Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
New Zealand Population: North Island (NI) data was reported at 4,044,600.000 Person in 2024. This records an increase from the previous number of 3,973,400.000 Person for 2023. New Zealand Population: North Island (NI) data is updated yearly, averaging 3,311,700.000 Person from Jun 1996 (Median) to 2024, with 29 observations. The data reached an all-time high of 4,044,600.000 Person in 2024 and a record low of 2,810,100.000 Person in 1996. New Zealand Population: North Island (NI) data remains active status in CEIC and is reported by Stats NZ. The data is categorized under Global Database’s New Zealand – Table NZ.G005: Population: by Region.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
New Zealand Population: South Island (SI) data was reported at 1,242,300.000 Person in 2024. This records an increase from the previous number of 1,226,100.000 Person for 2023. New Zealand Population: South Island (SI) data is updated yearly, averaging 1,033,700.000 Person from Jun 1996 (Median) to 2024, with 29 observations. The data reached an all-time high of 1,242,300.000 Person in 2024 and a record low of 921,100.000 Person in 1996. New Zealand Population: South Island (SI) data remains active status in CEIC and is reported by Stats NZ. The data is categorized under Global Database’s New Zealand – Table NZ.G005: Population: by Region.
The Major Name data table is part of NZ Suburbs and Localities Dataset. Major names describe the wider area in which the boundary is located.
NZ Suburbs and Localities is an easy to use layer generated from the normalised NZ Suburbs and Localities Dataset. It describes the spatial extent and name of communities in urban areas (suburbs) and rural areas (localities) for navigation and location purposes.
The suburb and locality boundaries cover New Zealand including North Island, South Island, Stewart Island/Rakiura, Chatham Islands, and nearby offshore islands.
Each suburb and locality is assigned a name, major name, Territorial Authority and, if appropriate, additional in use names. A population estimate is provided for each suburb and locality by Stats NZ.
For more information please refer to the NZ Suburbs and Localities Guidance documents:
Data Dictionary "https://www.linz.govt.nz/products-services/data/types-linz-data/suburbs-and-localities-data">Change Request Process "https://www.linz.govt.nz/products-services/data/types-linz-data/suburbs-and-localities-data">Change Request Principles, Requirements and Rules Changes to NZ Suburbs and Localities can be requested by emailing addresses@linz.govt.nz
The art of population modelling is to incorporate factors essential for capturing a population’s dynamics while otherwise keeping the model as simple as possible. However, it is unclear how optimal model complexity should be assessed, and whether this optimal complexity has been affected by recent advances in modelling methodology. This issue is particularly relevant to small populations because they are subject to complex dynamics but inferences about those dynamics are often constrained by small sample sizes.
We fitted Bayesian hierarchical models to long-term data on vital rates (survival and reproduction) for the toutouwai (Petroica longipes) population reintroduced to Tiritiri Matangi, a 220-ha New Zealand island, and quantified the performance of those models in terms of their likelihood of replicating the observed population dynamics. These dynamics consisted of overall growth from 33 (± 0.3) to 160 (± 6) birds from 1992–2018, including recoveries following five harvest ...
https://datafinder.stats.govt.nz/license/attribution-4-0-international/https://datafinder.stats.govt.nz/license/attribution-4-0-international/
Refer to the current geographies boundaries table for a list of all current geographies and recent updates.
This dataset is the definitive version of the annually released statistical area 3 (SA3) boundaries as at 1 January 2025 as defined by Stats NZ. This version contains 929 SA3s, including 4 non-digitised SA3s.
The SA3 geography aims to meet three purposes:
approximate suburbs in major, large, and medium urban areas,
in predominantly rural areas, provide geographical areas that are larger in area and population size than SA2s but smaller than territorial authorities,
minimise data suppression.
SA3s in major, large, and medium urban areas were created by combining SA2s to approximate suburbs as delineated in the Fire and Emergency NZ (FENZ) Localities dataset. Some of the resulting SA3s have very large populations.
Outside of major, large, and medium urban areas, SA3s generally have populations of 5,000–10,000. These SA3s may represent either a single small urban area, a combination of small urban areas and their surrounding rural SA2s, or a combination of rural SA2s.
Zero or nominal population SA3s
To minimise the amount of unsuppressed data that can be provided in multivariate statistical tables, SA2s with fewer than 1,000 residents are combined with other SA2s wherever possible to reach the 1,000 SA3 population target. However, there are still a number of SA3s with zero or nominal populations.
Small population SA2s designed to maintain alignment between territorial authority and regional council geographies are merged with other SA2s to reach the 5,000–10,000 SA3 population target. These merges mean that some SA3s do not align with regional council boundaries but are aligned to territorial authority.
Small population island SA2s are included in their adjacent land-based SA3.
Island SA2s outside territorial authority or region are the same in the SA3 geography.
Inland water SA2s are aggregated and named by territorial authority, as in the urban rural classification.
Inlet SA2s are aggregated and named by territorial authority or regional council where the water area is outside the territorial authority.
Oceanic SA2s translate directly to SA3s as they are already aggregated to regional council.
The 16 non-digitised SA2s are aggregated to the following 4 non-digitised SA3s (SA3 code; SA3 name):
70001; Oceanic outside region, 70002; Oceanic oil rigs, 70003; Islands outside region, 70004; Ross Dependency outside region.
SA3 numbering and naming
Each SA3 is a single geographic entity with a name and a numeric code. The name refers to a suburb, recognised place name, or portion of a territorial authority. In some instances where place names are the same or very similar, the SA3s are differentiated by their territorial authority, for example, Hillcrest (Hamilton City) and Hillcrest (Rotorua District).
SA3 codes have five digits. North Island SA3 codes start with a 5, South Island SA3 codes start with a 6 and non-digitised SA3 codes start with a 7. They are numbered approximately north to south within their respective territorial authorities. When first created in 2025, the last digit of each code was 0. When SA3 boundaries change in future, only the last digit of the code will change to ensure the north-south pattern is maintained.
High-definition version
This high definition (HD) version is the most detailed geometry, suitable for use in GIS for geometric analysis operations and for the computation of areas, centroids and other metrics. The HD version is aligned to the LINZ cadastre.
Macrons
Names are provided with and without tohutō/macrons. The column name for those without macrons is suffixed ‘ascii’.
Digital data
Digital boundary data became freely available on 1 July 2007
Further information
To download geographic classifications in table formats such as CSV please use Ariā
For more information please refer to the Statistical standard for geographic areas 2023.
Contact: geography@stats.govt.nz
Public Domain Mark 1.0https://creativecommons.org/publicdomain/mark/1.0/
License information was derived automatically
This is a subset of Population projections
Population projections for Pacific Island Countries and territories from 1950 to 2050, by sex and by 5-years age groups.
https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html
The expansion of human settlements over the past few centuries is responsible for an unprecedented number of invasive species introductions globally. An important component of biological invasion management is understanding how introduction history and post-introduction processes have jointly shaped present-day distributions and patterns of population structure, diversity, and adaptation. One example of a successful invader is the European starling (Sturnus vulgaris), which was intentionally introduced to numerous countries in the 19th century, including Aotearoa New Zealand, where it has become firmly established. We used reduced-representation sequencing to characterise the genetic population structure of the European starling in New Zealand, and compared the population structure to that present in sampling locations in the native range and invasive Australian range. We found that population structure and genetic diversity patterns suggested restricted gene flow from the majority of New Zealand to the northmost sampling location (Auckland). We also profiled genetic bottlenecks and shared outlier genomic regions, which supported historical accounts of translocations between both Australian subpopulations and New Zealand, and provided evidence of which documented translocation events were more likely to have been successful. Using these results as well as historic demographic patterns, we demonstrate how genomic analysis complements even well-documented invasion histories to better understand invasion processes, with direct implication for understanding contemporary gene flow and informing invasion management. Methods Sample Collection A total of 106 starling specimen samples were obtained from various contributors within New Zealand from five geographically distinct locations between May 2022 and October 2023. Sampling covered three locations in the North Island, specifically in the Auckland region (AUK: n=18), the Manawatū-Whanganui region (WHA: n=12), the Wellington region (WEL: n=40) and two in the South Island in the Marlborough region (MRL: n=15) and Canterbury region (CAN: n=21). In addition to the newly obtained samples, we also incorporated sequence data from the native European range (Antwerp, Belgium; ANT: n=15, Newcastle, United Kingdom; NWC: n=15, Monks Wood, United Kingdom; MKW: n=15), as well as two locations from within the invasive Australian range (Orange; ORG: n=15, McLaren Vale; MLV: n=15) from a previously published Diversity Arrays Technology Pty Ltd sequencing (DArT-seq) dataset. DNA Extraction and Sequencing Extracted DNA from the newly collected New Zealand samples was sent to Diversity Arrays for sequencing. Sequencing was performed on an Illumina Hiseq2500/Novaseq6000. Raw Sequence Processing The previously published raw DArT-seq data, along with the MRL samples (January 2023 sequencing batch) were demultiplexed using stacks v2.2 process_radtags, while also discarding low quality reads (-q), reads with uncalled bases (-c), and rescuing barcodes and RAD-Tag cut sites (-r). It was not necessary to perform this step on the remainder of the new raw sequence data because DArT performed in-house demultiplexing using a proprietary bioinformatic pipeline. For all the data, we used fastp v0.23.2 to remove adapter sequences and in the same step filtered reads for a minimum Phred quality score of 22 (-q 22) and a minimum length of 40 (-l 40). Both batches of sequence data produced as part of this study were additionally length trimmed to reduce the read length of the newer sequence data to match the base length of the older sequence data (-b 69). Mapping, Variant Calling, and Filtering We used the program bwa v0.7.17 to index the reference genome S. vulgaris vAU1.0 and align the trimmed DArT reads using the bwa aln function (-B 5 to trim the first 5 base pairs of each read), which is optimised for single-end short reads. This was then followed by the bwa samse function for producing the SAM formatted output files containing the alignments and their respective base qualities. Alignments were then sorted and indexed using samtools v1.16.1, and single nucleotide polymorphisms (SNPs) were subsequently called and annotated using bcftools v1.16 with the mpileup (-a "DP,AD,SP", --ignore-RG) and call (-mv, -f GQ) functions. We removed known technical replicates and identified relatives from the data. vcftools v0.1.15 was used to remove indels (--remove-indels), and quality filter for a minimum site quality score of 30 (--minQ30), minimum genotype quality score of 20 (--minGQ 20), and minimum and maximum depth of coverage of 5 (--minDP 5) and 100 (--maxDP 100). Then, to account for batch effects that may impact the sequenced loci, we kept only SNPs present in at least 50% of the individuals in each sampling location. We ran one final filtering step to ensure appropriate levels of missingness and rare alleles using the following parameters: maximum missingness per site of 30% (--max-missing 0.7), minor allele count of 5 (--mac 5), and a minimum and maximum allele per locus of 2 (--min-alleles 2 --max-alleles 2), resulting in a dataset containing 19,174 SNPs and 141 individuals.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
U.S. Census Bureau QuickFacts statistics for North Merritt Island CDP, Florida. QuickFacts data are derived from: Population Estimates, American Community Survey, Census of Population and Housing, Current Population Survey, Small Area Health Insurance Estimates, Small Area Income and Poverty Estimates, State and County Housing Unit Estimates, County Business Patterns, Nonemployer Statistics, Economic Census, Survey of Business Owners, Building Permits.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Population growth (annual %) in Northern Mariana Islands was reported at --2.05 % in 2023, according to the World Bank collection of development indicators, compiled from officially recognized sources. Northern Mariana Islands - Population growth (annual %) - actual values, historical data, forecasts and projections were sourced from the World Bank on June of 2025.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
<ul style='margin-top:20px;'>
<li>Northern Mariana Islands population density for 2021 was <strong>102.13</strong>, a <strong>1.16% decline</strong> from 2020.</li>
<li>Northern Mariana Islands population density for 2020 was <strong>103.32</strong>, a <strong>1.25% decline</strong> from 2019.</li>
<li>Northern Mariana Islands population density for 2019 was <strong>104.63</strong>, a <strong>1.93% decline</strong> from 2018.</li>
</ul>Population density is midyear population divided by land area in square kilometers. Population is based on the de facto definition of population, which counts all residents regardless of legal status or citizenship--except for refugees not permanently settled in the country of asylum, who are generally considered part of the population of their country of origin. Land area is a country's total area, excluding area under inland water bodies, national claims to continental shelf, and exclusive economic zones. In most cases the definition of inland water bodies includes major rivers and lakes.
https://datafinder.stats.govt.nz/license/attribution-4-0-international/https://datafinder.stats.govt.nz/license/attribution-4-0-international/
Refer to the current geographies boundaries table for a list of all current geographies and recent updates.
This dataset is the definitive version of the annually released statistical area 2 (SA2) boundaries as at 1 January 2025 as defined by Stats NZ, clipped to the coastline. This clipped version has been created for cartographic purposes and so does not fully represent the official full extent boundaries. This clipped version contains 2,311 SA2 areas.
SA2 is an output geography that provides higher aggregations of population data than can be provided at the statistical area 1 (SA1) level. The SA2 geography aims to reflect communities that interact together socially and economically. In populated areas, SA2s generally contain similar sized populations.
The SA2 should:
form a contiguous cluster of one or more SA1s,
excluding exceptions below, allow the release of multivariate statistics with minimal data suppression,
capture a similar type of area, such as a high-density urban area, farmland, wilderness area, and water area,
be socially homogeneous and capture a community of interest. It may have, for example:
a shared road network,
shared community facilities,
shared historical or social links, or
socio-economic similarity,
form a nested hierarchy with statistical output geographies and administrative boundaries. It must:
be built from SA1s,
either define or aggregate to define SA3s, urban areas, territorial authorities, and regional councils.
SA2s in city council areas generally have a population of 2,000–4,000 residents while SA2s in district council areas generally have a population of 1,000–3,000 residents.
In major urban areas, an SA2 or a group of SA2s often approximates a single suburb. In rural areas, rural settlements are included in their respective SA2 with the surrounding rural area.
SA2s in urban areas where there is significant business and industrial activity, for example ports, airports, industrial, commercial, and retail areas, often have fewer than 1,000 residents. These SA2s are useful for analysing business demographics, labour markets, and commuting patterns.
In rural areas, some SA2s have fewer than 1,000 residents because they are in conservation areas or contain sparse populations that cover a large area.
To minimise suppression of population data, small islands with zero or low populations close to the mainland, and marinas are generally included in their adjacent land-based SA2.
Zero or nominal population SA2s
To ensure that the SA2 geography covers all of New Zealand and aligns with New Zealand’s topography and local government boundaries, some SA2s have zero or nominal populations. These include:
SA2s where territorial authority boundaries straddle regional council boundaries. These SA2s each have fewer than 200 residents and are: Arahiwi, Tiroa, Rangataiki, Kaimanawa, Taharua, Te More, Ngamatea, Whangamomona, and Mara.
SA2s created for single islands or groups of islands that are some distance from the mainland or to separate large unpopulated islands from urban areas
SA2s that represent inland water, inlets or oceanic areas including: inland lakes larger than 50 square kilometres, harbours larger than 40 square kilometres, major ports, other non-contiguous inlets and harbours defined by territorial authority, and contiguous oceanic areas defined by regional council.
SA2s for non-digitised oceanic areas, offshore oil rigs, islands, and the Ross Dependency. Each SA2 is represented by a single meshblock. The following 16 SA2s are held in non-digitised form (SA2 code; SA2 name):
400001; New Zealand Economic Zone, 400002; Oceanic Kermadec Islands, 400003; Kermadec Islands, 400004; Oceanic Oil Rig Taranaki, 400005; Oceanic Campbell Island, 400006; Campbell Island, 400007; Oceanic Oil Rig Southland, 400008; Oceanic Auckland Islands, 400009; Auckland Islands, 400010 ; Oceanic Bounty Islands, 400011; Bounty Islands, 400012; Oceanic Snares Islands, 400013; Snares Islands, 400014; Oceanic Antipodes Islands, 400015; Antipodes Islands, 400016; Ross Dependency.
SA2 numbering and naming
Each SA2 is a single geographic entity with a name and a numeric code. The name refers to a geographic feature or a recognised place name or suburb. In some instances where place names are the same or very similar, the SA2s are differentiated by their territorial authority name, for example, Gladstone (Carterton District) and Gladstone (Invercargill City).
SA2 codes have six digits. North Island SA2 codes start with a 1 or 2, South Island SA2 codes start with a 3 and non-digitised SA2 codes start with a 4. They are numbered approximately north to south within their respective territorial authorities. To ensure the north–south code pattern is maintained, the SA2 codes were given 00 for the last two digits when the geography was created in 2018. When SA2 names or boundaries change only the last two digits of the code will change.
Clipped Version
This clipped version has been created for cartographic purposes and so does not fully represent the official full extent boundaries.
High-definition version
This high definition (HD) version is the most detailed geometry, suitable for use in GIS for geometric analysis operations and for the computation of areas, centroids and other metrics. The HD version is aligned to the LINZ cadastre.
Macrons
Names are provided with and without tohutō/macrons. The column name for those without macrons is suffixed ‘ascii’.
Digital data
Digital boundary data became freely available on 1 July 2007.
Further information
To download geographic classifications in table formats such as CSV please use Ariā
For more information please refer to the Statistical standard for geographic areas 2023.
Contact: geography@stats.govt.nz
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Population, Total for the Commonwealth of the Northern Mariana Islands (POPTOTMPA647NWDB) from 1960 to 2023 about CNMI and population.
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Population Estimate, Total, Not Hispanic or Latino, Native Hawaiian and Other Pacific Islander Alone (5-year estimate) in Fairbanks North Star Borough, AK (B03002007E002090) from 2009 to 2023 about Fairbanks North Star Borough, AK; Fairbanks; AK; Pacific Islands; non-hispanic; estimate; persons; 5-year; population; and USA.
This resource is a member of a series. The TIGER/Line shapefiles and related database files (.dbf) are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line shapefile is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. Census tracts are small, relatively permanent statistical subdivisions of a county or equivalent entity, and were defined by local participants as part of the 2020 Census Participant Statistical Areas Program. The Census Bureau delineated the census tracts in situations where no local participant existed or where all the potential participants declined to participate. The primary purpose of census tracts is to provide a stable set of geographic units for the presentation of census data and comparison back to previous decennial censuses. Census tracts generally have a population size between 1,200 and 8,000 people, with an optimum size of 4,000 people. When first delineated, census tracts were designed to be homogeneous with respect to population characteristics, economic status, and living conditions. The spatial size of census tracts varies widely depending on the density of settlement. Physical changes in street patterns caused by highway construction, new development, and so forth, may require boundary revisions. In addition, census tracts occasionally are split due to population growth, or combined as a result of substantial population decline. Census tract boundaries generally follow visible and identifiable features. They may follow legal boundaries such as minor civil division (MCD) or incorporated place boundaries in some States and situations to allow for census tract-to-governmental unit relationships where the governmental boundaries tend to remain unchanged between censuses. State and county boundaries always are census tract boundaries in the standard census geographic hierarchy. In a few rare instances, a census tract may consist of noncontiguous areas. These noncontiguous areas may occur where the census tracts are coextensive with all or parts of legal entities that are themselves noncontiguous. For the 2010 Census, the census tract code range of 9400 through 9499 was enforced for census tracts that include a majority American Indian population according to Census 2000 data and/or their area was primarily covered by federally recognized American Indian reservations and/or off-reservation trust lands; the code range 9800 through 9899 was enforced for those census tracts that contained little or no population and represented a relatively large special land use area such as a National Park, military installation, or a business/industrial park; and the code range 9900 through 9998 was enforced for those census tracts that contained only water area, no land area.
Refer to the current geographies boundaries table for a list of all current geographies and recent updates. This dataset is the definitive version of the annually released statistical area 3 (SA3) boundaries as at 1 January 2025 as defined by Stats NZ, clipped to the coastline. This clipped version has been created for cartographic purposes and so does not fully represent the official full extent boundaries. This version contains 873 SA3s, excluding 4 non-digitised SA3s. The SA3 geography aims to meet three purposes: approximate suburbs in major, large, and medium urban areas, in predominantly rural areas, provide geographical areas that are larger in area and population size than SA2s but smaller than territorial authorities, minimise data suppression. SA3s in major, large, and medium urban areas were created by combining SA2s to approximate suburbs as delineated in the Fire and Emergency NZ (FENZ) Localities dataset. Some of the resulting SA3s have very large populations. Outside of major, large, and medium urban areas, SA3s generally have populations of 5,000–10,000. These SA3s may represent either a single small urban area, a combination of small urban areas and their surrounding rural SA2s, or a combination of rural SA2s. Zero or nominal population SA3s To minimise the amount of unsuppressed data that can be provided in multivariate statistical tables, SA2s with fewer than 1,000 residents are combined with other SA2s wherever possible to reach the 1,000 SA3 population target. However, there are still a number of SA3s with zero or nominal populations. Small population SA2s designed to maintain alignment between territorial authority and regional council geographies are merged with other SA2s to reach the 5,000–10,000 SA3 population target. These merges mean that some SA3s do not align with regional council boundaries but are aligned to territorial authority. Small population island SA2s are included in their adjacent land-based SA3. Island SA2s outside territorial authority or region are the same in the SA3 geography. Inland water SA2s are aggregated and named by territorial authority, as in the urban rural classification. Inlet SA2s are aggregated and named by territorial authority or regional council where the water area is outside the territorial authority. Oceanic SA2s translate directly to SA3s as they are already aggregated to regional council. The 16 non-digitised SA2s are aggregated to the following 4 non-digitised SA3s (SA3 code; SA3 name): 70001; Oceanic outside region, 70002; Oceanic oil rigs, 70003; Islands outside region, 70004; Ross Dependency outside region. SA3 numbering and naming Each SA3 is a single geographic entity with a name and a numeric code. The name refers to a suburb, recognised place name, or portion of a territorial authority. In some instances where place names are the same or very similar, the SA3s are differentiated by their territorial authority, for example, Hillcrest (Hamilton City) and Hillcrest (Rotorua District). SA3 codes have five digits. North Island SA3 codes start with a 5, South Island SA3 codes start with a 6 and non-digitised SA3 codes start with a 7. They are numbered approximately north to south within their respective territorial authorities. When first created in 2025, the last digit of each code was 0. When SA3 boundaries change in future, only the last digit of the code will change to ensure the north-south pattern is maintained. Clipped Version This clipped version has been created for cartographic purposes and so does not fully represent the official full extent boundaries. High-definition version This high definition (HD) version is the most detailed geometry, suitable for use in GIS for geometric analysis operations and for the computation of areas, centroids and other metrics. The HD version is aligned to the LINZ cadastre. Macrons Names are provided with and without tohutō/macrons. The column name for those without macrons is suffixed ‘ascii’. Digital data Digital boundary data became freely available on 1 July 2007. Further information To download geographic classifications in table formats such as CSV please use Ariā For more information please refer to the Statistical standard for geographic areas 2023. Contact: geography@stats.govt.nz
Reinforcement translocations are increasingly utilised in conservation with the goal of achieving genetic rescue. However, concerns regarding undesirable results, such as genetic homogenisation or replacement, are widespread. One factor influencing translocation outcomes is the rate at which the resident and the introduced individuals interbreed. Consequently, post-release mate choice is a key behaviour to consider in conservation planning. Here we studied mating, and its consequences for genomic admixture, in the North Island brown kiwi Apteryx mantelli population on Ponui Island which was founded by two translocation events over 50 years ago. The two source populations used are now recognised as belonging to two separate management units between which birds differ in size and are genetically differentiated. We examined the correlation between male and female morphometrics for 17 known pairs and quantified the relatedness of 20 pairs from this admixed population. In addition, we compar...
https://data.linz.govt.nz/license/attribution-4-0-international/https://data.linz.govt.nz/license/attribution-4-0-international/
NZ Suburbs and Localities describes the spatial extent and name of communities in urban areas (suburbs) and rural areas (localities) for navigation and location purposes.
The suburb and locality boundaries cover New Zealand including North Island, South Island, Stewart Island/Rakiura, Chatham Islands, and nearby offshore islands.
Each suburb and locality is assigned a name, major name, Territorial Authority and, if appropriate, additional in use names. A population estimate is provided for each suburb and locality by Stats NZ.
For more information please refer to the NZ Suburbs and Localities Data Dictionary and the LINZ Website
Changes to NZ Suburbs and Localities can be requested by emailing addresses@linz.govt.nz
Change Request Guidance Documents: - Change Request Process - Change Request Principles, Requirements and Rules
APIs and web services
This dataset is available via ArcGIS Online and ArcGIS REST services, as well as our standard APIs. LDS APIs and OGC web services ArcGIS Online map services
https://datafinder.stats.govt.nz/license/attribution-4-0-international/https://datafinder.stats.govt.nz/license/attribution-4-0-international/
Statistical Area 2 2023 update
SA2 2023 is the first major update of the geography since it was first created in 2018. The update is to ensure SA2s are relevant and meet criteria before each five-yearly population and dwelling census. SA2 2023 contains 135 new SA2s. Updates were made to reflect real world change of population and dwelling growth mainly in urban areas, and to make some improvements to their delineation of communities of interest.
Description
This dataset is the definitive version of the annually released statistical area 2 (SA2) boundaries as at 1 January 2023 as defined by Stats NZ. This version contains 2,395 SA2s (2,379 digitised and 16 with empty or null geometries (non-digitised)).
SA2 is an output geography that provides higher aggregations of population data than can be provided at the statistical area 1 (SA1) level. The SA2 geography aims to reflect communities that interact together socially and economically. In populated areas, SA2s generally contain similar sized populations.
The SA2 should:
form a contiguous cluster of one or more SA1s,
excluding exceptions below, allow the release of multivariate statistics with minimal data suppression,
capture a similar type of area, such as a high-density urban area, farmland, wilderness area, and water area,
be socially homogeneous and capture a community of interest. It may have, for example:
form a nested hierarchy with statistical output geographies and administrative boundaries. It must:
SA2s in city council areas generally have a population of 2,000–4,000 residents while SA2s in district council areas generally have a population of 1,000–3,000 residents.
In major urban areas, an SA2 or a group of SA2s often approximates a single suburb. In rural areas, rural settlements are included in their respective SA2 with the surrounding rural area.
SA2s in urban areas where there is significant business and industrial activity, for example ports, airports, industrial, commercial, and retail areas, often have fewer than 1,000 residents. These SA2s are useful for analysing business demographics, labour markets, and commuting patterns.
In rural areas, some SA2s have fewer than 1,000 residents because they are in conservation areas or contain sparse populations that cover a large area.
To minimise suppression of population data, small islands with zero or low populations close to the mainland, and marinas are generally included in their adjacent land-based SA2.
Zero or nominal population SA2s
To ensure that the SA2 geography covers all of New Zealand and aligns with New Zealand’s topography and local government boundaries, some SA2s have zero or nominal populations. These include:
400001; New Zealand Economic Zone, 400002; Oceanic Kermadec Islands, 400003; Kermadec Islands, 400004; Oceanic Oil Rig Taranaki, 400005; Oceanic Campbell Island, 400006; Campbell Island, 400007; Oceanic Oil Rig Southland, 400008; Oceanic Auckland Islands, 400009; Auckland Islands, 400010 ; Oceanic Bounty Islands, 400011; Bounty Islands, 400012; Oceanic Snares Islands, 400013; Snares Islands, 400014; Oceanic Antipodes Islands, 400015; Antipodes Islands, 400016; Ross Dependency.
SA2 numbering and naming
Each SA2 is a single geographic entity with a name and a numeric code. The name refers to a geographic feature or a recognised place name or suburb. In some instances where place names are the same or very similar, the SA2s are differentiated by their territorial authority name, for example, Gladstone (Carterton District) and Gladstone (Invercargill City).
SA2 codes have six digits. North Island SA2 codes start with a 1 or 2, South Island SA2 codes start with a 3 and non-digitised SA2 codes start with a 4. They are numbered approximately north to south within their respective territorial authorities. To ensure the north–south code pattern is maintained, the SA2 codes were given 00 for the last two digits when the geography was created in 2018. When SA2 names or boundaries change only the last two digits of the code will change.
For more information please refer to the Statistical standard for geographic areas 2023.
Generalised version
This generalised version has been simplified for rapid drawing and is designed for thematic or web mapping purposes.
Macrons
Names are provided with and without tohutō/macrons. The column name for those without macrons is suffixed ‘ascii’.
Digital data
Digital boundary data became freely available on 1 July 2007.
To download geographic classifications in table formats such as CSV please use Ariā
https://data.linz.govt.nz/license/attribution-4-0-international/https://data.linz.govt.nz/license/attribution-4-0-international/
The NZ Gazetteer data table is part of NZ Suburbs and Localities Dataset. This table contains the linkage between the NZ Suburbs and Localities data and NZGB official place name.
NZ Suburbs and Localities is an easy to use layer generated from the normalised NZ Suburbs and Localities Dataset. It describes the spatial extent and name of communities in urban areas (suburbs) and rural areas (localities) for navigation and location purposes.
The suburb and locality boundaries cover New Zealand including North Island, South Island, Stewart Island/Rakiura, Chatham Islands, and nearby offshore islands.
Each suburb and locality is assigned a name, major name, Territorial Authority and, if appropriate, additional in use names. A population estimate is provided for each suburb and locality by Stats NZ.
For more information please refer to the NZ Suburbs and Localities Guidance documents:
Data Dictionary Change Request Process Change Request Principles, Requirements and Rules Changes to NZ Suburbs and Localities can be requested by emailing addresses@linz.govt.nz
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Population density (people per sq. km of land area) in Northern Mariana Islands was reported at 100 sq. Km in 2022, according to the World Bank collection of development indicators, compiled from officially recognized sources. Northern Mariana Islands - Population density (people per sq. km) - actual values, historical data, forecasts and projections were sourced from the World Bank on May of 2025.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
New Zealand Population: North Island (NI) data was reported at 4,044,600.000 Person in 2024. This records an increase from the previous number of 3,973,400.000 Person for 2023. New Zealand Population: North Island (NI) data is updated yearly, averaging 3,311,700.000 Person from Jun 1996 (Median) to 2024, with 29 observations. The data reached an all-time high of 4,044,600.000 Person in 2024 and a record low of 2,810,100.000 Person in 1996. New Zealand Population: North Island (NI) data remains active status in CEIC and is reported by Stats NZ. The data is categorized under Global Database’s New Zealand – Table NZ.G005: Population: by Region.