Facebook
Twitterhttps://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html
Forested lands in the western USA have undergone changes in management and condition that are resulting in a shift towards climax vegetation. These changes can influence the quality and quantity of forage for herbivores that rely on early-seral plants. To evaluate how management of forested landscapes might affect nutrition for Shiras moose (A. a. shirasi) at large spatial scales, we focused on shrubs and evaluated summer diet composition, forage availability, and forage quality across 21 population management units encompassing >36,000 km2 in northern Idaho, USA. We identified 17 shrub species in the diets of moose, 11 of which comprised the bulk of the diets. These forage shrubs varied markedly in both energy (mean digestible energy for leaves ranged from 9.62 to 12.89 kJ/g) and protein (mean digestible protein for leaves ranged from 1.73 to 7.90%). By adapting established field sampling methods and integrating recent advances in remote sensing analyses in a modeling framework, we predicted approximations of current and past (i.e., 1984) quantities of forage shrubs across northern Idaho. We also created a qualitative index of population trend for moose across population management units using harvest data. Predicted quantities of forage shrubs varied widely across the study area with generally higher values at more northern latitudes. The quantity of forage shrubs was estimated to have declined over the past 30 years in about half of the population management units, with the greatest declines predicted for high-energy forage species. The population trend index was correlated with the percent change in availability of moderate-energy forage shrubs, indicating that availability of forage shrubs and change in availability over time might be affecting population dynamics for moose in northern Idaho. Our study highlights the importance of assessing how changes in forest management across broad spatiotemporal extents could affect wildlife and their habitats.
Facebook
TwitterComprehensive demographic dataset for North Fork, ID, US including population statistics, household income, housing units, education levels, employment data, and transportation with year-over-year changes.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Forage Shrubs are Grouped by Relative Measures of Forage Quality (Protein and Energy).
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Details of the analysis of the mark–recapture survival data, including the methods and results for model selection.
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Facebook
Twitterhttps://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html
Forested lands in the western USA have undergone changes in management and condition that are resulting in a shift towards climax vegetation. These changes can influence the quality and quantity of forage for herbivores that rely on early-seral plants. To evaluate how management of forested landscapes might affect nutrition for Shiras moose (A. a. shirasi) at large spatial scales, we focused on shrubs and evaluated summer diet composition, forage availability, and forage quality across 21 population management units encompassing >36,000 km2 in northern Idaho, USA. We identified 17 shrub species in the diets of moose, 11 of which comprised the bulk of the diets. These forage shrubs varied markedly in both energy (mean digestible energy for leaves ranged from 9.62 to 12.89 kJ/g) and protein (mean digestible protein for leaves ranged from 1.73 to 7.90%). By adapting established field sampling methods and integrating recent advances in remote sensing analyses in a modeling framework, we predicted approximations of current and past (i.e., 1984) quantities of forage shrubs across northern Idaho. We also created a qualitative index of population trend for moose across population management units using harvest data. Predicted quantities of forage shrubs varied widely across the study area with generally higher values at more northern latitudes. The quantity of forage shrubs was estimated to have declined over the past 30 years in about half of the population management units, with the greatest declines predicted for high-energy forage species. The population trend index was correlated with the percent change in availability of moderate-energy forage shrubs, indicating that availability of forage shrubs and change in availability over time might be affecting population dynamics for moose in northern Idaho. Our study highlights the importance of assessing how changes in forest management across broad spatiotemporal extents could affect wildlife and their habitats.