19 datasets found
  1. f

    Q10 (17–27°C) for normalized data.

    • plos.figshare.com
    xls
    Updated Jun 3, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Olivier Faivre; Mikko Juusola (2023). Q10 (17–27°C) for normalized data. [Dataset]. http://doi.org/10.1371/journal.pone.0002173.t001
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 3, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Olivier Faivre; Mikko Juusola
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Shown are mean±SD. Values were extrapolated from a smaller temperature range, using linear or exponential fits (details in Materials and Methods and Table S1). 1: As defined by the onset time of the impulse response, K1. 2: Characteristic time-constant defined as: τ = (f3dB)−1. 3: Information transfer rate (Shannon's formula). 4: Information transfer rate (triple extrapolation method).

  2. Intermediate data for TE calculation

    • zenodo.org
    bin, csv
    Updated May 9, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Yue Liu; Yue Liu (2025). Intermediate data for TE calculation [Dataset]. http://doi.org/10.5281/zenodo.10373032
    Explore at:
    csv, binAvailable download formats
    Dataset updated
    May 9, 2025
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Yue Liu; Yue Liu
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset includes intermediate data from RiboBase that generates translation efficiency (TE). The code to generate the files can be found at https://github.com/CenikLab/TE_model.

    We uploaded demo HeLa .ribo files, but due to the large storage requirements of the full dataset, I recommend contacting Dr. Can Cenik directly to request access to the complete version of RiboBase if you need the original data.

    The detailed explanation for each file:

    human_flatten_ribo_clr.rda: ribosome profiling clr normalized data with GEO GSM ids in columns and genes in rows in human.

    human_flatten_rna_clr.rda: matched RNA-seq clr normalized data with GEO GSM ids in columns and genes in rows in human.

    human_flatten_te_clr.rda: TE clr data with GEO GSM ids in columns and genes in rows in human.

    human_TE_cellline_all_plain.csv: TE clr data with genes in rows and cell lines in rows in human.

    human_RNA_rho_new.rda: matched RNA-seq proportional similarity data as genes by genes matrix in human.

    human_TE_rho.rda: TE proportional similarity data as genes by genes matrix in human.

    mouse_flatten_ribo_clr.rda: ribosome profiling clr normalized data with GEO GSM ids in columns and genes in rows in mouse.

    mouse_flatten_rna_clr.rda: matched RNA-seq clr normalized data with GEO GSM ids in columns and genes in rows in mouse.

    mouse_flatten_te_clr.rda: TE clr data with GEO GSM ids in columns and genes in rows in mouse.

    mouse_TE_cellline_all_plain.csv: TE clr data with genes in rows and cell lines in rows in mouse.

    mouse_RNA_rho_new.rda: matched RNA-seq proportional similarity data as genes by genes matrix in mouse.

    mouse_TE_rho.rda: TE proportional similarity data as genes by genes matrix in mouse.

    All the data was passed quality control. There are 1054 mouse samples and 835 mouse samples:
    * coverage > 0.1 X
    * CDS percentage > 70%
    * R2 between RNA and RIBO >= 0.188 (remove outliers)

    All ribosome profiling data here is non-dedup winsorizing data paired with RNA-seq dedup data without winsorizing (even though it names as flatten, it just the same format of the naming)

    ####code
    If you need to read rda data please use load("rdaname.rda") with R

    If you need to calculate proportional similarity from clr data:
    library(propr)
    human_TE_homo_rho <- propr:::lr2rho(as.matrix(clr_data))
    rownames(human_TE_homo_rho) <- colnames(human_TE_homo_rho) <- rownames(clr_data)

  3. s

    Normalized Difference Water Index (NDWI) - Annual Mean - Switzerland

    • geonetwork.swissdatacube.org
    doi +1
    Updated Sep 17, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Université de Genève (2019). Normalized Difference Water Index (NDWI) - Annual Mean - Switzerland [Dataset]. https://geonetwork.swissdatacube.org/geonetwork/srv/api/records/1008ba03-a57d-42d0-b7d7-3a861d91c4be
    Explore at:
    doi, ogc:wms-1.3.0-http-get-capabilitiesAvailable download formats
    Dataset updated
    Sep 17, 2019
    Dataset authored and provided by
    Université de Genève
    Time period covered
    Mar 28, 1984 - Jun 15, 2019
    Area covered
    Description

    This dataset is an annual time-serie of Landsat Analysis Ready Data (ARD)-derived Normalized Difference Water Index (NDWI) computed from Landsat 5 Thematic Mapper (TM) and Landsat 8 Opeational Land Imager (OLI). To ensure a consistent dataset, Landsat 7 has not been used because the Scan Line Correct (SLC) failure creates gaps into the data. NDWI quantifies plant water content by measuring the difference between Near-Infrared (NIR) and Short Wave Infrared (SWIR) (or Green) channels using this generic formula: (NIR - SWIR) / (NIR + SWIR) For Landsat sensors, this corresponds to the following bands: Landsat 5, NDVI = (Band 4 – Band 2) / (Band 4 + Band 2). Landsat 8, NDVI = (Band 5 – Band 3) / (Band 5 + Band 3). NDWI values ranges from -1 to +1. NDWI is a good proxy for plant water stress and therefore useful for drought monitoring and early warning. NDWI is sometimes alos refered as Normalized Difference Moisture Index (NDMI) Standard Deviation is also provided for each time step. Data format: GeoTiff This dataset has been genereated with the Swiss Data Cube (http://www.swissdatacube.ch)

  4. c

    Calculation of Sputtering Yield with Obliquely Incident Light-Ions (H+, D+,,...

    • search.ckan.jp
    • nifs-repository.repo.nii.ac.jp
    Updated Jul 4, 2012
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    学術機関リポジトリ (2012). Calculation of Sputtering Yield with Obliquely Incident Light-Ions (H+, D+,, T+,, He+,) and its Representation by an Extended Semi-empirical Formula [Dataset]. https://search.ckan.jp/datasets/136.187.101.184:5000_dataset:oai-irdb-nii-ac-jp-01130-0005844826
    Explore at:
    Dataset updated
    Jul 4, 2012
    Authors
    学術機関リポジトリ
    Description

    With a Monte Carlo code ACAT, we have calculated sputtering yield of fifteen fusion-relevant mono-atomic materials (Be, B, C, Al, Si, Ti, Cr, Fe, Co, Ni, Cu, Zr, Mo, W, Re) with obliquely incident light-ions H+, D+, T+,, He+) at incident energies of 50 eV to 10 keV. An improved formula for dependence of normalized sputtering yield on incident-angle has been fitted to the ACAT data normalized by the normal-incidence data to derive the best-fit values of the three physical variables included in the formula vs. incident energy. We then have found suitable functions of incident energy that fit these values most closely. The average relative difference between the normalized ACAT data and the formula with these functions has been shown to be less than 10 % in most cases and less than 20 % for the rest at the incident energies taken up for all of the combinations of the projectiles and the target materials considered. We have also compared the calculated data and the formula with available normalized experimental ones for given incident energies. The best-fit values of the parameters included in the functions have been tabulated in tables for all of the combinations for use. / Keywords: Sputtering, Erosion, Plasma-material interactions, First wall materials, Fitting formula, Monte-Carlo method, binary collision approximation, computer simulation【リソース】Fulltext

  5. t

    (Table 1) Normalized peak intensities from solid phase extracted dissolved...

    • service.tib.eu
    Updated Nov 30, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). (Table 1) Normalized peak intensities from solid phase extracted dissolved organic matter from porewater and overlying bottom water collected during Maria S. Merian cruise MSM29 and Polarstern cruise PS85 to the Fram Strait - Vdataset - LDM [Dataset]. https://service.tib.eu/ldmservice/dataset/png-doi-10-1594-pangaea-909107
    Explore at:
    Dataset updated
    Nov 30, 2024
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Fram Strait
    Description

    Dissolved organic matter molecular analyses were performed on a Solarix FT-ICR-MS equipped with a 15 Tesla superconducting magnet (Bruker Daltonic) using a an electrospray ionization source (Bruker Apollo II) in negative ion mode. Molecular formula calculation for all samples was performed using an Matlab (2010) routine that searches, with an error of < 0.5 ppm, for all potential combinations of elements including including the elements C∞, O∞, H∞, N = 4; S = 2 and P = 1. Combination of elements NSP, N2S, N3S, N4S, N2P, N3P, N4P, NS2, N2S2, N3S2, N4S2, S2P was not allowed. Mass peak intensities are normalized relative to the total molecular formulas in each sample according to previously published rules (Rossel et al., 2015; doi:10.1016/j.marchem.2015.07.002). The final data contained 7400 molecular formulae.

  6. p

    Aarhus University,Danish Centre for Environment and Energy

    • pigma.org
    • catalogue.arctic-sdi.org
    doi, ogc:wms +2
    Updated Feb 21, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    EMODnet Chemistry (2025). Aarhus University,Danish Centre for Environment and Energy [Dataset]. https://www.pigma.org/geonetwork/srv/api/records/9920fa88-bd81-4285-ad2b-0e435c8ce0d6
    Explore at:
    www:link, ogc:wms, doi, www:downloadAvailable download formats
    Dataset updated
    Feb 21, 2025
    Dataset provided by
    National Institute of Oceanography and Applied Geophysics - OGS, Division of Oceanography
    Ifremer, VIGIES (Information Valuation Service for Integrated Management and Monitoring)
    IFREMER, SISMER, Scientific Information Systems for the SEA
    EMODnet Chemistry
    Time period covered
    Jan 1, 2001 - May 11, 2024
    Area covered
    Description

    This visualization product displays marine macro-litter (> 2.5cm) material categories percentages per beach per year from non-MSFD monitoring surveys, research & cleaning operations.

    EMODnet Chemistry included the collection of marine litter in its 3rd phase. Since the beginning of 2018, data of beach litter have been gathered and processed in the EMODnet Chemistry Marine Litter Database (MLDB). The harmonization of all the data has been the most challenging task considering the heterogeneity of the data sources, sampling protocols and reference lists used on a European scale.

    Preliminary processings were necessary to harmonize all the data: - Exclusion of OSPAR 1000 protocol: in order to follow the approach of OSPAR that it is not including these data anymore in the monitoring; - Selection of surveys from non-MSFD monitoring, cleaning and research operations; - Exclusion of beaches without coordinates; - Exclusion of surveys without associated length; - Some litter types like organic litter, small fragments (paraffin and wax; items > 2.5cm) and pollutants have been removed. The list of selected items is attached to this metadata. This list was created using EU Marine Beach Litter Baselines, the European Threshold Value for Macro Litter on Coastlines and the Joint list of litter categories for marine macro-litter monitoring from JRC (these three documents are attached to this metadata); - Exclusion of the "feaces" category: it concerns more exactly the items of dog excrements in bags of the OSPAR (item code: 121) and ITA (item code: IT59) reference lists; - Normalization of survey lengths to 100m & 1 survey / year: in some case, the survey length was not 100m, so in order to be able to compare the abundance of litter from different beaches a normalization is applied using this formula: Number of items (normalized by 100 m) = Number of litter per items x (100 / survey length) Then, this normalized number of items is summed to obtain the total normalized number of litter for each survey.

    To calculate the percentage for each material category, formula applied is: Material (%) = (∑number of items (normalized at 100 m) of each material category)*100 / (∑number of items (normalized at 100 m) of all categories)

    The material categories differ between reference lists (OSPAR, TSG-ML, UNEP, UNEP-MARLIN, JLIST). In order to apply a common procedure for all the surveys, the material categories have been harmonized.

    More information is available in the attached documents.

    Warning: the absence of data on the map does not necessarily mean that they do not exist, but that no information has been entered in the Marine Litter Database for this area.

  7. p

    Seafloor litter - Spatial distribution of litter density normalized per km²...

    • pigma.org
    • catalogue.arctic-sdi.org
    doi, ogc:wms +2
    Updated Feb 27, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    EMODnet Chemistry (2025). Seafloor litter - Spatial distribution of litter density normalized per km² 2011/2024 v2025 [Dataset]. https://www.pigma.org/geonetwork/5a8srv/api/records/0be49f9d-c763-4c0e-97e5-fb8b0e49731d
    Explore at:
    ogc:wms, www:link, doi, www:downloadAvailable download formats
    Dataset updated
    Feb 27, 2025
    Dataset provided by
    National Institute of Oceanography and Applied Geophysics - OGS, Division of Oceanography
    EMODnet Chemistry
    Ifremer, VIGIES (Information Valuation Service for Integrated Management and Monitoring)
    IFREMER, SISMER, Scientific Information Systems for the SEA
    Time period covered
    May 3, 2011 - Mar 21, 2024
    Area covered
    Description

    This visualization product displays the spatial distribution of seafloor litter density per trawl.

    EMODnet Chemistry included the collection of marine litter in its 3rd phase. Since the beginning of 2018, data of seafloor litter collected by international fish-trawl surveys have been gathered and processed in the EMODnet Chemistry Marine Litter Database (MLDB). The harmonization of all the data has been the most challenging task considering the heterogeneity of the data sources, sampling protocols (OSPAR and MEDITS protocols) and reference lists used on a European scale. Moreover, within the same protocol, different gear types are deployed during bottom trawl surveys.

    In cases where the wingspread and/or number of items were/was unknown, it was not possible to use the data because these fields are needed to calculate the density. Data collected before 2011 are concerned by this filter.

    When the distance reported in the data was null, it was calculated from: - the ground speed and the haul duration using the following formula: Distance (km) = Haul duration (h) * Ground speed (km/h); - the trawl coordinates if the ground speed and the haul duration were not filled in.

    The swept area was calculated from the wingspread (which depends on the fishing gear type) and the distance trawled: Swept area (km²) = Distance (km) * Wingspread (km)

    Densities were calculated on each trawl and year using the following computation: Density (number of items per km²) = ∑Number of items / Swept area (km²)

    Then a grid with 30km x 30km cells was used to calculate the weighted mean of densities in each cell from the formula : Weighted mean (number of items per km²) = ∑ (Distance (km) * Density (number of items per km²)) / ∑ Distance (km)

    Percentiles 50, 75, 95 & 99 were calculated taking into account data for all years.

    More information on data processing and calculation are detailed in the attached methodology document.

    Warning: the absence of data on the map does not necessarily mean that they do not exist, but that no information has been entered in the Marine Litter Database for this area.

    This work is based on the work presented in the following scientific article: O. Gerigny, M. Brun, M.C. Fabri, C. Tomasino, M. Le Moigne, A. Jadaud, F. Galgani, Seafloor litter from the continental shelf and canyons in French Mediterranean Water: Distribution, typologies and trends, Marine Pollution Bulletin, Volume 146, 2019, Pages 653-666, ISSN 0025-326X, https://doi.org/10.1016/j.marpolbul.2019.07.030.

  8. Value transformation methods, calculation formulas, and properties of...

    • plos.figshare.com
    • figshare.com
    xls
    Updated May 22, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Yanguang Chen (2024). Value transformation methods, calculation formulas, and properties of converted variables. [Dataset]. http://doi.org/10.1371/journal.pone.0303456.t003
    Explore at:
    xlsAvailable download formats
    Dataset updated
    May 22, 2024
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Yanguang Chen
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Value transformation methods, calculation formulas, and properties of converted variables.

  9. a

    Aarhus University,Danish Centre for Environment and Energy

    • catalogue.arctic-sdi.org
    • sextant.ifremer.fr
    • +1more
    doi +2
    Updated Feb 21, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Archipelagos Institute of Marine Conservation (2025). Aarhus University,Danish Centre for Environment and Energy [Dataset]. https://catalogue.arctic-sdi.org/geonetwork/srv/api/records/2619e339-4f1b-4e58-81bf-28f1411da968
    Explore at:
    www:link, doi, www:download-1.0-link--downloadAvailable download formats
    Dataset updated
    Feb 21, 2025
    Dataset provided by
    International Council for the Exploration of the Sea
    Foundation for Environmental Education, Latvia
    Beach Litter - Composition of litter according to material categories in percent normalized per beach per year - Other sources 2001/2020 v2021
    Institute for Water of the Republic of Slovenia
    Iv.Javakhishvili Tbilisi State University, Centre of Relations with UNESCO Oceanological Research Centre and GeoDNA (UNESCO)
    Plastic Change
    Non-governmental environmental organization "Mare Nostrum"
    Isotech Ltd Environmental Research and Consultancy
    Hellenic Centre for Marine Research, Institute of Oceanography
    National Institute of Marine Geology and Geoecology
    Black Sea NGO Network
    Ukrainian scientific center of Ecology of Sea
    State Oceanographic Institute
    Institute of Oceanology, Bulgarian Academy of Sciences
    Norwegian Environment Agency
    Hold Danmark Rent
    Department of Fisheries and Marine Research, Division of Marine Biology and Ecology
    Surfers Against Sewage
    Asociación Vertidos Cero
    Legambiente
    National Institute of Oceanography and Applied Geophysics - OGS, Division of Oceanography
    Turkish Marine Research Foundation
    Mediterranean Information Office for Environment, Culture and Sustainable Development
    National Institute for Marine Research and Development "Grigore Antipa"
    Portuguese Association for Marine Litter, APLM
    Institute of Marine Biology (IMBK)
    Estonian Green Movement
    Disciplinary Centre of Marine Research and Environmental
    ECAT-Environmental Center for Administration & Technology
    Ifremer, VIGIES (Information Valuation Service for Integrated Management and Monitoring)
    Archipelagos Institute of Marine Conservation
    IFREMER, SISMER, Scientific Information Systems for the SEA
    Aarhus University, Department of Bioscience
    Aegean Greeners
    Time period covered
    Jan 1, 2001 - Apr 22, 2020
    Area covered
    Description

    This visualization product displays marine macro-litter (> 2.5cm) material categories percentage per beach per year from non-MSFD monitoring surveys, research & cleaning operations.

    EMODnet Chemistry included the collection of marine litter in its 3rd phase. Since the beginning of 2018, data of beach litter have been gathered and processed in the EMODnet Chemistry Marine Litter Database (MLDB). The harmonization of all the data has been the most challenging task considering the heterogeneity of the data sources, sampling protocols and reference lists used on a European scale.

    Preliminary processing were necessary to harmonize all the data: - Exclusion of OSPAR 1000 protocol: in order to follow the approach of OSPAR that it is not including these data anymore in the monitoring; - Selection of surveys from non-MSFD monitoring, cleaning and research operations; - Exclusion of beaches without coordinates; - Exclusion of surveys without associated length; - Some litter types like organic litter, small fragments (paraffin and wax; items > 2.5cm) and pollutants have been removed. The list of selected items is attached to this metadata. This list was created using EU Marine Beach Litter Baselines and EU Threshold Value for Macro Litter on Coastlines from JRC (these two documents are attached to this metadata); - Exclusion of the "feaces" category: it concerns more exactly the items of dog excrements in bags of the OSPAR (item code: 121) and ITA (item code: IT59) reference lists; - Normalization of survey lengths to 100m & 1 survey / year: in some case, the survey length was not 100m, so in order to be able to compare the abundance of litter from different beaches a normalization is applied using this formula: Number of items (normalized by 100 m) = Number of litter per items x (100 / survey length) Then, this normalized number of items is summed to obtain the total normalized number of litter for each survey.

    To calculate percentages for each material category, formula applied is: Material (%) = (∑number of items (normalized at 100 m) of each material category)*100 / (∑number of items (normalized at 100 m) of all categories)

    The material categories differ between reference lists (OSPAR, TSG_ML, UNEP, UNEP_MARLIN). In order to apply a common procedure for all the surveys, the material categories have been harmonized.

    More information is available in the attached documents.

    Warning: the absence of data on the map doesn't necessarily mean that they don't exist, but that no information has been entered in the Marine Litter Database for this area.

  10. Aarhus University,Danish Centre for Environment and Energy

    • catalogue.arctic-sdi.org
    • sextant.ifremer.fr
    • +1more
    doi +2
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Aarhus University, Department of Bioscience, Aarhus University,Danish Centre for Environment and Energy [Dataset]. https://catalogue.arctic-sdi.org/geonetwork/srv/api/records/09573c70-e9e6-4579-aee0-c879699b2fba
    Explore at:
    www:link, www:download-1.0-link--download, doiAvailable download formats
    Dataset provided by
    International Council for the Exploration of the Sea
    Institute for Water of the Republic of Slovenia
    Iv.Javakhishvili Tbilisi State University, Centre of Relations with UNESCO Oceanological Research Centre and GeoDNA (UNESCO)
    Plastic Change
    Non-governmental environmental organization "Mare Nostrum"
    Isotech Ltd Environmental Research and Consultancy
    Hellenic Centre for Marine Research, Institute of Oceanography
    National Institute of Marine Geology and Geoecology
    Black Sea NGO Network
    Ukrainian scientific center of Ecology of Sea
    State Oceanographic Institute
    Institute of Oceanology, Bulgarian Academy of Sciences
    Norwegian Environment Agency
    Hold Danmark Rent
    Department of Fisheries and Marine Research, Division of Marine Biology and Ecology
    The North Sea Foundation
    Surfers Against Sewage
    Asociación Vertidos Cero
    Legambiente
    Portuguese Environment Agency
    Turkish Marine Research Foundation
    Beach litter - Composition of litter according to material categories in percent normalized per beach per year - Other sources 2001/2021 v2023
    Mediterranean Information Office for Environment, Culture and Sustainable Development
    National Institute for Marine Research and Development "Grigore Antipa"
    Centre for Documentation, Research and Experimentation on Accidental Water Pollution
    Treanbeg Marine
    Directorate for Coast and Sea Sustainability. Ministry for Ecological Transition
    Portuguese Association for Marine Litter, APLM
    Institute of Marine Biology (IMBK)
    Estonian Green Movement
    Disciplinary Centre of Marine Research and Environmental
    ECAT-Environmental Center for Administration & Technology
    Archipelagos Institute of Marine Conservation
    Aarhus University, Department of Bioscience
    Flanders Marine Institute
    Aegean Greeners
    National Institute of Oceanography and Applied Geophysics - OGS, Division of Oceanography
    Ifremer, VIGIES (Information Valuation Service for Integrated Management and Monitoring)
    IFREMER, SISMER, Scientific Information Systems for the SEA
    Time period covered
    Jan 1, 2001 - Aug 11, 2021
    Area covered
    Description

    This visualization product displays marine macro-litter (> 2.5cm) material categories percentage per beach per year from non-MSFD monitoring surveys, research & cleaning operations.

    EMODnet Chemistry included the collection of marine litter in its 3rd phase. Since the beginning of 2018, data of beach litter have been gathered and processed in the EMODnet Chemistry Marine Litter Database (MLDB). The harmonization of all the data has been the most challenging task considering the heterogeneity of the data sources, sampling protocols and reference lists used on a European scale.

    Preliminary processing were necessary to harmonize all the data: - Exclusion of OSPAR 1000 protocol: in order to follow the approach of OSPAR that it is not including these data anymore in the monitoring; - Selection of surveys from non-MSFD monitoring, cleaning and research operations; - Exclusion of beaches without coordinates; - Exclusion of surveys without associated length; - Some litter types like organic litter, small fragments (paraffin and wax; items > 2.5cm) and pollutants have been removed. The list of selected items is attached to this metadata. This list was created using EU Marine Beach Litter Baselines and EU Threshold Value for Macro Litter on Coastlines from JRC (these two documents are attached to this metadata); - Exclusion of the "feaces" category: it concerns more exactly the items of dog excrements in bags of the OSPAR (item code: 121) and ITA (item code: IT59) reference lists; - Normalization of survey lengths to 100m & 1 survey / year: in some case, the survey length was not 100m, so in order to be able to compare the abundance of litter from different beaches a normalization is applied using this formula: Number of items (normalized by 100 m) = Number of litter per items x (100 / survey length) Then, this normalized number of items is summed to obtain the total normalized number of litter for each survey.

    To calculate percentages for each material category, formula applied is: Material (%) = (∑number of items (normalized at 100 m) of each material category)*100 / (∑number of items (normalized at 100 m) of all categories)

    The material categories differ between reference lists (OSPAR, TSG_ML, UNEP, UNEP_MARLIN). In order to apply a common procedure for all the surveys, the material categories have been harmonized.

    More information is available in the attached documents.

    Warning: the absence of data on the map doesn't necessarily mean that they don't exist, but that no information has been entered in the Marine Litter Database for this area.

  11. i

    Aarhus University,Danish Centre for Environment and Energy

    • sextant.ifremer.fr
    • catalogue.arctic-sdi.org
    • +1more
    doi, www:download +1
    Updated May 6, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    EMODnet Chemistry (2021). Aarhus University,Danish Centre for Environment and Energy [Dataset]. https://sextant.ifremer.fr/geonetwork/srv/api/records/a753818b-d2cb-4425-96ad-c0cae6fb35d2
    Explore at:
    www:link, doi, www:downloadAvailable download formats
    Dataset updated
    May 6, 2021
    Dataset provided by
    National Institute of Oceanography and Applied Geophysics - OGS, Division of Oceanography
    EMODnet Chemistry
    Ifremer, VIGIES (Information Valuation Service for Integrated Management and Monitoring)
    IFREMER, SISMER, Scientific Information Systems for the SEA
    Time period covered
    Jul 1, 2012 - Jul 1, 2014
    Area covered
    Description

    This visualization product displays the cigarette related items abundance of marine macro-litter (> 2.5cm) per beach per year from non-MSFD monitoring surveys, research & cleaning operations related to UNEP-MARLIN data only.

    EMODnet Chemistry included the collection of marine litter in its 3rd phase. Since the beginning of 2018, data of beach litter have been gathered and processed in the EMODnet Chemistry Marine Litter Database (MLDB). The harmonization of all the data has been the most challenging task considering the heterogeneity of the data sources, sampling protocols and reference lists used on a European scale.

    Preliminary processing were necessary to harmonize all the data: - Selection of surveys from non-MSFD monitoring, cleaning and research operations; - Exclusion of beaches without coordinates; - Selection of cigarette related items only. The list of selected items is attached to this metadata. This list was created using EU Marine Beach Litter Baselines and EU Threshold Value for Macro Litter on Coastlines from JRC (these two documents are attached to this metadata); - Exclusion of surveys without associated length; - Selection of surveys referring to the UNEP-MARLIN list: the UNEP-MARLIN protocol differs from the other types of monitoring in that cigarette butts are surveyed in a 10m square. To avoid comparing abundances from very different protocols, the choice has been made to distinguish in two maps the cigarette related items results associated with the UNEP-MARLIN list from the others; - Normalization of survey lengths to 100m & 1 survey / year: in some case, the survey length was not 100m, so in order to be able to compare the abundance of litter from different beaches a normalization is applied using this formula: Number of cigarette related items of the survey (normalized by 100 m) = Number of cigarette related items of the survey x (100 / survey length) Then, this normalized number of cigarette related items is summed to obtain the total normalized number of cigarette related items for each survey. Finally, the median abundance of cigarette related items for each beach and year is calculated from these normalized abundances of cigarette related items per survey.

    Percentiles 50, 75, 95 & 99 have been calculated taking into account cigarette related items from other sources data (UNEP-MARLIN protocol only) for all years.

    More information is available in the attached documents.

    Warning: the absence of data on the map doesn't necessarily mean that they don't exist, but that no information has been entered in the Marine Litter Database for this area.

  12. o

    Calcification Dissolution Potential Tool for Excel: Version 1

    • explore.openaire.eu
    Updated Sep 5, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Travis A Courtney; Andreas J Andersson (2022). Calcification Dissolution Potential Tool for Excel: Version 1 [Dataset]. http://doi.org/10.5281/zenodo.7051627
    Explore at:
    Dataset updated
    Sep 5, 2022
    Authors
    Travis A Courtney; Andreas J Andersson
    Description

    The following data entry sheets are designed to quantify salinity normalized seawater total alkalinity anomalies (∆nTA) from inputs of offshore and coral reef total alkalinity (TA) and salinity (S) data while taking into account the various sources of uncertainty associated with these data normalizations and calculations to estimate the CDP for each reef observation (for details see Courtney et al., 2021). Only cells blocked in white should be modified on the "Data Entry" sheet and all cells blocked in gray are locked to protect the formulas from being modfied. Data for at least one offshore TA and S sample and one coral reef TA and S sample must be entered to display the ∆nTA and CDP for the given reef system. The equations herein will average all offshore TA and S data to calculate the ∆nTA to leverage all possible data. Additionally, the spreadsheets allow for the reference S to be set to the mean offshore or mean coral reef S and are calculated for a range of freshwater TA endmembers, including the option for a user defined value. ∆nTA is calculated as per the following equations from Courtney et al (2021). The CDP summary page also provides a number of summary graphs to visualize (1) whether there are apparent relationships between coral reef TA and S, (2) how the ∆nTA of the inputted data compares to global coral reef ∆TA data from Cyronak et al. (2018), (3) how the ∆nTA data varies spatially across the reef locations, and (4) how well the ∆nTA data covers a complete diel cycle. For further details on the uncertainties associated with the salinity normalization of coral reef data and relevant equations, please see the following publication: Courtney TA, Cyronak T, Griffin AJ, Andersson AJ (2021) Implications of salinity normalization of seawater total alkalinity in coral reef metabolism studies. PLOS One 16(12): e0261210. https://doi.org/10.1371/journal.pone.0261210 Please cite as: Courtney TA & Andersson AJ (2022) Calcification Dissolution Potential Tool for Excel: Version 1. https://doi.org/10.5281/zenodo.7051628

  13. Productivity of U.S. Rangelands, Annual Data lbs/acre (Map Service)

    • catalog.data.gov
    • agdatacommons.nal.usda.gov
    • +5more
    Updated Apr 21, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Forest Service (2025). Productivity of U.S. Rangelands, Annual Data lbs/acre (Map Service) [Dataset]. https://catalog.data.gov/dataset/productivity-of-u-s-rangelands-annual-data-lbs-acre-map-service-68576
    Explore at:
    Dataset updated
    Apr 21, 2025
    Dataset provided by
    U.S. Department of Agriculture Forest Servicehttp://fs.fed.us/
    Area covered
    United States
    Description

    Production data were generated using the Normalized Difference Vegetation Index (NDVI) from the Thematic Mapper Suite from 1984 to 2021 at 250 m resolution. The NDVI is converted to production estimates using two regression formulas depending on the level of the NDVI; there is one equation for lower values (and thus lower production values) and one for higher values.This raster dataset yields estimates of annual production of rangeland vegetation and should be useful for understanding trends and variability in forage resources.The Rangeland Productivity data can be downloaded here:https://data.fs.usda.gov/geodata/rastergateway/rangelands/index.php

  14. f

    Data from: Demographic characteristics of the sample.

    • figshare.com
    • plos.figshare.com
    xls
    Updated Apr 29, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jinrong Li; Fang Li; Xiaomin Zhou (2025). Demographic characteristics of the sample. [Dataset]. http://doi.org/10.1371/journal.pone.0321999.t001
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Apr 29, 2025
    Dataset provided by
    PLOS ONE
    Authors
    Jinrong Li; Fang Li; Xiaomin Zhou
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The primary aim of this study is to explore the influence of social media on university students’ revisit intention in sports tourism, using Expectation-Confirmation Model and the Uses and Gratifications Theory. A structured questionnaire was distributed to a random sample of 435 students from three universities in Hubei Province to measure their self-reported responses across six constructs: perceived usefulness, information quality, perceived enjoyment, electronic word-of-mouth (eWOM), satisfaction, and revisit intention. Employing a hybrid approach of Structural Equation Modeling (SEM) and Artificial Neural Networks (ANN), the study explains the non-compensatory and non-linear relationships between predictive factors and university students’ revisit intention in sports tourism. The results indicate that information quality, perceived enjoyment, satisfaction, and eWOM are significant direct predictors of revisit intention in sports tourism. In contrast, the direct influence of perceived usefulness on revisit intention is insignificant. ANN analysis revealed the normalized importance ranking of the predictors as follows: eWOM, information quality, satisfaction, perceived enjoyment, and perceived usefulness. This study not only provides new insights into the existing literature on the impact of social media on students’ tourism behavior but also serves as a valuable reference for future research on tourism behavior.

  15. o

    Beach Litter - Median number of total abundance items normalized per 100m &...

    • nodc.ogs.it
    Updated 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    datacite (2021). Beach Litter - Median number of total abundance items normalized per 100m & to 1 survey - Other sources 2001/2020 v2021 [Dataset]. http://doi.org/10.13120/5615830e-8b8e-42e1-8050-69a6d5e3d0b5
    Explore at:
    Dataset updated
    2021
    Dataset provided by
    EMODnet Chemistry
    datacite
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Dataset funded by
    European Commission
    Description

    This visualization product displays the total abundance of marine macro-litter (> 2.5cm) per beach per year from non-MSFD monitoring surveys, research & cleaning operations.


    EMODnet Chemistry included the collection of marine litter in its 3rd phase. Since the beginning of 2018, data of beach litter have been gathered and processed in the EMODnet Chemistry Marine Litter Database (MLDB).
    The harmonization of all the data has been the most challenging task considering the heterogeneity of the data sources, sampling protocols and reference lists used on a European scale.


    Preliminary processing were necessary to harmonize all the data:
    - Exclusion of OSPAR 1000 protocol: in order to follow the approach of OSPAR that it is not including these data anymore in the monitoring;
    - Selection of surveys from non-MSFD monitoring, cleaning and research operations;
    - Exclusion of beaches without coordinates;
    - Some categories & some litter types like organic litter, small fragments (paraffin and wax; items > 2.5cm) and pollutants have been removed. The list of selected items is attached to this metadata. This list was created using EU Marine Beach Litter Baselines and EU Threshold Value for Macro Litter on Coastlines from JRC (these two documents are attached to this metadata).
    - Exclusion of surveys without associated length;
    - Normalization of survey lengths to 100m & 1 survey / year: in some case, the survey length was not 100m, so in order to be able to compare the abundance of litter from different beaches a normalization is applied using this formula:
    Number of items (normalized by 100 m) = Number of litter per items x (100 / survey length)
    Then, this normalized number of items is summed to obtain the total normalized number of litter for each survey. Finally, the median abundance for each beach and year is calculated from these normalized abundances per survey.

    Percentiles 50, 75, 95 & 99 have been calculated taking into account other sources data for all years.


    More information is available in the attached documents.


    Warning: the absence of data on the map doesn't necessarily mean that they don't exist, but that no information has been entered in the Marine Litter Database for this area.

  16. Data from: Eigenvalue Methods in Unimolecular Rate Calculations

    • acs.figshare.com
    txt
    Updated Jun 7, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Huw O. Pritchard (2023). Eigenvalue Methods in Unimolecular Rate Calculations [Dataset]. http://doi.org/10.1021/jp0359541.s001
    Explore at:
    txtAvailable download formats
    Dataset updated
    Jun 7, 2023
    Dataset provided by
    ACS Publications
    Authors
    Huw O. Pritchard
    License

    Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
    License information was derived automatically

    Description

    When the calculation of a unimolecular reaction rate constant is cast in the form of a master equation eigenvalue problem, the magnitude of that rate is often smaller than the rounding error of the trace of the corresponding reaction matrix. Two available methods to overcome this cancellation problem are examined, and it is shown that one of them, the Nesbet procedure, can fail if the master equation relaxation matrix is improperly normalized, or when some time-saving computational approximations are used.

  17. M

    Beach Litter - Composition of litter according to material categories in...

    • marine-analyst.eu
    • rpubs.com
    html
    Updated May 8, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    EMODnet Chemistry (2022). Beach Litter - Composition of litter according to material categories in percent - Official monitoring [Dataset]. http://marine-analyst.eu/dev.py?N=simple&O=742&maxlat=44.9&maxlon=11.1&minlon=8.1&minlat=42.4
    Explore at:
    htmlAvailable download formats
    Dataset updated
    May 8, 2022
    Dataset provided by
    http://www.marine-analyst.eu
    Authors
    EMODnet Chemistry
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Earth
    Description

    This visualization product displays marine litter material categories percentage per year per beach during monitoring surveys. EMODnet Chemistry included the gathering of marine litter in its 3rd phase. Since the beginning of 2018, data of beach litter have been gathered and processed in the EMODnet Chemistry Marine Litter Database (MLDB). The harmonization of all the data has been the most challenging task considering the heterogeneity of the data sources, sampling protocols and reference lists used on a European scale. Preliminary processing were necessary to harmonize all the data : - Exclusion of OSPAR 1000 protocol, - Separation of monitoring surveys from research & cleaning operations - Exclusion of beaches with no coordinates - Normalization of survey lengths and survey numbers per year - Some categories & some litter types have been removed To calculate percentages, formula applied is : Material (%) = (total number of items (normalized at 100 m) of each material category)/(total number of items (normalized at 100 m) of all categories)*100 The material categories differ between reference lists (OSPAR, ITA, TSG_ML, UNEP, UNEP_MARLIN). In order to apply a common procedure for all the surveys, the material categories have been harmonized. Eleven material categories have taken into account for this product and information on data processing and calculation are detailed in the document attached p14.

  18. i

    ARPA Emilia-Romagna, Struttura Oceanografica Daphne

    • sextant.ifremer.fr
    • pigma.org
    • +1more
    doi, www:download +1
    Updated Jun 12, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ifremer, VIGIES (Information Valuation Service for Integrated Management and Monitoring) (2023). ARPA Emilia-Romagna, Struttura Oceanografica Daphne [Dataset]. https://sextant.ifremer.fr/geonetwork/srv/api/records/43198c09-1aff-4ef8-9fe4-d5d3248f2cd9
    Explore at:
    www:link, doi, www:downloadAvailable download formats
    Dataset updated
    Jun 12, 2023
    Dataset provided by
    National Institute of Oceanography and Applied Geophysics - OGS, Division of Oceanography
    EMODnet Chemistry
    Ifremer, VIGIES (Information Valuation Service for Integrated Management and Monitoring)
    IFREMER, SISMER, Scientific Information Systems for the SEA
    Time period covered
    Jan 1, 2001 - Oct 31, 2022
    Area covered
    Description

    This visualization product displays the cigarette related items abundance of marine macro-litter (> 2.5cm) per beach per year from Marine Strategy Framework Directive (MSFD) monitoring surveys without UNEP-MARLIN data.

    EMODnet Chemistry included the collection of marine litter in its 3rd phase. Since the beginning of 2018, data of beach litter have been gathered and processed in the EMODnet Chemistry Marine Litter Database (MLDB). The harmonization of all the data has been the most challenging task considering the heterogeneity of the data sources, sampling protocols and reference lists used on a European scale.

    Preliminary processing were necessary to harmonize all the data: - Exclusion of OSPAR 1000 protocol: in order to follow the approach of OSPAR that it is not including these data anymore in the monitoring; - Selection of MSFD surveys only (exclusion of other monitoring, cleaning and research operations); - Exclusion of beaches without coordinates; - Selection of cigarette related items only. The list of selected items is attached to this metadata. This list was created using EU Marine Beach Litter Baselines and EU Threshold Value for Macro Litter on Coastlines from JRC (these two documents are attached to this metadata); - Exclusion of surveys referring to the UNEP-MARLIN list: the UNEP-MARLIN protocol differs from the other types of monitoring in that cigarette butts are surveyed in a 10m square. To avoid comparing abundances from very different protocols, the choice has been made to distinguish in two maps the cigarette related items results associated with the UNEP-MARLIN list from the others; - Normalization of survey lengths to 100m & 1 survey / year: in some case, the survey length was not exactly 100m, so in order to be able to compare the abundance of litter from different beaches a normalization is applied using this formula: Number of cigarette related items of the survey (normalized by 100 m) = Number of cigarette related items of the survey x (100 / survey length) Then, this normalized number of cigarette related items is summed to obtain the total normalized number of cigarette related items for each survey. Finally, the median abundance of cigarette related items for each beach and year is calculated from these normalized abundances of cigarette related items per survey. Sometimes the survey length was null or equal to 0. Assuming that the MSFD protocol has been applied, the length has been set at 100m in these cases.

    Percentiles 50, 75, 95 & 99 have been calculated taking into account cigarette related items from MSFD monitoring data (excluding UNEP-MARLIN protocol) for all years.

    More information is available in the attached documents.

    Warning: the absence of data on the map doesn't necessarily mean that they don't exist, but that no information has been entered in the Marine Litter Database for this area.

  19. p

    ARPA Emilia-Romagna, Struttura Oceanografica Daphne

    • pigma.org
    • sextant.ifremer.fr
    • +1more
    doi, www:download +1
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    IFREMER, SISMER, Scientific Information Systems for the SEA, ARPA Emilia-Romagna, Struttura Oceanografica Daphne [Dataset]. https://www.pigma.org/geonetwork/srv/api/records/260775fe-9d1b-492a-982f-e9bb7467a89b
    Explore at:
    www:download, www:link, doiAvailable download formats
    Dataset provided by
    National Institute of Oceanography and Applied Geophysics - OGS, Division of Oceanography
    EMODnet Chemistry
    Ifremer, VIGIES (Information Valuation Service for Integrated Management and Monitoring)
    IFREMER, SISMER, Scientific Information Systems for the SEA
    Time period covered
    Jan 1, 2001 - Nov 17, 2022
    Area covered
    Description

    This visualization product displays marine macro-litter (> 2.5cm) material categories percentage per beach per year from Marine Strategy Framework Directive (MSFD) monitoring surveys.

    EMODnet Chemistry included the collection of marine litter in its 3rd phase. Since the beginning of 2018, data of beach litter have been gathered and processed in the EMODnet Chemistry Marine Litter Database (MLDB). The harmonization of all the data has been the most challenging task considering the heterogeneity of the data sources, sampling protocols and reference lists used on a European scale.

    Preliminary processing were necessary to harmonize all the data: - Exclusion of OSPAR 1000 protocol: in order to follow the approach of OSPAR that it is not including these data anymore in the monitoring; - Selection of MSFD surveys only (exclusion of other monitoring, cleaning and research operations); - Exclusion of beaches without coordinates; - Some litter types like organic litter, small fragments (paraffin and wax; items > 2.5cm) and pollutants have been removed. The list of selected items is attached to this metadata. This list was created using EU Marine Beach Litter Baselines and EU Threshold Value for Macro Litter on Coastlines from JRC (these two documents are attached to this metadata); - Exclusion of the "feaces" category: it concerns more exactly the items of dog excrements in bags of the OSPAR (item code: 121) and ITA (item code: IT59) reference lists; - Normalization of survey lengths to 100m & 1 survey / year: in some case, the survey length was not exactly 100m, so in order to be able to compare the abundance of litter from different beaches a normalization is applied using this formula: Number of items (normalized by 100 m) = Number of litter per items x (100 / survey length) Then, this normalized number of items is summed to obtain the total normalized number of litter for each survey. Sometimes the survey length was null or equal to 0. Assuming that the MSFD protocol has been applied, the length has been set at 100m in these cases.

    To calculate percentages for each material category, formula applied is: Material (%) = (∑number of items (normalized at 100 m) of each material category)*100 / (∑number of items (normalized at 100 m) of all categories)

    The material categories differ between reference lists (OSPAR, ITA, TSG_ML, UNEP, UNEP_MARLIN). In order to apply a common procedure for all the surveys, the material categories have been harmonized.

    More information is available in the attached documents.

    Warning: the absence of data on the map doesn't necessarily mean that they don't exist, but that no information has been entered in the Marine Litter Database for this area.

  20. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Olivier Faivre; Mikko Juusola (2023). Q10 (17–27°C) for normalized data. [Dataset]. http://doi.org/10.1371/journal.pone.0002173.t001

Q10 (17–27°C) for normalized data.

Related Article
Explore at:
xlsAvailable download formats
Dataset updated
Jun 3, 2023
Dataset provided by
PLOS ONE
Authors
Olivier Faivre; Mikko Juusola
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

Shown are mean±SD. Values were extrapolated from a smaller temperature range, using linear or exponential fits (details in Materials and Methods and Table S1). 1: As defined by the onset time of the impulse response, K1. 2: Characteristic time-constant defined as: τ = (f3dB)−1. 3: Information transfer rate (Shannon's formula). 4: Information transfer rate (triple extrapolation method).

Search
Clear search
Close search
Google apps
Main menu