%) from Bain surveys for specific years: Mission/Vision (1993); Mission Statements (1996); Mission and Vision Statements (1999-2017); Purpose, Mission, and Vision Statements (2022). Processing: Semantic Grouping: Data points across the different naming conventions were treated as a single conceptual series. Normalization: Combined series normalized relative to its historical peak (Max % = 100). Output Metric: Biennial Estimated Normalized Usability Index (Base 100 relative to historical peak). Frequency: Biennial (Approx.). Bain & Co. Survey - Satisfaction File (Prefix: BS_): Standardized Satisfaction Index Input Data: Original average satisfaction scores (1-5 scale) from Bain surveys for specific years (same names/years as Usability). Processing: Semantic Grouping: Data points treated as a single conceptual series. Standardization (Z-scores): Using Z = (X - 3.0) / 0.891609. Index Scale Transformation: Index = 50 + (Z * 22). Output Metric: Biennial Standardized Satisfaction Index (Center=50, Range?[1,100]). Frequency: Biennial (Approx.). File Naming Convention: Files generally follow the pattern: PREFIX_Tool_Processed.csv or similar, where the PREFIX indicates the data source (GT_, GB_, CR_, BU_, BS_). Consult the parent Dataverse description (Management Tool Comparative Indices) for general context and the methodological disclaimer. For original extraction details (specific keywords, URLs, etc.), refer to the corresponding Mission/Vision dataset in the Raw Extracts Dataverse. Comprehensive project documentation provides full details on all processing steps.

  12. USA Bank Financial Data

    • kaggle.com
    zip
    Updated Jun 28, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    VISHAL SINGH SANGRAL (2024). USA Bank Financial Data [Dataset]. https://www.kaggle.com/datasets/vishalsinghsangral/usa-bank-financial-data
    Explore at:
    zip(20684 bytes)Available download formats
    Dataset updated
    Jun 28, 2024
    Authors
    VISHAL SINGH SANGRAL
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    Dataset Description:

    The myusabank.csv dataset contains daily financial data for a fictional bank (MyUSA Bank) over a two-year period. It includes various key financial metrics such as interest income, interest expense, average earning assets, net income, total assets, shareholder equity, operating expenses, operating income, market share, and stock price. The data is structured to simulate realistic scenarios in the banking sector, including outliers, duplicates, and missing values for educational purposes.

    Potential Student Tasks:

    1. Data Cleaning and Preprocessing:

      • Handle missing values, duplicates, and outliers to ensure data integrity.
      • Normalize or scale data as needed for analysis.
    2. Exploratory Data Analysis (EDA):

      • Visualize trends and distributions of financial metrics over time.
      • Identify correlations between different financial indicators.
    3. Calculating Key Performance Indicators (KPIs):

      • Compute metrics such as Net Interest Margin (NIM), Return on Assets (ROA), Return on Equity (ROE), and Cost-to-Income Ratio using calculated fields.
      • Analyze the financial health and performance of MyUSA Bank based on these KPIs.
    4. Building Tableau Dashboards:

      • Design interactive dashboards to present insights and trends.
      • Include summary cards, bar charts, line charts, and pie charts to visualize financial performance metrics.
    5. Forecasting and Predictive Modeling:

      • Use historical data to forecast future financial performance.
      • Apply regression or time series analysis to predict market share or stock price movements.
    6. Business Insights and Reporting:

      • Interpret findings to derive actionable insights for bank management.
      • Prepare reports or presentations summarizing key findings and recommendations.

    Educational Goals:

    The dataset aims to provide hands-on experience in data preprocessing, analysis, and visualization within the context of banking and finance. It encourages students to apply data science techniques to real-world financial data, enhancing their skills in data-driven decision-making and strategic analysis.

  13. Binary classification using a confusion matrix.

    • plos.figshare.com
    xls
    Updated Dec 6, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Chantha Wongoutong (2024). Binary classification using a confusion matrix. [Dataset]. http://doi.org/10.1371/journal.pone.0310839.t002
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Dec 6, 2024
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Chantha Wongoutong
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Despite the popularity of k-means clustering, feature scaling before applying it can be an essential yet often neglected step. In this study, feature scaling via five methods: Z-score, Min-Max normalization, Percentile transformation, Maximum absolute scaling, or RobustScaler beforehand was compared with using the raw (i.e., non-scaled) data to analyze datasets having features with different or the same units via k-means clustering. The results of an experimental study show that, for features with different units, scaling them before k-means clustering provided better accuracy, precision, recall, and F-score values than when using the raw data. Meanwhile, when features in the dataset had the same unit, scaling them beforehand provided similar results to using the raw data. Thus, scaling the features beforehand is a very important step for datasets with different units, which improves the clustering results and accuracy. Of the five feature-scaling methods used in the dataset with different units, Z-score standardization and Percentile transformation provided similar performances that were superior to the other or using the raw data. While Maximum absolute scaling, slightly more performances than the other scaling methods and raw data when the dataset contains features with the same unit, the improvement was not significant.

  14. H

    Price Optimization (Normalized)

    • dataverse.harvard.edu
    • search.dataone.org
    Updated May 6, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Diomar Anez; Dimar Anez (2025). Price Optimization (Normalized) [Dataset]. http://doi.org/10.7910/DVN/URFT2I
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    May 6, 2025
    Dataset provided by
    Harvard Dataverse
    Authors
    Diomar Anez; Dimar Anez
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    This dataset provides processed and normalized/standardized indices for the management tool group focused on 'Price Optimization', including related concepts like Dynamic Pricing and Price Optimization Models. Derived from five distinct raw data sources, these indices are specifically designed for comparative longitudinal analysis, enabling the examination of trends and relationships across different empirical domains (web search, literature, academic publishing, and executive adoption). The data presented here represent transformed versions of the original source data, aimed at achieving metric comparability. Users requiring the unprocessed source data should consult the corresponding Price Optimization dataset in the Management Tool Source Data (Raw Extracts) Dataverse. Data Files and Processing Methodologies: Google Trends File (Prefix: GT_): Normalized Relative Search Interest (RSI) Input Data: Native monthly RSI values from Google Trends (Jan 2004 - Jan 2025) for the query "price optimization" + "dynamic pricing" + "price optimization strategy". Processing: None. Utilizes the original base-100 normalized Google Trends index. Output Metric: Monthly Normalized RSI (Base 100). Frequency: Monthly. Google Books Ngram Viewer File (Prefix: GB_): Normalized Relative Frequency Input Data: Annual relative frequency values from Google Books Ngram Viewer (1950-2022, English corpus, no smoothing) for the query Price Optimization + Pricing Optimization + Dynamic Pricing Models + Optimal Pricing + Dynamic Pricing. Processing: Annual relative frequency series normalized (peak year = 100). Output Metric: Annual Normalized Relative Frequency Index (Base 100). Frequency: Annual. Crossref.org File (Prefix: CR_): Normalized Relative Publication Share Index Input Data: Absolute monthly publication counts matching Price Optimization-related keywords [("price optimization" OR ...) AND (...) - see raw data for full query] in titles/abstracts (1950-2025), alongside total monthly Crossref publications. Deduplicated via DOIs. Processing: Monthly relative share calculated (Price Opt. Count / Total Count). Monthly relative share series normalized (peak month's share = 100). Output Metric: Monthly Normalized Relative Publication Share Index (Base 100). Frequency: Monthly. Bain & Co. Survey - Usability File (Prefix: BU_): Normalized Usability Index Input Data: Original usability percentages (%) from Bain surveys for specific years: Price Optimization Models (2004, 2008, 2010, 2012, 2014, 2017). Note: Not reported before 2004 or after 2017. Processing: Normalization: Original usability percentages normalized relative to its historical peak (Max % = 100). Output Metric: Biennial Estimated Normalized Usability Index (Base 100 relative to historical peak). Frequency: Biennial (Approx.). Bain & Co. Survey - Satisfaction File (Prefix: BS_): Standardized Satisfaction Index Input Data: Original average satisfaction scores (1-5 scale) from Bain surveys for specific years: Price Optimization Models (2004-2017). Note: Not reported before 2004 or after 2017. Processing: Standardization (Z-scores): Using Z = (X - 3.0) / 0.891609. Index Scale Transformation: Index = 50 + (Z * 22). Output Metric: Biennial Standardized Satisfaction Index (Center=50, Range?[1,100]). Frequency: Biennial (Approx.). File Naming Convention: Files generally follow the pattern: PREFIX_Tool_Processed.csv or similar, where the PREFIX indicates the data source (GT_, GB_, CR_, BU_, BS_). Consult the parent Dataverse description (Management Tool Comparative Indices) for general context and the methodological disclaimer. For original extraction details (specific keywords, URLs, etc.), refer to the corresponding Price Optimization dataset in the Raw Extracts Dataverse. Comprehensive project documentation provides full details on all processing steps.

  15. Large Class Dataset for Code Smell Detection

    • kaggle.com
    zip
    Updated Nov 21, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    IsrarAliSe (2025). Large Class Dataset for Code Smell Detection [Dataset]. https://www.kaggle.com/datasets/israralise/large-class-dataset-for-code-smell-detection
    Explore at:
    zip(73143 bytes)Available download formats
    Dataset updated
    Nov 21, 2025
    Authors
    IsrarAliSe
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset contains normalized object-oriented software metrics commonly used for detecting the Large Class code smell in software engineering. Each row represents a class/module from a real software project, along with a normalized set of structural and Halstead metrics.

    The dataset is pre-processed and scaled (0–1 range), making it ready for machine learning experiments such as:

    Code smell prediction Software maintenance analysis Software quality assessment Transformer-based models (RABERT, CodeBERT, TabTransformer) Classical ML (Logistic Regression, Random Forest, SVM) The target column LargeClass is binary (1 = presence of smell, 0 = no smell). This dataset is suitable for academic research, PhD theses, software analytics, and code smell detection benchmarks. File included:

    lcd.csv — normalized feature dataset with 20 metrics and one target.

  16. n

    Graphite//LFP synthetic V vs. Q dataset (>700,000 unique curves)

    • narcis.nl
    • data.mendeley.com
    Updated Mar 12, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dubarry, M (via Mendeley Data) (2021). Graphite//LFP synthetic V vs. Q dataset (>700,000 unique curves) [Dataset]. http://doi.org/10.17632/bs2j56pn7y.2
    Explore at:
    Dataset updated
    Mar 12, 2021
    Dataset provided by
    Data Archiving and Networked Services (DANS)
    Authors
    Dubarry, M (via Mendeley Data)
    Description

    This training dataset was calculated using the mechanistic modeling approach. See “Big data training data for artificial intelligence-based Li-ion diagnosis and prognosis“ (Journal of Power Sources, Volume 479, 15 December 2020, 228806) and "Analysis of Synthetic Voltage vs. Capacity Datasets for Big Data Diagnosis and Prognosis" (Energies, under review) for more details

    The V vs. Q dataset was compiled with a resolution of 0.01 for the triplets and C/25 charges. This accounts for more than 5,000 different paths. Each path was simulated with at most 0.85% increases for each The training dataset, therefore, contains more than 700,000 unique voltage vs. capacity curves.

    4 Variables are included, see read me file for details and example how to use. Cell info: Contains information on the setup of the mechanistic model Qnorm: normalize capacity scale for all voltage curves pathinfo: index for simulated conditions for all voltage curves volt: voltage data. Each column corresponds to the voltage simulated under the conditions of the corresponding line in pathinfo.

  17. d

    Temperature Normalized Enhanced Vegetation Index for Dixie Valley, Churchill...

    • catalog.data.gov
    • data.usgs.gov
    • +2more
    Updated Nov 27, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2025). Temperature Normalized Enhanced Vegetation Index for Dixie Valley, Churchill County, Nevada [Dataset]. https://catalog.data.gov/dataset/temperature-normalized-enhanced-vegetation-index-for-dixie-valley-churchill-county-nevada
    Explore at:
    Dataset updated
    Nov 27, 2025
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Area covered
    Nevada, Churchill County, Dixie Valley
    Description

    With increasing population growth and land-use change, urban communities in the desert southwest are progressively looking to remote basins to supplement existing water supplies. Recent applications for groundwater appropriations from Dixie Valley, Nevada, a primarily undeveloped basin neighboring the Carson Desert to the east, have prompted a reevaluation of the quantity of naturally discharging groundwater.The objective of this study was to develop a new, independent estimate of groundwater discharge by evapotranspiration (ET) from Dixie Valley using a combination of eddy-covariance evapotranspiration measurements and multispectral satellite imagery. Mean annual groundwater ET (ETg) was estimated during October 2009-2011 at four eddy covariance sites. Two sites were located in phreatophytic shrubland dominated by greasewood and two were located on a playa. Estimates were scaled to the basin level by combining remotely sensed imagery with field reconnaissance and site-scale ETg estimates.The Enhanced Vegetation Index (EVI) was calculated for 10 Landsat 5 Thematic mapper scenes and combined with brightness temperature in an effort to reduce confounding (high) EVI values resulting from forbes and cheat grass in sparsely vegetated areas, and biological soil crusts from bare soil to densely vegetated areas. The resulting EVI/TB images represented by this dataset were used to calculate ET units and scale actual and potential ETg to the basin level.

  18. d

    Growth Strategies (Normalized)

    • search.dataone.org
    • datasetcatalog.nlm.nih.gov
    Updated Oct 29, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Anez, Diomar; Anez, Dimar (2025). Growth Strategies (Normalized) [Dataset]. http://doi.org/10.7910/DVN/OW8GOW
    Explore at:
    Dataset updated
    Oct 29, 2025
    Dataset provided by
    Harvard Dataverse
    Authors
    Anez, Diomar; Anez, Dimar
    Description

    This dataset provides processed and normalized/standardized indices for the management tool group focused on 'Growth Strategies'. Derived from five distinct raw data sources, these indices are specifically designed for comparative longitudinal analysis, enabling the examination of trends and relationships across different empirical domains (web search, literature, academic publishing, and executive adoption). The data presented here represent transformed versions of the original source data, aimed at achieving metric comparability. Users requiring the unprocessed source data should consult the corresponding Growth Strategies dataset in the Management Tool Source Data (Raw Extracts) Dataverse. Data Files and Processing Methodologies: Google Trends File (Prefix: GT_): Normalized Relative Search Interest (RSI) Input Data: Native monthly RSI values from Google Trends (Jan 2004 - Jan 2025) for the query "growth strategies" + "growth strategy" + "growth strategies business". Processing: None. Utilizes the original base-100 normalized Google Trends index. Output Metric: Monthly Normalized RSI (Base 100). Frequency: Monthly. Google Books Ngram Viewer File (Prefix: GB_): Normalized Relative Frequency Input Data: Annual relative frequency values from Google Books Ngram Viewer (1950-2022, English corpus, no smoothing) for the query Growth Strategies + Growth Strategy. Processing: Annual relative frequency series normalized (peak year = 100). Output Metric: Annual Normalized Relative Frequency Index (Base 100). Frequency: Annual. Crossref.org File (Prefix: CR_): Normalized Relative Publication Share Index Input Data: Absolute monthly publication counts matching Growth Strategies-related keywords [("growth strategies" OR ...) AND (...) - see raw data for full query] in titles/abstracts (1950-2025), alongside total monthly Crossref publications. Deduplicated via DOIs. Processing: Monthly relative share calculated (Growth Strat. Count / Total Count). Monthly relative share series normalized (peak month's share = 100). Output Metric: Monthly Normalized Relative Publication Share Index (Base 100). Frequency: Monthly. Bain & Co. Survey - Usability File (Prefix: BU_): Normalized Usability Index Input Data: Original usability percentages (%) from Bain surveys for specific years: Growth Strategies (1996, 1999, 2000, 2002, 2004); Growth Strategy Tools (2006, 2008). Note: Not reported after 2008. Processing: Semantic Grouping: Data points for "Growth Strategies" and "Growth Strategy Tools" were treated as a single conceptual series. Normalization: Combined series normalized relative to its historical peak (Max % = 100). Output Metric: Biennial Estimated Normalized Usability Index (Base 100 relative to historical peak). Frequency: Biennial (Approx.). Bain & Co. Survey - Satisfaction File (Prefix: BS_): Standardized Satisfaction Index Input Data: Original average satisfaction scores (1-5 scale) from Bain surveys for specific years: Growth Strategies (1996-2004); Growth Strategy Tools (2006, 2008). Note: Not reported after 2008. Processing: Semantic Grouping: Data points treated as a single conceptual series. Standardization (Z-scores): Using Z = (X - 3.0) / 0.891609. Index Scale Transformation: Index = 50 + (Z * 22). Output Metric: Biennial Standardized Satisfaction Index (Center=50, Range?[1,100]). Frequency: Biennial (Approx.). File Naming Convention: Files generally follow the pattern: PREFIX_Tool_Processed.csv or similar, where the PREFIX indicates the data source (GT_, GB_, CR_, BU_, BS_). Consult the parent Dataverse description (Management Tool Comparative Indices) for general context and the methodological disclaimer. For original extraction details (specific keywords, URLs, etc.), refer to the corresponding Growth Strategies dataset in the Raw Extracts Dataverse. Comprehensive project documentation provides full details on all processing steps.

  19. Naturalistic Neuroimaging Database

    • openneuro.org
    Updated Apr 20, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sarah Aliko; Jiawen Huang; Florin Gheorghiu; Stefanie Meliss; Jeremy I Skipper (2021). Naturalistic Neuroimaging Database [Dataset]. http://doi.org/10.18112/openneuro.ds002837.v1.1.3
    Explore at:
    Dataset updated
    Apr 20, 2021
    Dataset provided by
    OpenNeurohttps://openneuro.org/
    Authors
    Sarah Aliko; Jiawen Huang; Florin Gheorghiu; Stefanie Meliss; Jeremy I Skipper
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    Overview

    • The Naturalistic Neuroimaging Database (NNDb v2.0) contains datasets from 86 human participants doing the NIH Toolbox and then watching one of 10 full-length movies during functional magnetic resonance imaging (fMRI).The participants were all right-handed, native English speakers, with no history of neurological/psychiatric illnesses, with no hearing impairments, unimpaired or corrected vision and taking no medication. Each movie was stopped in 40-50 minute intervals or when participants asked for a break, resulting in 2-6 runs of BOLD-fMRI. A 10 minute high-resolution defaced T1-weighted anatomical MRI scan (MPRAGE) is also provided.
    • The NNDb V2.0 is now on Neuroscout, a platform for fast and flexible re-analysis of (naturalistic) fMRI studies. See: https://neuroscout.org/

    v2.0 Changes

    • Overview
      • We have replaced our own preprocessing pipeline with that implemented in AFNI’s afni_proc.py, thus changing only the derivative files. This introduces a fix for an issue with our normalization (i.e., scaling) step and modernizes and standardizes the preprocessing applied to the NNDb derivative files. We have done a bit of testing and have found that results in both pipelines are quite similar in terms of the resulting spatial patterns of activity but with the benefit that the afni_proc.py results are 'cleaner' and statistically more robust.
    • Normalization

      • Emily Finn and Clare Grall at Dartmouth and Rick Reynolds and Paul Taylor at AFNI, discovered and showed us that the normalization procedure we used for the derivative files was less than ideal for timeseries runs of varying lengths. Specifically, the 3dDetrend flag -normalize makes 'the sum-of-squares equal to 1'. We had not thought through that an implication of this is that the resulting normalized timeseries amplitudes will be affected by run length, increasing as run length decreases (and maybe this should go in 3dDetrend’s help text). To demonstrate this, I wrote a version of 3dDetrend’s -normalize for R so you can see for yourselves by running the following code:
      # Generate a resting state (rs) timeseries (ts)
      # Install / load package to make fake fMRI ts
      # install.packages("neuRosim")
      library(neuRosim)
      # Generate a ts
      ts.rs <- simTSrestingstate(nscan=2000, TR=1, SNR=1)
      # 3dDetrend -normalize
      # R command version for 3dDetrend -normalize -polort 0 which normalizes by making "the sum-of-squares equal to 1"
      # Do for the full timeseries
      ts.normalised.long <- (ts.rs-mean(ts.rs))/sqrt(sum((ts.rs-mean(ts.rs))^2));
      # Do this again for a shorter version of the same timeseries
      ts.shorter.length <- length(ts.normalised.long)/4
      ts.normalised.short <- (ts.rs[1:ts.shorter.length]- mean(ts.rs[1:ts.shorter.length]))/sqrt(sum((ts.rs[1:ts.shorter.length]- mean(ts.rs[1:ts.shorter.length]))^2));
      # By looking at the summaries, it can be seen that the median values become  larger
      summary(ts.normalised.long)
      summary(ts.normalised.short)
      # Plot results for the long and short ts
      # Truncate the longer ts for plotting only
      ts.normalised.long.made.shorter <- ts.normalised.long[1:ts.shorter.length]
      # Give the plot a title
      title <- "3dDetrend -normalize for long (blue) and short (red) timeseries";
      plot(x=0, y=0, main=title, xlab="", ylab="", xaxs='i', xlim=c(1,length(ts.normalised.short)), ylim=c(min(ts.normalised.short),max(ts.normalised.short)));
      # Add zero line
      lines(x=c(-1,ts.shorter.length), y=rep(0,2), col='grey');
      # 3dDetrend -normalize -polort 0 for long timeseries
      lines(ts.normalised.long.made.shorter, col='blue');
      # 3dDetrend -normalize -polort 0 for short timeseries
      lines(ts.normalised.short, col='red');
      
    • Standardization/modernization

      • The above individuals also encouraged us to implement the afni_proc.py script over our own pipeline. It introduces at least three additional improvements: First, we now use Bob’s @SSwarper to align our anatomical files with an MNI template (now MNI152_2009_template_SSW.nii.gz) and this, in turn, integrates nicely into the afni_proc.py pipeline. This seems to result in a generally better or more consistent alignment, though this is only a qualitative observation. Second, all the transformations / interpolations and detrending are now done in fewers steps compared to our pipeline. This is preferable because, e.g., there is less chance of inadvertently reintroducing noise back into the timeseries (see Lindquist, Geuter, Wager, & Caffo 2019). Finally, many groups are advocating using tools like fMRIPrep or afni_proc.py to increase standardization of analyses practices in our neuroimaging community. This presumably results in less error, less heterogeneity and more interpretability of results across studies. Along these lines, the quality control (‘QC’) html pages generated by afni_proc.py are a real help in assessing data quality and almost a joy to use.
    • New afni_proc.py command line

      • The following is the afni_proc.py command line that we used to generate blurred and censored timeseries files. The afni_proc.py tool comes with extensive help and examples. As such, you can quickly understand our preprocessing decisions by scrutinising the below. Specifically, the following command is most similar to Example 11 for ‘Resting state analysis’ in the help file (see https://afni.nimh.nih.gov/pub/dist/doc/program_help/afni_proc.py.html): afni_proc.py \ -subj_id "$sub_id_name_1" \ -blocks despike tshift align tlrc volreg mask blur scale regress \ -radial_correlate_blocks tcat volreg \ -copy_anat anatomical_warped/anatSS.1.nii.gz \ -anat_has_skull no \ -anat_follower anat_w_skull anat anatomical_warped/anatU.1.nii.gz \ -anat_follower_ROI aaseg anat freesurfer/SUMA/aparc.a2009s+aseg.nii.gz \ -anat_follower_ROI aeseg epi freesurfer/SUMA/aparc.a2009s+aseg.nii.gz \ -anat_follower_ROI fsvent epi freesurfer/SUMA/fs_ap_latvent.nii.gz \ -anat_follower_ROI fswm epi freesurfer/SUMA/fs_ap_wm.nii.gz \ -anat_follower_ROI fsgm epi freesurfer/SUMA/fs_ap_gm.nii.gz \ -anat_follower_erode fsvent fswm \ -dsets media_?.nii.gz \ -tcat_remove_first_trs 8 \ -tshift_opts_ts -tpattern alt+z2 \ -align_opts_aea -cost lpc+ZZ -giant_move -check_flip \ -tlrc_base "$basedset" \ -tlrc_NL_warp \ -tlrc_NL_warped_dsets \ anatomical_warped/anatQQ.1.nii.gz \ anatomical_warped/anatQQ.1.aff12.1D \ anatomical_warped/anatQQ.1_WARP.nii.gz \ -volreg_align_to MIN_OUTLIER \ -volreg_post_vr_allin yes \ -volreg_pvra_base_index MIN_OUTLIER \ -volreg_align_e2a \ -volreg_tlrc_warp \ -mask_opts_automask -clfrac 0.10 \ -mask_epi_anat yes \ -blur_to_fwhm -blur_size $blur \ -regress_motion_per_run \ -regress_ROI_PC fsvent 3 \ -regress_ROI_PC_per_run fsvent \ -regress_make_corr_vols aeseg fsvent \ -regress_anaticor_fast \ -regress_anaticor_label fswm \ -regress_censor_motion 0.3 \ -regress_censor_outliers 0.1 \ -regress_apply_mot_types demean deriv \ -regress_est_blur_epits \ -regress_est_blur_errts \ -regress_run_clustsim no \ -regress_polort 2 \ -regress_bandpass 0.01 1 \ -html_review_style pythonic We used similar command lines to generate ‘blurred and not censored’ and the ‘not blurred and not censored’ timeseries files (described more fully below). We will provide the code used to make all derivative files available on our github site (https://github.com/lab-lab/nndb).

      We made one choice above that is different enough from our original pipeline that it is worth mentioning here. Specifically, we have quite long runs, with the average being ~40 minutes but this number can be variable (thus leading to the above issue with 3dDetrend’s -normalise). A discussion on the AFNI message board with one of our team (starting here, https://afni.nimh.nih.gov/afni/community/board/read.php?1,165243,165256#msg-165256), led to the suggestion that '-regress_polort 2' with '-regress_bandpass 0.01 1' be used for long runs. We had previously used only a variable polort with the suggested 1 + int(D/150) approach. Our new polort 2 + bandpass approach has the added benefit of working well with afni_proc.py.

      Which timeseries file you use is up to you but I have been encouraged by Rick and Paul to include a sort of PSA about this. In Paul’s own words: * Blurred data should not be used for ROI-based analyses (and potentially not for ICA? I am not certain about standard practice). * Unblurred data for ISC might be pretty noisy for voxelwise analyses, since blurring should effectively boost the SNR of active regions (and even good alignment won't be perfect everywhere). * For uncensored data, one should be concerned about motion effects being left in the data (e.g., spikes in the data). * For censored data: * Performing ISC requires the users to unionize the censoring patterns during the correlation calculation. * If wanting to calculate power spectra or spectral parameters like ALFF/fALFF/RSFA etc. (which some people might do for naturalistic tasks still), then standard FT-based methods can't be used because sampling is no longer uniform. Instead, people could use something like 3dLombScargle+3dAmpToRSFC, which calculates power spectra (and RSFC params) based on a generalization of the FT that can handle non-uniform sampling, as long as the censoring pattern is mostly random and, say, only up to about 10-15% of the data. In sum, think very carefully about which files you use. If you find you need a file we have not provided, we can happily generate different versions of the timeseries upon request and can generally do so in a week or less.

    • Effect on results

      • From numerous tests on our own analyses, we have qualitatively found that results using our old vs the new afni_proc.py preprocessing pipeline do not change all that much in terms of general spatial patterns. There is, however, an
  20. d

    Business Process Reengineering (Normalized)

    • search.dataone.org
    Updated Oct 29, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Anez, Diomar; Anez, Dimar (2025). Business Process Reengineering (Normalized) [Dataset]. http://doi.org/10.7910/DVN/QBP0E9
    Explore at:
    Dataset updated
    Oct 29, 2025
    Dataset provided by
    Harvard Dataverse
    Authors
    Anez, Diomar; Anez, Dimar
    Description

    This dataset provides processed and normalized/standardized indices for the management tool 'Business Process Reengineering' (BPR). Derived from five distinct raw data sources, these indices are specifically designed for comparative longitudinal analysis, enabling the examination of trends and relationships across different empirical domains (web search, literature, academic publishing, and executive adoption). The data presented here represent transformed versions of the original source data, aimed at achieving metric comparability. Users requiring the unprocessed source data should consult the corresponding BPR dataset in the Management Tool Source Data (Raw Extracts) Dataverse. Data Files and Processing Methodologies: Google Trends File (Prefix: GT_): Normalized Relative Search Interest (RSI) Input Data: Native monthly RSI values from Google Trends (Jan 2004 - Jan 2025) for the query "business process reengineering" + "process reengineering" + "reengineering management". Processing: None. The dataset utilizes the original Google Trends index, which is base-100 normalized against the peak search interest for the specified terms and period. Output Metric: Monthly Normalized RSI (Base 100). Frequency: Monthly. Google Books Ngram Viewer File (Prefix: GB_): Normalized Relative Frequency Input Data: Annual relative frequency values from Google Books Ngram Viewer (1950-2022, English corpus, no smoothing) for the query Reengineering + Business Process Reengineering + Process Reengineering. Processing: The annual relative frequency series was normalized by setting the year with the maximum value to 100 and scaling all other values (years) proportionally. Output Metric: Annual Normalized Relative Frequency Index (Base 100). Frequency: Annual. Crossref.org File (Prefix: CR_): Normalized Relative Publication Share Index Input Data: Absolute monthly publication counts matching BPR-related keywords [("business process reengineering" OR ...) AND ("management" OR ...) - see raw data for full query] in titles/abstracts (1950-2025), alongside total monthly publication counts in Crossref. Data deduplicated via DOIs. Processing: For each month, the relative share of BPR-related publications (BPR Count / Total Crossref Count for that month) was calculated. This monthly relative share series was then normalized by setting the month with the maximum relative share to 100 and scaling all other months proportionally. Output Metric: Monthly Normalized Relative Publication Share Index (Base 100). Frequency: Monthly. Bain & Co. Survey - Usability File (Prefix: BU_): Normalized Usability Index Input Data: Original usability percentages (%) from Bain surveys for specific years: Reengineering (1993, 1996, 2000, 2002); Business Process Reengineering (2004, 2006, 2008, 2010, 2012, 2014, 2017, 2022). Processing: Semantic Grouping: Data points for "Reengineering" and "Business Process Reengineering" were treated as a single conceptual series for BPR. Normalization: The combined series of original usability percentages was normalized relative to its own highest observed historical value across all included years (Max % = 100). Output Metric: Biennial Estimated Normalized Usability Index (Base 100 relative to historical peak). Frequency: Biennial (Approx.). Bain & Co. Survey - Satisfaction File (Prefix: BS_): Standardized Satisfaction Index Input Data: Original average satisfaction scores (1-5 scale) from Bain surveys for specific years: Reengineering (1993, 1996, 2000, 2002); Business Process Reengineering (2004, 2006, 2008, 2010, 2012, 2014, 2017, 2022). Processing: Semantic Grouping: Data points for "Reengineering" and "Business Process Reengineering" were treated as a single conceptual series for BPR. Standardization (Z-scores): Original scores (X) were standardized using Z = (X - ?) / ?, with a theoretically defined neutral mean ?=3.0 and an estimated pooled population standard deviation ??0.891609 (calculated across all tools/years relative to ?=3.0). Index Scale Transformation: Z-scores were transformed to an intuitive index via: Index = 50 + (Z * 22). This scale centers theoretical neutrality (original score: 3.0) at 50 and maps the approximate range [1, 5] to [?1, ?100]. Output Metric: Biennial Standardized Satisfaction Index (Center=50, Range?[1,100]). Frequency: Biennial (Approx.). File Naming Convention: Files generally follow the pattern: PREFIX_Tool_Processed.csv or similar, where the PREFIX indicates the data source (GT_, GB_, CR_, BU_, BS_). Consult the parent Dataverse description (Management Tool Comparative Indices) for general context and the methodological disclaimer. For original extraction details (specific keywords, URLs, etc.), refer to the corresponding BPR dataset in the Raw Extracts Dataverse. Comprehensive project documentation provides full details on all processing steps.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Engr Yasir Hussain (2024). Scaling and Normalization [Dataset]. https://www.kaggle.com/datasets/mryasirturi/scaling-and-normalization
Organization logo

Data from: Scaling and Normalization

Related Article
Explore at:
CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
Dataset updated
Feb 2, 2024
Dataset provided by
Kagglehttp://kaggle.com/
Authors
Engr Yasir Hussain
Description

Dataset

This dataset was created by Engr Yasir Hussain

Contents

Search
Clear search
Close search
Google apps
Main menu