The number of internet users in North America was forecast to continuously increase between 2024 and 2029 by in total 34.8 million users (+7.35 percent). After the ninth consecutive increasing year, the number of users is estimated to reach 508.2 million users and therefore a new peak in 2029. Notably, the number of internet users of was continuously increasing over the past years.Depicted is the estimated number of individuals in the country or region at hand, that use the internet. As the datasource clarifies, connection quality and usage frequency are distinct aspects, not taken into account here.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).Find more information concerning Saudi Arabia and Indonesia.
In the past four centuries, the population of the Thirteen Colonies and United States of America has grown from a recorded 350 people around the Jamestown colony in Virginia in 1610, to an estimated 346 million in 2025. While the fertility rate has now dropped well below replacement level, and the population is on track to go into a natural decline in the 2040s, projected high net immigration rates mean the population will continue growing well into the next century, crossing the 400 million mark in the 2070s. Indigenous population Early population figures for the Thirteen Colonies and United States come with certain caveats. Official records excluded the indigenous population, and they generally remained excluded until the late 1800s. In 1500, in the first decade of European colonization of the Americas, the native population living within the modern U.S. borders was believed to be around 1.9 million people. The spread of Old World diseases, such as smallpox, measles, and influenza, to biologically defenseless populations in the New World then wreaked havoc across the continent, often wiping out large portions of the population in areas that had not yet made contact with Europeans. By the time of Jamestown's founding in 1607, it is believed the native population within current U.S. borders had dropped by almost 60 percent. As the U.S. expanded, indigenous populations were largely still excluded from population figures as they were driven westward, however taxpaying Natives were included in the census from 1870 to 1890, before all were included thereafter. It should be noted that estimates for indigenous populations in the Americas vary significantly by source and time period. Migration and expansion fuels population growth The arrival of European settlers and African slaves was the key driver of population growth in North America in the 17th century. Settlers from Britain were the dominant group in the Thirteen Colonies, before settlers from elsewhere in Europe, particularly Germany and Ireland, made a large impact in the mid-19th century. By the end of the 19th century, improvements in transport technology and increasing economic opportunities saw migration to the United States increase further, particularly from southern and Eastern Europe, and in the first decade of the 1900s the number of migrants to the U.S. exceeded one million people in some years. It is also estimated that almost 400,000 African slaves were transported directly across the Atlantic to mainland North America between 1500 and 1866 (although the importation of slaves was abolished in 1808). Blacks made up a much larger share of the population before slavery's abolition. Twentieth and twenty-first century The U.S. population has grown steadily since 1900, reaching one hundred million in the 1910s, two hundred million in the 1960s, and three hundred million in 2007. Since WWII, the U.S. has established itself as the world's foremost superpower, with the world's largest economy, and most powerful military. This growth in prosperity has been accompanied by increases in living standards, particularly through medical advances, infrastructure improvements, clean water accessibility. These have all contributed to higher infant and child survival rates, as well as an increase in life expectancy (doubling from roughly 40 to 80 years in the past 150 years), which have also played a large part in population growth. As fertility rates decline and increases in life expectancy slows, migration remains the largest factor in population growth. Since the 1960s, Latin America has now become the most common origin for migrants in the U.S., while immigration rates from Asia have also increased significantly. It remains to be seen how immigration restrictions of the current administration affect long-term population projections for the United States.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Historical dataset showing North America crime rate per 100K population by year from 2010 to 2021.
Environmental Analysis Data: These data were compiled to investigate the complex interactions between environmental gradients and geographic distance across the Intermountain West of the western United States. Due to complex topography, physiographic heterogeneity, and complicated relationships with large bodies of water, spatial autocorrelation of environmental similarity may be expected. We provide an R script (VarioAnalysis.R) that uses four associated data files (annualprecip.csv, annualSWA.csv, annualtemp.csv, key.csv) to reproduce Figure 3 in Massatti et al. 2020 (see Larger Work Citation). The data files contain information on yearly soil water availability, temperature, and precipitation, which are summed or averaged and used to test autocorrelations using semi variograms. There is also a shapefile (see Source Data) and raster (RasterbySiteID.tif) that ties all of the site-specific information together and places data into a spatial context. The script and data were developed, extracted, and/or compiled by R.K. Shriver. Genetic Analysis Data: These data were compiled to assess the relationship between genetic differentiation and geographic distance in the Intermountain West of the western United States. Included are 14 files: 13 tab-delimited text files that detail species-specific data and one R script (czi.R) that uses data within the 13 files to reproduce Figures 1 and 2 in Massatti et al. 2020 (see Larger Work Citation). Species-specific files include site names, location information (latitude/longitude), and information on which genetic population each site belongs to according to the original publication document (see Table 1 in the Larger Work Citation). The R script is annotated to provide important information regarding how the analyses work and how they can be modified if users want to tailor analyses to other geographic regions. The script and data were developed, extracted, and/or compiled by R. Massatti.
The statistic presents the infant and toddler population in North America in 2010 and 2015. In the United States some ***** million people were aged between zero and four years in 2010. The age group was forecast to decline to ***** millions in that country by 2015. Total infant and toddler population amounted to ***** million people in North America in 2010.
This data product consists of a database of population change and abundance estimates for North American birds, estimated from North American Breeding Bird Survey (BBS) data. Data are presented for 548 species of birds in 4 spreadsheets containing trend estimates and annual indices for 2 time periods. Estimates are derived for each species using the 1 of 4 alternative models, and a cross-validation model selection procedure was used to select the best model for each species. Metadata associated with this data product provides information specific to the associated analysis results; metadata for the BBS data are available at https://www.sciencebase.gov/catalog/item/625f151ed34e85fa62b7f926.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, the decennial census is the official source of population totals for April 1st of each decennial year. In between censuses, the Census Bureau's Population Estimates Program produces and disseminates the official estimates of the population for the nation, states, counties, cities, and towns and estimates of housing units and the group quarters population for states and counties..Information about the American Community Survey (ACS) can be found on the ACS website. Supporting documentation including code lists, subject definitions, data accuracy, and statistical testing, and a full list of ACS tables and table shells (without estimates) can be found on the Technical Documentation section of the ACS website.Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section..Source: U.S. Census Bureau, 2019-2023 American Community Survey 5-Year Estimates.ACS data generally reflect the geographic boundaries of legal and statistical areas as of January 1 of the estimate year. For more information, see Geography Boundaries by Year..Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see ACS Technical Documentation). The effect of nonsampling error is not represented in these tables..Users must consider potential differences in geographic boundaries, questionnaire content or coding, or other methodological issues when comparing ACS data from different years. Statistically significant differences shown in ACS Comparison Profiles, or in data users' own analysis, may be the result of these differences and thus might not necessarily reflect changes to the social, economic, housing, or demographic characteristics being compared. For more information, see Comparing ACS Data..Occupation titles and their 4-digit codes are based on the 2018 Standard Occupational Classification..Industry titles and their 4-digit codes are based on the North American Industry Classification System (NAICS). The Census industry codes for 2023 and later years are based on the 2022 revision of the NAICS. To allow for the creation of multiyear tables, industry data in the multiyear files (prior to data year 2023) were recoded to the 2022 Census industry codes. We recommend using caution when comparing data coded using 2022 Census industry codes with data coded using Census industry codes prior to data year 2023. For more information on the Census industry code changes, please visit our website at https://www.census.gov/topics/employment/industry-occupation/guidance/code-lists.html..Telephone service data are not available for certain geographic areas due to problems with data collection of this question that occurred in 2019. Both ACS 1-year and ACS 5-year files were affected. It may take several years in the ACS 5-year files until the estimates are available for the geographic areas affected..Estimates of urban and rural populations, housing units, and characteristics reflect boundaries of urban areas defined based on 2020 Census data. As a result, data for urban and rural areas from the ACS do not necessarily reflect the results of ongoing urbanization..Explanation of Symbols:- The estimate could not be computed because there were an insufficient number of sample observations. For a ratio of medians estimate, one or both of the median estimates falls in the lowest interval or highest interval of an open-ended distribution. For a 5-year median estimate, the margin of error associated with a median was larger than the median itself.N The estimate or margin of error cannot be displayed because there were an insufficient number of sample cases in the selected geographic area. (X) The estimate or margin of error is not applicable or not available.median- The median falls in the lowest interval of an open-ended distribution (for example "2,500-")median+ The median falls in the highest interval of an open-ended distribution (for example "250,000+").** The margin of error could not be computed because there were an insufficient number of sample observations.*** The margin of error could not be computed because the median falls in the lowest interval or highest interval of an open-ended distribution.***** A margin of error is not appropriate beca...
In 2023, ***** percent of the adult population in the United States and ***** percent in Canada were owning and running an established business. Established business ownership rate refers to the percentage of 18-64 population who are currently owner-manager of an established business, i.e., owning and managing a running business that has paid salaries, wages, or any other payments to the owners for more than 42 months.
This dataset displays the annual import and export figures of cattle to and from the United States. Data is primarily available for Canada and Mexico. These statistics represent the head count of cattle traded.
The estimated population of the U.S. was approximately 334.9 million in 2023, and the largest age group was adults aged 30 to 34. There were 11.88 million males in this age category and around 11.64 million females. Which U.S. state has the largest population? The population of the United States continues to increase, and the country is the third most populous in the world behind China and India. The gender distribution has remained consistent for many years, with the number of females narrowly outnumbering males. In terms of where the residents are located, California was the state with the highest population in 2023. The U.S. population by race and ethnicity The United States is well known the world over for having a diverse population. In 2023, the number of Black or African American individuals was estimated to be 45.76 million, which represented an increase of over four million since the 2010 census. The number of Asian residents has increased at a similar rate during the same time period and the Hispanic population in the U.S. has also continued to grow.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of Port Washington North by gender, including both male and female populations. This dataset can be utilized to understand the population distribution of Port Washington North across both sexes and to determine which sex constitutes the majority.
Key observations
There is a majority of female population, with 54.29% of total population being female. Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Scope of gender :
Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis. No further analysis is done on the data reported from the Census Bureau.
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Port Washington North Population by Race & Ethnicity. You can refer the same here
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Key Table Information.Table Title.Selected Characteristics of the Foreign-Born Population by Region of Birth: Africa, Northern America, and Oceania.Table ID.ACSST1Y2024.S0504.Survey/Program.American Community Survey.Year.2024.Dataset.ACS 1-Year Estimates Subject Tables.Source.U.S. Census Bureau, 2024 American Community Survey, 1-Year Estimates.Dataset Universe.The dataset universe of the American Community Survey (ACS) is the U.S. resident population and housing. For more information about ACS residence rules, see the ACS Design and Methodology Report. Note that each table describes the specific universe of interest for that set of estimates..Methodology.Unit(s) of Observation.American Community Survey (ACS) data are collected from individuals living in housing units and group quarters, and about housing units whether occupied or vacant. For more information about ACS sampling and data collection, see the ACS Design and Methodology Report..Geography Coverage.ACS data generally reflect the geographic boundaries of legal and statistical areas as of January 1 of the estimate year. For more information, see Geography Boundaries by Year.Estimates of urban and rural populations, housing units, and characteristics reflect boundaries of urban areas defined based on 2020 Census data. As a result, data for urban and rural areas from the ACS do not necessarily reflect the results of ongoing urbanization..Sampling.The ACS consists of two separate samples: housing unit addresses and group quarters facilities. Independent housing unit address samples are selected for each county or county-equivalent in the U.S. and Puerto Rico, with sampling rates depending on a measure of size for the area. For more information on sampling in the ACS, see the Accuracy of the Data document..Confidentiality.The Census Bureau has modified or suppressed some estimates in ACS data products to protect respondents' confidentiality. Title 13 United States Code, Section 9, prohibits the Census Bureau from publishing results in which an individual's data can be identified. For more information on confidentiality protection in the ACS, see the Accuracy of the Data document..Technical Documentation/Methodology.Information about the American Community Survey (ACS) can be found on the ACS website. Supporting documentation including code lists, subject definitions, data accuracy, and statistical testing, and a full list of ACS tables and table shells (without estimates) can be found on the Technical Documentation section of the ACS website.Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section.Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see ACS Technical Documentation). The effect of nonsampling error is not represented in these tables.Users must consider potential differences in geographic boundaries, questionnaire content or coding, or other methodological issues when comparing ACS data from different years. Statistically significant differences shown in ACS Comparison Profiles, or in data users' own analysis, may be the result of these differences and thus might not necessarily reflect changes to the social, economic, housing, or demographic characteristics being compared. For more information, see Comparing ACS Data..Weights.ACS estimates are obtained from a raking ratio estimation procedure that results in the assignment of two sets of weights: a weight to each sample person record and a weight to each sample housing unit record. Estimates of person characteristics are based on the person weight. Estimates of family, household, and housing unit characteristics are based on the housing unit weight. For any given geographic area, a characteristic total is estimated by summing the weights assigned to the persons, households, families or housing units possessing the characteristic in the geographic area. For more information on weighting and estimation in the ACS, see the Accuracy of the Data document.Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, the decennial census is the official source of population totals for April 1st of each decennial year. In between censuses, the Census Bureau's Population Estimates Program produces and disseminates the official estimates of t...
The data we provide in excel is the raw data and all column headings are explained in a separate excel file called metadata.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Bumble bees (Bombus) are vitally important pollinators of wild plants and agricultural crops worldwide. Fragmentary observations, however, have suggested population declines in several North American species. Despite rising concern over these observations in the United States, highlighted in a recent National Academy of Sciences report, a national assessment of the geographic scope and possible causal factors of bumble bee decline is lacking. Here, we report results of a 3-y interdisciplinary study of changing distributions, population genetic structure, and levels of pathogen infection in bumble bee populations across the United States. We compare current and historical distributions of eight species, compiling a database of >73,000 museum records for comparison with data from intensive nationwide surveys of >16,000 specimens. We show that the relative abundances of four species have declined by up to 96% and that their surveyed geographic ranges have contracted by 23–87%, some within the last 20 y. We also show that declining populations have significantly higher infection levels of the microsporidian pathogen Nosema bombi and lower genetic diversity compared with co-occurring populations of the stable (nondeclining) species. Higher pathogen prevalence and reduced genetic diversity are, thus, realistic predictors of these alarming patterns of decline in North America, although cause and effect remain uncertain. Bumble bees (Bombus) are integral wild pollinators within native plant communities throughout temperate ecosystems, and recent domestication has boosted their economic importance in crop pollination to a level surpassed only by the honey bee. Their robust size, long tongues, and buzz-pollination behavior (high-frequency buzzing to release pollen from flowers) significantly increase the efficiency of pollen transfer in multibillion dollar crops such as tomatoes and berries. Disturbing reports of bumble bee population declines in Europe have recently spilled over into North America, fueling environmental and economic concerns of global decline. However, the evidence for large-scale range reductions across North America is lacking. Many reports of decline are unpublished, and the few published studies are limited to independent local surveys in northern California/southern Oregon, Ontario, Canada, and Illinois. Furthermore, causal factors leading to the alleged decline of bumble bee populations in North America remain speculative. One compelling but untested hypothesis for the cause of decline in the United States entails the spread of a putatively introduced pathogen, Nosema bombi, which is an obligate intracellular microsporidian parasite found commonly in bumble bees throughout Europe but largely unstudied in North America. Pathogenic effects of N. bombi may vary depending on the host species and reproductive caste and include reductions in colony growth and individual life span and fitness. Population genetic factors could also play a role in Bombus population decline. For instance, small effective population sizes and reduced gene flow among fragmented habitats can result in losses of genetic diversity with negative consequences, and the detrimental impacts of these genetic factors can be especially intensified in bees. Population genetic studies of Bombus are rare worldwide. A single study in the United States identified lower genetic diversity and elevated genetic differentiation (FST) among Illinois populations of the putatively declining B. pensylvanicus relative to those of a codistributed stable species. Similar patterns have been observed in comparative studies of some European species, but most investigations have been geographically restricted and based on limited sampling within and among populations. Although the investigations to date have provided important information on the increasing rarity of some bumble bee species in local populations, the different survey protocols and limited geographic scope of these studies cannot fully capture the general patterns necessary to evaluate the underlying processes or overall gravity of declines. Furthermore, valid tests of the N. bombi hypothesis and its risk to populations across North America call for data on its geographic distribution and infection prevalence among species. Likewise, testing the general importance of population genetic factors in bumble bee decline requires genetic comparisons derived from sampling of multiple stable and declining populations on a large geographic scale. From such range-wide comparisons, we provide incontrovertible evidence that multiple Bombus species have experienced sharp population declines at the national level. We also show that declining populations are associated with both high N. bombi infection levels and low genetic diversity. This data was used in the paper "Patterns of widespread decline in North American bumble bees" published in the Proceedings of the National Academy of United States of America. For more information about this dataset contact: Sydney A. Cameron: scameron@life.illinois.edu James Strange: James.Strange@ars.usda.gov Resources in this dataset:Resource Title: Data from: Patterns of Widespread Decline in North American Bumble Bees (Data Dictionary). File Name: meta.xmlResource Description: This is an XML data dictionary for Data from: Patterns of Widespread Decline in North American Bumble Bees.Resource Title: Patterns of Widespread Decline in North American Bumble Bees (DWC Archive). File Name: occurrence.csvResource Description: File modified to remove fields with no recorded values.Resource Title: Patterns of Widespread Decline in North American Bumble Bees (DWC Archive). File Name: dwca-usda-ars-patternsofwidespreaddecline-bumblebees-v1.1.zipResource Description: Data from: Patterns of Widespread Decline in North American Bumble Bees -- this is a Darwin Core Archive file. The Darwin Core Archive is a zip file that contains three documents.
The occurrence data is stored in the occurrence.txt file. The metadata that describes the columns of this document is called meta.xml. This document is also the data dictionary for this dataset. The metadata that describes the dataset, including author and contact information for this dataset is called eml.xml.
Find the data files at https://bison.usgs.gov/ipt/resource?r=usda-ars-patternsofwidespreaddecline-bumblebees
The earliest point where scientists can make reasonable estimates for the population of global regions is around 10,000 years before the Common Era (or 12,000 years ago). Estimates suggest that Asia has consistently been the most populated continent, and the least populated continent has generally been Oceania (although it was more heavily populated than areas such as North America in very early years). Population growth was very slow, but an increase can be observed between most of the given time periods. There were, however, dips in population due to pandemics, the most notable of these being the impact of plague in Eurasia in the 14th century, and the impact of European contact with the indigenous populations of the Americas after 1492, where it took almost four centuries for the population of Latin America to return to its pre-1500 level. The world's population first reached one billion people in 1803, which also coincided with a spike in population growth, due to the onset of the demographic transition. This wave of growth first spread across the most industrially developed countries in the 19th century, and the correlation between demographic development and industrial or economic maturity continued until today, with Africa being the final major region to begin its transition in the late-1900s.
Protected areas are one of the most widespread and accepted conservation interventions, yet their  population trends are rarely compared to regional trends to gain insight into their effectiveness. Here, we leverage two long-term community science datasets to demonstrate mixed effects of protected areas on long-term bird population trends. We analyzed 31 years of bird transect data recorded by community volunteers across all major habitats of Stanford University’s Jasper Ridge Biological Preserve to determine the population trends for a sample of 66 species. We found that nearly a third of species experienced long-term declines, and on average, all species declined by 12%. Further, we averaged species trends by conservation status and key life history attributes to identify correlates and possible drivers of these trends. Observed increases in some cavity-nesters and declines of scrub-associated species suggest that long-term fire suppression may be a key driver, reshaping bird communit...,
From 1989 to 2020, volunteer observers conducted monthly surveys of six sectors within Stanford University's Jasper Ridge Biological Preserve (JRBP). Each survey consisted of a trail-based transect in which a group of observers walked the trail in the morning and counted all birds detected over roughly 3 hours. Observers recorded the number of each species seen or heard along the route, regardless of the distance to the bird. Over 31 years of surveys, 192 observers conducted 2,055 transects and recorded a total of 473,401 observations of 184 species (91% of JRBP’s documented avian richness). We used these data to estimate long-term avian population trends at JRBP. Prior to analy- sis, we performed extensive data cleaning, including the standardization of species names and observer identity. Unlikely species without notes or supporting information were removed from the analysis. All transects with fewer than seven species (n = 30) were considered incidental and removed. These transect..., , # Data and model code from: Mixed population trends inside a California protected area: evidence from long-term community science monitoring
Â
Â
Here, we provide the R code used to model the abundance for each species in the Jasper Ridge Biological Preserve. We have also provided a spreadsheet with each species' life history traits, taxonomy, annual trends in the preserve, and annual trends in the surrounding region (BCR 32) from the North American Breeding Bird Survey. Finally, we have attached an R code that analyzes the trends for various life history traits and taxonomic families, compares trends within the protected area and in the surrounding region, and produces figures 2, 4, and 5 in the main manuscript and all supplementary material figures.
Â
Description of the data and file structure
**Â **
The JRBP_Transect_Data_Species.R file provides the code required to create a generalized linear mixed model for each species in R-INLA and extract the percent change in ab...
A data set of cross-nationally comparable microdata samples for 15 Economic Commission for Europe (ECE) countries (Bulgaria, Canada, Czech Republic, Estonia, Finland, Hungary, Italy, Latvia, Lithuania, Romania, Russia, Switzerland, Turkey, UK, USA) based on the 1990 national population and housing censuses in countries of Europe and North America to study the social and economic conditions of older persons. These samples have been designed to allow research on a wide range of issues related to aging, as well as on other social phenomena. A common set of nomenclatures and classifications, derived on the basis of a study of census data comparability in Europe and North America, was adopted as a standard for recoding. This series was formerly called Dynamics of Population Aging in ECE Countries. The recommendations regarding the design and size of the samples drawn from the 1990 round of censuses envisaged: (1) drawing individual-based samples of about one million persons; (2) progressive oversampling with age in order to ensure sufficient representation of various categories of older people; and (3) retaining information on all persons co-residing in the sampled individual''''s dwelling unit. Estonia, Latvia and Lithuania provided the entire population over age 50, while Finland sampled it with progressive over-sampling. Canada, Italy, Russia, Turkey, UK, and the US provided samples that had not been drawn specially for this project, and cover the entire population without over-sampling. Given its wide user base, the US 1990 PUMS was not recoded. Instead, PAU offers mapping modules, which recode the PUMS variables into the project''''s classifications, nomenclatures, and coding schemes. Because of the high sampling density, these data cover various small groups of older people; contain as much geographic detail as possible under each country''''s confidentiality requirements; include more extensive information on housing conditions than many other data sources; and provide information for a number of countries whose data were not accessible until recently. Data Availability: Eight of the fifteen participating countries have signed the standard data release agreement making their data available through NACDA/ICPSR (see links below). Hungary and Switzerland require a clearance to be obtained from their national statistical offices for the use of microdata, however the documents signed between the PAU and these countries include clauses stipulating that, in general, all scholars interested in social research will be granted access. Russia requested that certain provisions for archiving the microdata samples be removed from its data release arrangement. The PAU has an agreement with several British scholars to facilitate access to the 1991 UK data through collaborative arrangements. Statistics Canada and the Italian Institute of statistics (ISTAT) provide access to data from Canada and Italy, respectively. * Dates of Study: 1989-1992 * Study Features: International, Minority Oversamples * Sample Size: Approx. 1 million/country Links: * Bulgaria (1992), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/02200 * Czech Republic (1991), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/06857 * Estonia (1989), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/06780 * Finland (1990), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/06797 * Romania (1992), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/06900 * Latvia (1989), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/02572 * Lithuania (1989), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/03952 * Turkey (1990), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/03292 * U.S. (1990), http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/06219
This dataset displays the roads in North and South America in a linear format. This shapefile data layer is comprised of 72099 derivative vector framework library features derived based on 1:3 000 000 data originally from RWDBII. The layer provides nominal analytical/mapping at 1:3 000 000. Data processing complete globally. Data Source: http://www.fao.org/geonetwork/srv/en/metadata.show?id=29044&currTab=simple Access Date: October 16, 2007 Notes: Please visit the previous link for more information regarding this particular dataset. This map is a portion of entire world map.
This table is part of a series of tables that present a portrait of Canada based on the various census topics. The tables range in complexity and levels of geography. Content varies from a simple overview of the country to complex cross-tabulations; the tables may also cover several censuses.
This archived Paleoclimatology Study is available from the NOAA National Centers for Environmental Information (NCEI), under the World Data Service (WDS) for Paleoclimatology. The associated NCEI study type is Plant Macrofossil. The data include parameters of plant macrofossil (population abundance) with a geographic location of California, United States Of America. The time period coverage is from 4082 to 0 in calendar years before present (BP). See metadata information for parameter and study location details. Please cite this study when using the data.
The number of internet users in North America was forecast to continuously increase between 2024 and 2029 by in total 34.8 million users (+7.35 percent). After the ninth consecutive increasing year, the number of users is estimated to reach 508.2 million users and therefore a new peak in 2029. Notably, the number of internet users of was continuously increasing over the past years.Depicted is the estimated number of individuals in the country or region at hand, that use the internet. As the datasource clarifies, connection quality and usage frequency are distinct aspects, not taken into account here.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).Find more information concerning Saudi Arabia and Indonesia.