Facebook
TwitterThis dataset was created by Engr Yasir Hussain
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Normalization is an essential step with considerable impact on high-throughput RNA sequencing (RNA-seq) data analysis. Although there are numerous methods for read count normalization, it remains a challenge to choose an optimal method due to multiple factors contributing to read count variability that affects the overall sensitivity and specificity. In order to properly determine the most appropriate normalization methods, it is critical to compare the performance and shortcomings of a representative set of normalization routines based on different dataset characteristics. Therefore, we set out to evaluate the performance of the commonly used methods (DESeq, TMM-edgeR, FPKM-CuffDiff, TC, Med UQ and FQ) and two new methods we propose: Med-pgQ2 and UQ-pgQ2 (per-gene normalization after per-sample median or upper-quartile global scaling). Our per-gene normalization approach allows for comparisons between conditions based on similar count levels. Using the benchmark Microarray Quality Control Project (MAQC) and simulated datasets, we performed differential gene expression analysis to evaluate these methods. When evaluating MAQC2 with two replicates, we observed that Med-pgQ2 and UQ-pgQ2 achieved a slightly higher area under the Receiver Operating Characteristic Curve (AUC), a specificity rate > 85%, the detection power > 92% and an actual false discovery rate (FDR) under 0.06 given the nominal FDR (≤0.05). Although the top commonly used methods (DESeq and TMM-edgeR) yield a higher power (>93%) for MAQC2 data, they trade off with a reduced specificity (
Facebook
Twitterhis dataset comprises an array of Mel Frequency Cepstral Coefficients (MFCCs) that have undergone feature scaling, representing a variety of human actions. Feature scaling, or data normalization, is a preprocessing technique used to standardize the range of features in the dataset. For MFCCs, this process helps ensure all coefficients contribute equally to the learning process, preventing features with larger scales from overshadowing those with smaller scales.
In this dataset, the audio signals correspond to diverse human actions such as walking, running, jumping, and dancing. The MFCCs are calculated via a series of signal processing stages, which capture key characteristics of the audio signal in a manner that closely aligns with human auditory perception. The coefficients are then standardized or scaled using methods such as MinMax Scaling or Standardization, thereby normalizing their range. Each normalized MFCC vector corresponds to a segment of the audio signal.
The dataset is meticulously designed for tasks including human action recognition, classification, segmentation, and detection based on auditory cues. It serves as an essential resource for training and evaluating machine learning models focused on interpreting human actions from audio signals. This dataset proves particularly beneficial for researchers and practitioners in fields such as signal processing, computer vision, and machine learning, who aim to craft algorithms for human action analysis leveraging audio signals.
Facebook
TwitterDataset Title: Data and Code for: "Universal Adaptive Normalization Scale (AMIS): Integration of Heterogeneous Metrics into a Unified System" Description: This dataset contains source data and processing results for validating the Adaptive Multi-Interval Scale (AMIS) normalization method. Includes educational performance data (student grades), economic statistics (World Bank GDP), and Python implementation of the AMIS algorithm with graphical interface. Contents: - Source data: educational grades and GDP statistics - AMIS normalization results (3, 5, 9, 17-point models) - Comparative analysis with linear normalization - Ready-to-use Python code for data processing Applications: - Educational data normalization and analysis - Economic indicators comparison - Development of unified metric systems - Methodology research in data scaling Technical info: Python code with pandas, numpy, scipy, matplotlib dependencies. Data in Excel format.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Despite the popularity of k-means clustering, feature scaling before applying it can be an essential yet often neglected step. In this study, feature scaling via five methods: Z-score, Min-Max normalization, Percentile transformation, Maximum absolute scaling, or RobustScaler beforehand was compared with using the raw (i.e., non-scaled) data to analyze datasets having features with different or the same units via k-means clustering. The results of an experimental study show that, for features with different units, scaling them before k-means clustering provided better accuracy, precision, recall, and F-score values than when using the raw data. Meanwhile, when features in the dataset had the same unit, scaling them beforehand provided similar results to using the raw data. Thus, scaling the features beforehand is a very important step for datasets with different units, which improves the clustering results and accuracy. Of the five feature-scaling methods used in the dataset with different units, Z-score standardization and Percentile transformation provided similar performances that were superior to the other or using the raw data. While Maximum absolute scaling, slightly more performances than the other scaling methods and raw data when the dataset contains features with the same unit, the improvement was not significant.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Despite the popularity of k-means clustering, feature scaling before applying it can be an essential yet often neglected step. In this study, feature scaling via five methods: Z-score, Min-Max normalization, Percentile transformation, Maximum absolute scaling, or RobustScaler beforehand was compared with using the raw (i.e., non-scaled) data to analyze datasets having features with different or the same units via k-means clustering. The results of an experimental study show that, for features with different units, scaling them before k-means clustering provided better accuracy, precision, recall, and F-score values than when using the raw data. Meanwhile, when features in the dataset had the same unit, scaling them beforehand provided similar results to using the raw data. Thus, scaling the features beforehand is a very important step for datasets with different units, which improves the clustering results and accuracy. Of the five feature-scaling methods used in the dataset with different units, Z-score standardization and Percentile transformation provided similar performances that were superior to the other or using the raw data. While Maximum absolute scaling, slightly more performances than the other scaling methods and raw data when the dataset contains features with the same unit, the improvement was not significant.
Facebook
TwitterTable S1 and Figures S1–S6. Table S1. List of primers. Forward and reverse primers used for qPCR. Figure S1. Changes in total and polyA+ RNA during development. a) Amount of total RNA per embryo at different developmental stages. b) Amount of polyA+ RNA per 100 embryos at different developmental stages. Vertical bars represent standard errors. Figure S2. The TMM scaling factor. a) The TMM scaling factor estimated using dataset 1 and 2. We observe very similar values. b) The TMM scaling factor obtained using the replicates in dataset 2. The TMM values are very reproducible. c) The TMM scale factor when RNA-seq data based on total RNA was used. Figure S3. Comparison of scales. We either square-root transformed or used that scales directly and compared the normalized fold-changes to RT-qPCR results. a) Transcripts with dynamic change pre-ZGA. b) Transcripts with decreased abundance post-ZGA. c) Transcripts with increased expression post-ZGA. Vertical bars represent standard deviations. Figure S4. Comparison of RT-qPCR results depending on RNA template (total or poly+ RNA) and primers (random or oligo(dT) primers) for setd3 (a), gtf2e2 (b) and yy1a (c). The increase pre-ZGA is dependent on template (setd3 and gtf2e2) and not primer type. Figure S5. Efficiency calibrated fold-changes for a subset of transcripts. Vertical bars represent standard deviations. Figure S6. Comparison normalization methods using dataset 2 for transcripts with decreased expression post-ZGA (a) and increased expression post-ZGA (b). Vertical bars represent standard deviations. (PDF)
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
1000 simulated data sets stored in a list of R dataframes used in support of Reisetter et al. (submitted) 'Mixture model normalization for non-targeted gas chromatography / mass spectrometry metabolomics data'. These are results after normalization using median scaling as described in Reisetter et al.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Two large-scale, automatically-created datasets of medical concept mentions, linked to the Unified Medical Language System (UMLS).
WikiMed
Derived from Wikipedia data. Mappings of Wikipedia page identifiers to UMLS Concept Unique Identifiers (CUIs) was extracted by crosswalking Wikipedia, Wikidata, Freebase, and the NCBI Taxonomy to reach existing mappings to UMLS CUIs. This created a 1:1 mapping of approximately 60,500 Wikipedia pages to UMLS CUIs. Links to these pages were then extracted as mentions of the corresponding UMLS CUIs.
WikiMed contains:
Manual evaluation of 100 random samples of WikiMed found 91% accuracy in the automatic annotations at the level of UMLS CUIs, and 95% accuracy in terms of semantic type.
PubMedDS
Derived from biomedical literature abstracts from PubMed. Mentions were automatically identified using distant supervision based on Medical Subject Heading (MeSH) headers assigned to the papers in PubMed, and recognition of medical concept mentions using the high-performance scispaCy model. MeSH header codes are included as well as their mappings to UMLS CUIs.
PubMedDS contains:
Comparison with existing manually-annotated datasets (NCBI Disease Corpus, BioCDR, and MedMentions) found 75-90% precision in automatic annotations. Please note this dataset is not a comprehensive annotation of medical concept mentions in these abstracts (only mentions located through distant supervision from MeSH headers were included), but is intended as data for concept normalization research.
Due to its size, PubMedDS is distributed as 30 individual files of approximately 1.5 million mentions each.
Data format
Both datasets use JSON format with one document per line. Each document has the following structure:
{
"_id": "A unique identifier of each document",
"text": "Contains text over which mentions are ",
"title": "Title of Wikipedia/PubMed Article",
"split": "[Not in PubMedDS] Dataset split:
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset contains normalized object-oriented software metrics commonly used for detecting the Large Class code smell in software engineering. Each row represents a class/module from a real software project, along with a normalized set of structural and Halstead metrics.
The dataset is pre-processed and scaled (0–1 range), making it ready for machine learning experiments such as:
Code smell prediction Software maintenance analysis Software quality assessment Transformer-based models (RABERT, CodeBERT, TabTransformer) Classical ML (Logistic Regression, Random Forest, SVM) The target column LargeClass is binary (1 = presence of smell, 0 = no smell). This dataset is suitable for academic research, PhD theses, software analytics, and code smell detection benchmarks. File included:
lcd.csv — normalized feature dataset with 20 metrics and one target.
Facebook
TwitterThis dataset provides processed and normalized/standardized indices for the management tool group focused on 'Mission and Vision Statements', including related concepts like Purpose Statements. Derived from five distinct raw data sources, these indices are specifically designed for comparative longitudinal analysis, enabling the examination of trends and relationships across different empirical domains (web search, literature, academic publishing, and executive adoption). The data presented here represent transformed versions of the original source data, aimed at achieving metric comparability. Users requiring the unprocessed source data should consult the corresponding Mission/Vision dataset in the Management Tool Source Data (Raw Extracts) Dataverse. Data Files and Processing Methodologies: Google Trends File (Prefix: GT_): Normalized Relative Search Interest (RSI) Input Data: Native monthly RSI values from Google Trends (Jan 2004 - Jan 2025) for the query "mission statement" + "vision statement" + "mission and vision corporate". Processing: None. Utilizes the original base-100 normalized Google Trends index. Output Metric: Monthly Normalized RSI (Base 100). Frequency: Monthly. Google Books Ngram Viewer File (Prefix: GB_): Normalized Relative Frequency Input Data: Annual relative frequency values from Google Books Ngram Viewer (1950-2022, English corpus, no smoothing) for the query Mission Statements + Vision Statements + Purpose Statements + Mission and Vision. Processing: Annual relative frequency series normalized (peak year = 100). Output Metric: Annual Normalized Relative Frequency Index (Base 100). Frequency: Annual. Crossref.org File (Prefix: CR_): Normalized Relative Publication Share Index Input Data: Absolute monthly publication counts matching Mission/Vision-related keywords [("mission statement" OR ...) AND (...) - see raw data for full query] in titles/abstracts (1950-2025), alongside total monthly Crossref publications. Deduplicated via DOIs. Processing: Monthly relative share calculated (Mission/Vision Count / Total Count). Monthly relative share series normalized (peak month's share = 100). Output Metric: Monthly Normalized Relative Publication Share Index (Base 100). Frequency: Monthly. Bain & Co. Survey - Usability File (Prefix: BU_): Normalized Usability Index Input Data: Original usability percentages (%) from Bain surveys for specific years: Mission/Vision (1993); Mission Statements (1996); Mission and Vision Statements (1999-2017); Purpose, Mission, and Vision Statements (2022). Processing: Semantic Grouping: Data points across the different naming conventions were treated as a single conceptual series. Normalization: Combined series normalized relative to its historical peak (Max % = 100). Output Metric: Biennial Estimated Normalized Usability Index (Base 100 relative to historical peak). Frequency: Biennial (Approx.). Bain & Co. Survey - Satisfaction File (Prefix: BS_): Standardized Satisfaction Index Input Data: Original average satisfaction scores (1-5 scale) from Bain surveys for specific years (same names/years as Usability). Processing: Semantic Grouping: Data points treated as a single conceptual series. Standardization (Z-scores): Using Z = (X - 3.0) / 0.891609. Index Scale Transformation: Index = 50 + (Z * 22). Output Metric: Biennial Standardized Satisfaction Index (Center=50, Range?[1,100]). Frequency: Biennial (Approx.). File Naming Convention: Files generally follow the pattern: PREFIX_Tool_Processed.csv or similar, where the PREFIX indicates the data source (GT_, GB_, CR_, BU_, BS_). Consult the parent Dataverse description (Management Tool Comparative Indices) for general context and the methodological disclaimer. For original extraction details (specific keywords, URLs, etc.), refer to the corresponding Mission/Vision dataset in the Raw Extracts Dataverse. Comprehensive project documentation provides full details on all processing steps.
Facebook
TwitterBackground Affymetrix oligonucleotide arrays simultaneously measure the abundances of thousands of mRNAs in biological samples. Comparability of array results is necessary for the creation of large-scale gene expression databases. The standard strategy for normalizing oligonucleotide array readouts has practical drawbacks. We describe alternative normalization procedures for oligonucleotide arrays based on a common pool of known biotin-labeled cRNAs spiked into each hybridization. Results We first explore the conditions for validity of the 'constant mean assumption', the key assumption underlying current normalization methods. We introduce 'frequency normalization', a 'spike-in'-based normalization method which estimates array sensitivity, reduces background noise and allows comparison between array designs. This approach does not rely on the constant mean assumption and so can be effective in conditions where standard procedures fail. We also define 'scaled frequency', a hybrid normalization method relying on both spiked transcripts and the constant mean assumption while maintaining all other advantages of frequency normalization. We compare these two procedures to a standard global normalization method using experimental data. We also use simulated data to estimate accuracy and investigate the effects of noise. We find that scaled frequency is as reproducible and accurate as global normalization while offering several practical advantages. Conclusions Scaled frequency quantitation is a convenient, reproducible technique that performs as well as global normalization on serial experiments with the same array design, while offering several additional features. Specifically, the scaled-frequency method enables the comparison of expression measurements across different array designs, yields estimates of absolute message abundance in cRNA and determines the sensitivity of individual arrays.
Facebook
TwitterSelection of PLS-DA models according to various normalization and scaling methods for the differentiation of soybean samples.
Facebook
TwitterI have diligently undertaken preprocessing tasks on the dataset, meticulously cleansing and refining it to create an immaculate and polished version. Through a sequence of meticulous steps, I addressed issues such as missing values, outliers, and inconsistent formatting, ensuring that the data is now harmonized and ready for analysis. Utilizing techniques such as data imputation, normalization, and feature scaling, I have achieved a consistent and coherent structure across the dataset. By conducting these thorough preprocessing efforts, I have paved the way for more accurate and meaningful insights to be extracted during subsequent analytical endeavors.
Facebook
TwitterThis dataset provides processed and normalized/standardized indices for the management tool 'Business Process Reengineering' (BPR). Derived from five distinct raw data sources, these indices are specifically designed for comparative longitudinal analysis, enabling the examination of trends and relationships across different empirical domains (web search, literature, academic publishing, and executive adoption). The data presented here represent transformed versions of the original source data, aimed at achieving metric comparability. Users requiring the unprocessed source data should consult the corresponding BPR dataset in the Management Tool Source Data (Raw Extracts) Dataverse. Data Files and Processing Methodologies: Google Trends File (Prefix: GT_): Normalized Relative Search Interest (RSI) Input Data: Native monthly RSI values from Google Trends (Jan 2004 - Jan 2025) for the query "business process reengineering" + "process reengineering" + "reengineering management". Processing: None. The dataset utilizes the original Google Trends index, which is base-100 normalized against the peak search interest for the specified terms and period. Output Metric: Monthly Normalized RSI (Base 100). Frequency: Monthly. Google Books Ngram Viewer File (Prefix: GB_): Normalized Relative Frequency Input Data: Annual relative frequency values from Google Books Ngram Viewer (1950-2022, English corpus, no smoothing) for the query Reengineering + Business Process Reengineering + Process Reengineering. Processing: The annual relative frequency series was normalized by setting the year with the maximum value to 100 and scaling all other values (years) proportionally. Output Metric: Annual Normalized Relative Frequency Index (Base 100). Frequency: Annual. Crossref.org File (Prefix: CR_): Normalized Relative Publication Share Index Input Data: Absolute monthly publication counts matching BPR-related keywords [("business process reengineering" OR ...) AND ("management" OR ...) - see raw data for full query] in titles/abstracts (1950-2025), alongside total monthly publication counts in Crossref. Data deduplicated via DOIs. Processing: For each month, the relative share of BPR-related publications (BPR Count / Total Crossref Count for that month) was calculated. This monthly relative share series was then normalized by setting the month with the maximum relative share to 100 and scaling all other months proportionally. Output Metric: Monthly Normalized Relative Publication Share Index (Base 100). Frequency: Monthly. Bain & Co. Survey - Usability File (Prefix: BU_): Normalized Usability Index Input Data: Original usability percentages (%) from Bain surveys for specific years: Reengineering (1993, 1996, 2000, 2002); Business Process Reengineering (2004, 2006, 2008, 2010, 2012, 2014, 2017, 2022). Processing: Semantic Grouping: Data points for "Reengineering" and "Business Process Reengineering" were treated as a single conceptual series for BPR. Normalization: The combined series of original usability percentages was normalized relative to its own highest observed historical value across all included years (Max % = 100). Output Metric: Biennial Estimated Normalized Usability Index (Base 100 relative to historical peak). Frequency: Biennial (Approx.). Bain & Co. Survey - Satisfaction File (Prefix: BS_): Standardized Satisfaction Index Input Data: Original average satisfaction scores (1-5 scale) from Bain surveys for specific years: Reengineering (1993, 1996, 2000, 2002); Business Process Reengineering (2004, 2006, 2008, 2010, 2012, 2014, 2017, 2022). Processing: Semantic Grouping: Data points for "Reengineering" and "Business Process Reengineering" were treated as a single conceptual series for BPR. Standardization (Z-scores): Original scores (X) were standardized using Z = (X - ?) / ?, with a theoretically defined neutral mean ?=3.0 and an estimated pooled population standard deviation ??0.891609 (calculated across all tools/years relative to ?=3.0). Index Scale Transformation: Z-scores were transformed to an intuitive index via: Index = 50 + (Z * 22). This scale centers theoretical neutrality (original score: 3.0) at 50 and maps the approximate range [1, 5] to [?1, ?100]. Output Metric: Biennial Standardized Satisfaction Index (Center=50, Range?[1,100]). Frequency: Biennial (Approx.). File Naming Convention: Files generally follow the pattern: PREFIX_Tool_Processed.csv or similar, where the PREFIX indicates the data source (GT_, GB_, CR_, BU_, BS_). Consult the parent Dataverse description (Management Tool Comparative Indices) for general context and the methodological disclaimer. For original extraction details (specific keywords, URLs, etc.), refer to the corresponding BPR dataset in the Raw Extracts Dataverse. Comprehensive project documentation provides full details on all processing steps.
Facebook
TwitterApache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
The Handwritten Digits Pixel Dataset is a collection of numerical data representing handwritten digits from 0 to 9. Unlike image datasets that store actual image files, this dataset contains pixel intensity values arranged in a structured tabular format, making it ideal for machine learning and data analysis applications.
The dataset contains handwritten digit samples with the following distribution:
(Note: Actual distribution counts would be calculated from your specific dataset)
import pandas as pd
# Load the dataset
df = pd.read_csv('/kaggle/input/handwritten_digits_pixel_dataset/mnist.csv')
# Separate features and labels
X = df.drop('label', axis=1)
y = df['label']
# Normalize pixel values
X_normalized = X / 255.0
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
https://www.kaggle.com/datasets/tunguz/big-five-personality-test
https://colab.research.google.com/drive/1ZsS76ZsRjcL1tg_YvqEB_WlzvlmsiinP?usp=sharing
- Lack of Labels: The original dataset did not categorize the responses into specific personality traits, making it impossible to directly train a supervised machine learning model. - Complexity in Interpretation: Although raw scores range from 1 to 5, they were not directly interpretable as personality traits since different numbers of positively and negatively keyed questions meant the maximum score for each trait was different.
To overcome these challenges, I undertook the following process to convert this un-labelled data into a labelled format: - Scoring Mechanism: I calculated scores for each of the five personality traits based on the respondent's answers to relevant questions. For each trait, a total score was computed by summing the individual question scores, taking into account whether the question was positively or negatively keyed. - Normalization and Scaling: To ensure consistency and comparability across traits, I applied a Min-Max Scaler to normalize the scores to a range of 0 to 1. This step was crucial for creating uniform labels that could be used effectively in machine learning models. - Label Assignment: Based on the scaled scores, I assigned labels to each respondent, categorizing them from the highest to lowest for each personality trait.
The labelled data can played a pivotal role in training various machine learning algorithms to predict personality traits based on new user responses. By transforming the dataset, the user can : Develop a Supervised Learning Model: The labelled data enabled user to use classification algorithms, such as Logistic Regression and Support Vector Machines, to predict personality traits with high accuracy. Clustering for Insights: The user can also utilize clustering algorithms on the scaled data to uncover patterns and group users with similar personality profiles, enhancing the interpretability of the model outputs.
Facebook
TwitterThis dataset provides preprocessed skeleton sequences from the NTU RGB+D 60 benchmark, widely used for skeleton-based human action recognition.
The preprocessing module standardizes the raw NTU skeleton data to make it directly usable for training deep learning models.
Each skeleton sequence was processed by:
Two .npz files are provided, following the standard evaluation protocols:
NTU60_CS.npz → Cross-Subject splitNTU60_CV.npz → Cross-View splitEach file contains:
x_train → Training data, shape (N_train, 300, 150)y_train → Training labels, shape (N_train, 60) (one-hot)x_test → Testing data, shape (N_test, 300, 150)y_test → Testing labels, shape (N_test, 60) (one-hot)If a sequence has only 1 person, the second person’s features are zero-filled.
(0,0,0)These .npz files can be directly loaded in PyTorch or NumPy-based pipelines.
They are fully compatible with graph convolutional networks (GCNs), transformers, and other deep learning models for skeleton-based action recognition.
Example:
import numpy as np
data = np.load("NTU60_CS.npz")
x_train, y_train = data["x_train"], data["y_train"]
print(x_train.shape) # (N_train, 300, 150)
print(y_train.shape) # (N_train, 60)
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Normalization
# Generate a resting state (rs) timeseries (ts)
# Install / load package to make fake fMRI ts
# install.packages("neuRosim")
library(neuRosim)
# Generate a ts
ts.rs <- simTSrestingstate(nscan=2000, TR=1, SNR=1)
# 3dDetrend -normalize
# R command version for 3dDetrend -normalize -polort 0 which normalizes by making "the sum-of-squares equal to 1"
# Do for the full timeseries
ts.normalised.long <- (ts.rs-mean(ts.rs))/sqrt(sum((ts.rs-mean(ts.rs))^2));
# Do this again for a shorter version of the same timeseries
ts.shorter.length <- length(ts.normalised.long)/4
ts.normalised.short <- (ts.rs[1:ts.shorter.length]- mean(ts.rs[1:ts.shorter.length]))/sqrt(sum((ts.rs[1:ts.shorter.length]- mean(ts.rs[1:ts.shorter.length]))^2));
# By looking at the summaries, it can be seen that the median values become larger
summary(ts.normalised.long)
summary(ts.normalised.short)
# Plot results for the long and short ts
# Truncate the longer ts for plotting only
ts.normalised.long.made.shorter <- ts.normalised.long[1:ts.shorter.length]
# Give the plot a title
title <- "3dDetrend -normalize for long (blue) and short (red) timeseries";
plot(x=0, y=0, main=title, xlab="", ylab="", xaxs='i', xlim=c(1,length(ts.normalised.short)), ylim=c(min(ts.normalised.short),max(ts.normalised.short)));
# Add zero line
lines(x=c(-1,ts.shorter.length), y=rep(0,2), col='grey');
# 3dDetrend -normalize -polort 0 for long timeseries
lines(ts.normalised.long.made.shorter, col='blue');
# 3dDetrend -normalize -polort 0 for short timeseries
lines(ts.normalised.short, col='red');
Standardization/modernization
New afni_proc.py command line
afni_proc.py \
-subj_id "$sub_id_name_1" \
-blocks despike tshift align tlrc volreg mask blur scale regress \
-radial_correlate_blocks tcat volreg \
-copy_anat anatomical_warped/anatSS.1.nii.gz \
-anat_has_skull no \
-anat_follower anat_w_skull anat anatomical_warped/anatU.1.nii.gz \
-anat_follower_ROI aaseg anat freesurfer/SUMA/aparc.a2009s+aseg.nii.gz \
-anat_follower_ROI aeseg epi freesurfer/SUMA/aparc.a2009s+aseg.nii.gz \
-anat_follower_ROI fsvent epi freesurfer/SUMA/fs_ap_latvent.nii.gz \
-anat_follower_ROI fswm epi freesurfer/SUMA/fs_ap_wm.nii.gz \
-anat_follower_ROI fsgm epi freesurfer/SUMA/fs_ap_gm.nii.gz \
-anat_follower_erode fsvent fswm \
-dsets media_?.nii.gz \
-tcat_remove_first_trs 8 \
-tshift_opts_ts -tpattern alt+z2 \
-align_opts_aea -cost lpc+ZZ -giant_move -check_flip \
-tlrc_base "$basedset" \
-tlrc_NL_warp \
-tlrc_NL_warped_dsets \
anatomical_warped/anatQQ.1.nii.gz \
anatomical_warped/anatQQ.1.aff12.1D \
anatomical_warped/anatQQ.1_WARP.nii.gz \
-volreg_align_to MIN_OUTLIER \
-volreg_post_vr_allin yes \
-volreg_pvra_base_index MIN_OUTLIER \
-volreg_align_e2a \
-volreg_tlrc_warp \
-mask_opts_automask -clfrac 0.10 \
-mask_epi_anat yes \
-blur_to_fwhm -blur_size $blur \
-regress_motion_per_run \
-regress_ROI_PC fsvent 3 \
-regress_ROI_PC_per_run fsvent \
-regress_make_corr_vols aeseg fsvent \
-regress_anaticor_fast \
-regress_anaticor_label fswm \
-regress_censor_motion 0.3 \
-regress_censor_outliers 0.1 \
-regress_apply_mot_types demean deriv \
-regress_est_blur_epits \
-regress_est_blur_errts \
-regress_run_clustsim no \
-regress_polort 2 \
-regress_bandpass 0.01 1 \
-html_review_style pythonic
We used similar command lines to generate ‘blurred and not censored’ and the ‘not blurred and not censored’ timeseries files (described more fully below). We will provide the code used to make all derivative files available on our github site (https://github.com/lab-lab/nndb).We made one choice above that is different enough from our original pipeline that it is worth mentioning here. Specifically, we have quite long runs, with the average being ~40 minutes but this number can be variable (thus leading to the above issue with 3dDetrend’s -normalise). A discussion on the AFNI message board with one of our team (starting here, https://afni.nimh.nih.gov/afni/community/board/read.php?1,165243,165256#msg-165256), led to the suggestion that '-regress_polort 2' with '-regress_bandpass 0.01 1' be used for long runs. We had previously used only a variable polort with the suggested 1 + int(D/150) approach. Our new polort 2 + bandpass approach has the added benefit of working well with afni_proc.py.
Which timeseries file you use is up to you but I have been encouraged by Rick and Paul to include a sort of PSA about this. In Paul’s own words: * Blurred data should not be used for ROI-based analyses (and potentially not for ICA? I am not certain about standard practice). * Unblurred data for ISC might be pretty noisy for voxelwise analyses, since blurring should effectively boost the SNR of active regions (and even good alignment won't be perfect everywhere). * For uncensored data, one should be concerned about motion effects being left in the data (e.g., spikes in the data). * For censored data: * Performing ISC requires the users to unionize the censoring patterns during the correlation calculation. * If wanting to calculate power spectra or spectral parameters like ALFF/fALFF/RSFA etc. (which some people might do for naturalistic tasks still), then standard FT-based methods can't be used because sampling is no longer uniform. Instead, people could use something like 3dLombScargle+3dAmpToRSFC, which calculates power spectra (and RSFC params) based on a generalization of the FT that can handle non-uniform sampling, as long as the censoring pattern is mostly random and, say, only up to about 10-15% of the data. In sum, think very carefully about which files you use. If you find you need a file we have not provided, we can happily generate different versions of the timeseries upon request and can generally do so in a week or less.
Effect on results
Facebook
TwitterAttribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
License information was derived automatically
This repository contains a sample of the input data for the models of the preprint "Can AI be enabled to dynamical downscaling? Training a Latent Diffusion Model to mimic km-scale COSMO-CLM downscaling of ERA5 over Italy". It allows the user to test and train the models on a reduced dataset (45GB).
This sample dataset comprises ~3 years of normalized hourly data for both low-resolution predictors and high-resolution target variables. Data has been randomly picked from the whole dataset, from 2000 to 2020, with 70% of data coming from the original training dataset, 15% from the original validation dataset, and 15% from the original test dataset. Low-resolution data are preprocessed ERA5 data while high-resolution data are preprocessed VHR-REA CMCC data. Details on the performed preprocessing are available in the paper.
This sample dataset also includes files relative to metadata, static data, normalization, and plotting.
To use the data, clone the corresponding repository and unzip this zip file in the data folder.
Facebook
TwitterThis dataset was created by Engr Yasir Hussain