71 datasets found
  1. USA Topo Maps

    • data.openlaredo.com
    • data.baltimorecity.gov
    • +22more
    html
    Updated Feb 28, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GIS Portal (2025). USA Topo Maps [Dataset]. https://data.openlaredo.com/dataset/usa-topo-maps
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Feb 28, 2025
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    GIS Portal
    Area covered
    United States
    Description

    Important Note: This item is in mature support as of June 2021 and is no longer updated.

    This map presents land cover and detailed topographic maps for the United States. It uses the USA Topographic Map service. The map includes the National Park Service (NPS) Natural Earth physical map at 1.24km per pixel for the world at small scales, i-cubed eTOPO 1:250,000-scale maps for the contiguous United States at medium scales, and National Geographic TOPO! 1:100,000 and 1:24,000-scale maps (1:250,000 and 1:63,000 in Alaska) for the United States at large scales. The TOPO! maps are seamless, scanned images of United States Geological Survey (USGS) paper topographic maps.

    The maps provide a very useful basemap for a variety of applications, particularly in rural areas where the topographic maps provide unique detail and features from other basemaps.

    To add this map service into a desktop application directly, go to the entry for the USA Topo Maps map service.

    Tip: Here are some famous locations as they appear in this web map, accessed by including their location in the URL that launches the map:

    Grand Canyon, Arizona

    Golden Gate, California

    The Statue of Liberty, New York

    Washington DC

    Canyon De Chelly, Arizona

    Yellowstone National Park, Wyoming

    Area 51, Nevada

  2. g

    EAARL Topography-Vicksburg National Millitary Park 2008: Bare Earth

    • gimi9.com
    • search.dataone.org
    • +2more
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    EAARL Topography-Vicksburg National Millitary Park 2008: Bare Earth [Dataset]. https://www.gimi9.com/dataset/data-gov_eaarl-topography-vicksburg-national-millitary-park-2008-bare-earth/
    Explore at:
    Area covered
    Vicksburg, Earth
    Description

    A bare earth elevation map (also known as a Digital Elevation Model, or DEM) of the Vicksburg National Military Park in Mississippi was produced from remotely sensed, geographically referenced elevation measurements cooperatively by the U.S. Geological Survey (USGS), National Park Service (NPS), and National Aeronautics and Space Administration (NASA). Elevation measurements were collected over the area using the NASA Experimental Advanced Airborne Research Lidar (EAARL), a pulsed-laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high frequency laser beams directed at the Earth's surface through an opening in the bottom of the aircraft's fuselage. The laser system records the time difference between emission of the laser beam and the reception of the reflected laser signal in the aircraft. The plane travels over the target area at approximately 50 meters per second at an elevation of approximately 300 meters. The EAARL, developed by NASA at Wallops Flight Facility in Virginia, measures ground elevation with a vertical resolution of 15 centimeters. A sampling rate of 3 kilohertz or higher results in an extremely dense spatial elevation dataset. Over 100 kilometers of coastline can be easily surveyed within a 3- to 4-hour mission. When subsequent elevation maps for an area are analyzed, they provide resource managers with a useful tool regarding land development. For more information on Lidar science and the Experimental Advanced Airborne Research Lidar (EAARL) system and surveys, see http://ngom.usgs.gov/dsp/overview/index.php and http://ngom.usgs.gov/dsp/tech/eaarl/index.php .

  3. Geospatial data for the Vegetation Mapping Inventory Project of Minute Man...

    • catalog.data.gov
    • gimi9.com
    Updated Jun 4, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2024). Geospatial data for the Vegetation Mapping Inventory Project of Minute Man National Historical Park [Dataset]. https://catalog.data.gov/dataset/geospatial-data-for-the-vegetation-mapping-inventory-project-of-minute-man-national-histor
    Explore at:
    Dataset updated
    Jun 4, 2024
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Description

    The files linked to this reference are the geospatial data created as part of the completion of the baseline vegetation inventory project for the NPS park unit. Current format is ArcGIS file geodatabase but older formats may exist as shapefiles. James W. Sewall Company developed a complete GIS coverage for the park and revised the preliminary vegetation map classes to better match the results from the cluster analysis and NMS ordination. Polygons representing vegetation stands were digitized on-screen in ArcGIS 8.3, and later in ArcMap 9.1 and 9.2, using lines drawn on the acetate overlays, base layers of 1:8,000 CIR aerial photography, orthorectified photo composite image, and plot location and data. The minimum map unit used was 0.5 ha (1.24 ac). Stereo pairs were used to double check stand signatures during the digitizing process. Photo interpretation and polygon digitization extended outside the NPS boundary, especially where vegetation units were arbitrarily truncated by the boundary. Each polygon was attributed with the name of a vegetation map class or an Anderson Level II land use category based on plot data, field observations, aerial photography signatures, and topographic maps. Data fields identifying the USNVC association inclusions within the vegetation map class were attributed to the vegetation polygons in the shapefile. The GIS coverages and shapefiles were projected to Universal Transverse Mercator (UTM) Zone 19 North American Datum 1983 (NAD83). FGDC compliant metadata (FGDC 1998a) were created with the NPS-MP ESRI extension and included with the vegetation map shapefile. A photointerpretation key to the map classes for the 2006 draft vegetation map is included as Appendix A. The composite vegetation coverage was clipped to the NPS 2002 MIMA boundary shapefile for accuracy assessment (AA). After the 2006 vegetation map was completed, the thematic accuracy of this map was assessed.

  4. d

    Data from: EAARL Topography-Cape Cod National Seashore

    • datasets.ai
    • data.usgs.gov
    • +4more
    55
    Updated Aug 8, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of the Interior (2024). EAARL Topography-Cape Cod National Seashore [Dataset]. https://datasets.ai/datasets/eaarl-topography-cape-cod-national-seashore
    Explore at:
    55Available download formats
    Dataset updated
    Aug 8, 2024
    Dataset authored and provided by
    Department of the Interior
    Area covered
    Cape Cod
    Description

    Elevation maps (also known as Digital Elevation Models or DEMs) of Cape Cod National Seashore were produced from remotely-sensed, geographically-referenced elevation measurements in cooperation with NASA and NPS. Point data in ascii text files were interpolated in a GIS to create a grid or digital elevation model (DEM) of each beach surface. Elevation measurements were collected in Massachusetts, over Cape Cod National Seashore using the NASA Experimental Advanced Airborne Research LiDAR (EAARL), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation and coastal topography. The system uses high frequency laser beams directed at the earth's surface through an opening in the bottom of the aircraft's fuselage. The laser system records the time difference between emission of the laser beam and the reception of the reflected laser signal in the aircraft. The plane travels over the beach at approximately 60 meters per second while surveying from the low-water line to the landward base of the sand dunes. The EAARL, developed by the National Aeronautics and Space Administration (NASA) located at Wallops Flight Facility in Virginia, measures ground elevation with a vertical resolution of 15 centimeters. A sampling rate of 3 kHz or higher results in an extremely dense spatial elevation data set. Over 100 kilometers of coastline can be easily surveyed within a 3- to 4-hour mission time period. The ability to sample large areas rapidly and accurately is especially useful in morphologically dynamic areas such as barrier beaches. Quick assessment of topographic change can be made following storms comparing measurements against baseline data. When subsequent elevation maps for an area are analyzed, they provide a useful tool to make management decisions regarding coastal development. For more information on Lidar science and the Experimental Advanced Airborne Research Lidar (EAARL) system and surveys, see http://ngom.usgs.gov/dsp/overview/index.php and http://ngom.usgs.gov/dsp/tech/eaarl/index.php .

  5. i

    USGS Topographic Maps (Dynamic)

    • indianamap.org
    • indianamap-inmap.hub.arcgis.com
    Updated Oct 5, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    IndianaMap (2022). USGS Topographic Maps (Dynamic) [Dataset]. https://www.indianamap.org/datasets/usgs-topographic-maps-dynamic-1/about
    Explore at:
    Dataset updated
    Oct 5, 2022
    Dataset authored and provided by
    IndianaMap
    Area covered
    Description

    This map presents land cover imagery for the world and detailed topographic maps for the United States. The map includes the National Park Service (NPS) Natural Earth physical map at 1.24km per pixel for the world at small scales, i-cubed eTOPO 1:250,000-scale maps for the contiguous United States at medium scales, and National Geographic TOPO! 1:100,000 and 1:24,000-scale maps (1:250,000 and 1:63,000 in Alaska) for the United States at large scales. The TOPO! maps are seamless, scanned images of United States Geological Survey (USGS) paper topographic maps. For more information on this map, including our terms of use, visit us online at http://goto.arcgisonline.com/maps/USA_Topo_Maps

  6. U

    1 meter Digital Elevation Models (DEMs) - USGS National Map 3DEP...

    • data.usgs.gov
    • datadiscoverystudio.org
    • +4more
    Updated Feb 20, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2025). 1 meter Digital Elevation Models (DEMs) - USGS National Map 3DEP Downloadable Data Collection [Dataset]. https://data.usgs.gov/datacatalog/data/USGS:77ae0551-c61e-4979-aedd-d797abdcde0e
    Explore at:
    Dataset updated
    Feb 20, 2025
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Authors
    U.S. Geological Survey
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Description

    This is a tiled collection of the 3D Elevation Program (3DEP) and is one meter resolution. The 3DEP data holdings serve as the elevation layer of The National Map, and provide foundational elevation information for earth science studies and mapping applications in the United States. Scientists and resource managers use 3DEP data for hydrologic modeling, resource monitoring, mapping and visualization, and many other applications. The elevations in this DEM represent the topographic bare-earth surface. USGS standard one-meter DEMs are produced exclusively from high resolution light detection and ranging (lidar) source data of one-meter or higher resolution. One-meter DEM surfaces are seamless within collection projects, but, not necessarily seamless across projects. The spatial reference used for tiles of the one-meter DEM within the conterminous United States (CONUS) is Universal Transverse Mercator (UTM) in units of meters, and in conformance with the North American Datum of 1983 ...

  7. d

    Data from: EAARL Topography-Padre Island National Seashore

    • catalog.data.gov
    • data.usgs.gov
    • +3more
    Updated Jul 6, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). EAARL Topography-Padre Island National Seashore [Dataset]. https://catalog.data.gov/dataset/eaarl-topography-padre-island-national-seashore
    Explore at:
    Dataset updated
    Jul 6, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Area covered
    Padre Island
    Description

    Elevation maps (also known as Digital Elevation Models or DEMs) of Padre Island National Seashore were produced from remotely-sensed, geographically-referenced elevation measurements in cooperation with NASA and NPS. Point data in ascii text files were interpolated in a GIS to create a grid or digital elevation model (DEM) of each beach surface. Elevation measurements were collected in Texas, over Padre Island National Seashore, using the NASA Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation and coastal topography. The system uses high frequency laser beams directed at the earth's surface through an opening in the bottom of the aircraft's fuselage. The laser system records the time difference between emission of the laser beam and the reception of the reflected laser signal in the aircraft. The plane travels over the beach at approximately 60 meters per second while surveying from the low-water line to the landward base of the sand dunes. The EAARL, developed by the National Aeronautics and Space Administration (NASA) located at Wallops Flight Facility in Virginia, measures ground elevation with a vertical resolution of 15 centimeters. A sampling rate of 3 kHz or higher results in an extremely dense spatial elevation data set. Over 100 kilometers of coastline can be easily surveyed within a 3- to 4-hour mission time period. The ability to sample large areas rapidly and accurately is especially useful in morphologically dynamic areas such as barrier beaches. Quick assessment of topographic change can be made following storms comparing measurements against baseline data. When subsequent elevation maps for an area are analyzed, they provide a useful tool to make management decisions regarding coastal development. For more information on Lidar science and the Experimental Advanced Airborne Research Lidar (EAARL) system and surveys, see http://ngom.usgs.gov/dsp/overview/index.php and http://ngom.usgs.gov/dsp/tech/eaarl/index.php .

  8. Geospatial data for the Vegetation Mapping Inventory Project of Petersburg...

    • catalog.data.gov
    • data.amerigeoss.org
    Updated Jun 4, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2024). Geospatial data for the Vegetation Mapping Inventory Project of Petersburg National Battlefield [Dataset]. https://catalog.data.gov/dataset/geospatial-data-for-the-vegetation-mapping-inventory-project-of-petersburg-national-battle
    Explore at:
    Dataset updated
    Jun 4, 2024
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Area covered
    Petersburg
    Description

    The files linked to this reference are the geospatial data created as part of the completion of the baseline vegetation inventory project for the NPS park unit. Current format is ArcGIS file geodatabase but older formats may exist as shapefiles. Spatial data from field observation points and quantitative plots were used to edit the formation-level maps of Petersburg National Battlefield to better reflect vegetation classes. Using ArcView 3.3, polygon boundaries were revised onscreen over leaf-off photography. Units used to label polygons on the map (i.e. map classes) are equivalent to one or more vegetation classes from the regional vegetation classification, or to a land-use class from the Anderson (Anderson et al. 1976) Level II classification system. Each polygon on the Petersburg National Battlefield map was assigned to one of twenty map classes based on plot data, field observations, aerial photography signatures, and topographic maps. The mapping boundary was based on park boundary data obtained from Petersburg National Battlefield in May 2006. Spatial data depicting the locations of earthworks was obtained from the park and used to identify polygons of the cultural map classes Open Earthworks and Forested Earthworks. One map class used to attribute polygons combines two similar associations that, in some circumstances, are difficult to distinguish in the field. The vegetation map was clipped at the park boundary because areas outside the park were not surveyed or included in the accuracy assessment. Twenty map classes were used in the vegetation map for Petersburg National Battlefield. Map classes are equivalent to one or more vegetation classes from the regional vegetation classification, or to a land-use class from the Anderson (Anderson et al. 1976) Level II classification system.

  9. d

    Data from: EAARL Topography-Gulf Islands National Seashore-Florida

    • catalog.data.gov
    Updated Jul 6, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). EAARL Topography-Gulf Islands National Seashore-Florida [Dataset]. https://catalog.data.gov/dataset/eaarl-topography-gulf-islands-national-seashore-florida
    Explore at:
    Dataset updated
    Jul 6, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Area covered
    Florida, Gulf Islands National Seashore
    Description

    Elevation maps (also known as Digital Elevation Models or DEMs) of Gulf Islands National Seashore were produced from remotely-sensed, geographically-referenced elevation measurements in cooperation with NASA and NPS. Point data in ascii text files were interpolated in a GIS to create a grid or digital elevation model (DEM) of each beach surface. Elevation measurements were collected in Florida, Mississippi and Texas, over Gulf Islands National Seashore, using the NASA Experimental Advanced Airborne Research LiDAR (EAARL), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation and coastal topography. The system uses high frequency laser beams directed at the earth's surface through an opening in the bottom of the aircraft's fuselage. The laser system records the time difference between emission of the laser beam and the reception of the reflected laser signal in the aircraft. The plane travels over the beach at approximately 60 meters per second while surveying from the low-water line to the landward base of the sand dunes. The EAARL, developed by the National Aeronautics and Space Administration (NASA) located at Wallops Flight Facility in Virginia, measures ground elevation with a vertical resolution of 15 centimeters. A sampling rate of 3 kHz or higher results in an extremely dense spatial elevation data set. Over 100 kilometers of coastline can be easily surveyed within a 3- to 4-hour mission time period. The ability to sample large areas rapidly and accurately is especially useful in morphologically dynamic areas such as barrier beaches. Quick assessment of topographic change can be made following storms comparing measurements against baseline data. When subsequent elevation maps for an area are analyzed, they provide a useful tool to make management decisions regarding coastal development. For more information on Lidar science and the Experimental Advanced Airborne Research Lidar (EAARL) system and surveys, see http://ngom.usgs.gov/dsp/overview/index.php and http://ngom.usgs.gov/dsp/tech/eaarl/index.php .

  10. a

    World Topographic Map

    • catalogue.arctic-sdi.org
    Updated May 23, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2022). World Topographic Map [Dataset]. https://catalogue.arctic-sdi.org/geonetwork/srv/search?keyword=India
    Explore at:
    Dataset updated
    May 23, 2022
    Area covered
    World
    Description

    This map is designed to be used as a basemap by GIS professionals and as a reference map by anyone. The map includes administrative boundaries, cities, water features, physiographic features, parks, landmarks, highways, roads, railways, and airports overlaid on land cover and shaded relief imagery for added context. The map provides coverage for the world down to a scale of ~1:72k. Coverage is provided down to ~1:4k for the following areas: Australia and New Zealand; India; Europe; Canada; Mexico; the continental United States and Hawaii; South America and Central America; Africa; and most of the Middle East. Coverage down to ~1:1k and ~1:2k is available in select urban areas. This basemap was compiled from a variety of best available sources from several data providers, including the U.S. Geological Survey (USGS), U.S. Environmental Protection Agency (EPA), U.S. National Park Service (NPS), Food and Agriculture Organization of the United Nations (FAO), Department of Natural Resources Canada (NRCAN), GeoBase, Agriculture and Agri-Food Canada, Garmin, HERE, Esri, OpenStreetMap contributors, and the GIS User Community. For more information on this map, including the terms of use, visit us online.

  11. Digital Geologic-GIS Map of Joshua Tree National Park, California (NPS, GRD,...

    • catalog.data.gov
    • datasets.ai
    • +2more
    Updated Jun 4, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2024). Digital Geologic-GIS Map of Joshua Tree National Park, California (NPS, GRD, GRI, JOTR, JOTR digital map) adapted from a U.S. Geological Survey Open-File Report map by Powell, Matti and Cossette (2015), and an ESRI USA Topo Web Map Service map (2013) [Dataset]. https://catalog.data.gov/dataset/digital-geologic-gis-map-of-joshua-tree-national-park-california-nps-grd-gri-jotr-jotr-dig
    Explore at:
    Dataset updated
    Jun 4, 2024
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Area covered
    United States, California
    Description

    The Digital Geologic-GIS Map of Joshua Tree National Park, California is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (jotr_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (jotr_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (jotr_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) a readme file (jotr_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (jotr_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (jotr_geology_metadata_faq.pdf). Please read the jotr_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey and ESRI. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (jotr_geology_metadata.txt or jotr_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:100,000 and United States National Map Accuracy Standards features are within (horizontally) 50.8 meters or 166.7 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).

  12. U

    Data from: EAARL Topography - Gateway National Recreation Area

    • data.usgs.gov
    • search.dataone.org
    • +2more
    Updated Sep 9, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). EAARL Topography - Gateway National Recreation Area [Dataset]. https://data.usgs.gov/datacatalog/data/USGS:7b5e6888-4e1d-42ae-88be-5118352a9d65
    Explore at:
    Dataset updated
    Sep 9, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Authors
    U.S. Geological Survey
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Time period covered
    Apr 21, 2005
    Description

    A bare earth elevation map (also known as a Digital Elevation Model or DEM) of Gateway National Recreation Area was produced from remotely-sensed, geographically-referenced elevation measurements in cooperation with the U.S. Geological Survey (USGS), National Air and Space Administration (NASA), and the National Park Service (NPS). Elevation measurements were collected over the area using the NASA Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high frequency laser beams directed at the earth's surface through an opening in the bottom of the aircraft's fuselage. The laser system records the time difference between emission of the laser beam and the reception of the reflected laser signal in the aircraft. The plane travels over the target area at approximately 50 meters per second at an elevation of approximately 300 m. The EAARL, ...

  13. Geospatial data for the Vegetation Mapping Inventory Project of Gettysburg...

    • catalog.data.gov
    • data.amerigeoss.org
    Updated Jun 5, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2024). Geospatial data for the Vegetation Mapping Inventory Project of Gettysburg National Military Park and Eisenhower National Historic Site [Dataset]. https://catalog.data.gov/dataset/geospatial-data-for-the-vegetation-mapping-inventory-project-of-gettysburg-national-milita
    Explore at:
    Dataset updated
    Jun 5, 2024
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Area covered
    Gettysburg
    Description

    The files linked to this reference are the geospatial data created as part of the completion of the baseline vegetation inventory project for the NPS park unit. Current format is ArcGIS file geodatabase but older formats may exist as shapefiles. Following the vegetation data analysis, the formation-level vegetation map was further edited and refined to develop an association-level vegetation map. Using ArcView 3.2, polygon boundaries were revised onscreen based on the plot data and additional field observations. Each polygon was attributed with the name of a vegetation association based on plot data, field observations, classification analyses, aerial photography signatures, and topographic maps. Several polygons were labeled as mosaics of two associations because both types were present in the polygons and clear boundaries between the two associations could not be delineated. The category of Cleared Land was added as an Anderson level II category (modified) for polygons that had recently undergone woodlot removal as part of the battlefield rehabilitation. After the vegetation association map was completed, the thematic accuracy of this map was assessed.

  14. d

    Data from: EAARL Topography--George Washington Birthplace National Monument...

    • catalog.data.gov
    • data.usgs.gov
    • +2more
    Updated Jul 6, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). EAARL Topography--George Washington Birthplace National Monument 2008 [Dataset]. https://catalog.data.gov/dataset/eaarl-topography-george-washington-birthplace-national-monument-2008
    Explore at:
    Dataset updated
    Jul 6, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Description

    A first surface/bare earth elevation map (also known as a Digital Elevation Model, or DEM) of the George Washington Birthplace National Monument in Virginia was produced from remotely sensed, geographically referenced elevation measurements cooperatively by the U.S. Geological Survey (USGS), the National Park Service (NPS), and the National Aeronautics and Space Administration (NASA). Elevation measurements were collected over the area using the NASA Experimental Advanced Airborne Research Lidar (EAARL), a pulsed-laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high-frequency laser beams directed at the Earth's surface through an opening in the bottom of the aircraft's fuselage. The laser system records the time difference between emission of the laser beam and the reception of the reflected laser signal in the aircraft. The plane travels over the target area at approximately 50 meters per second at an elevation of approximately 300 meters. The EAARL, developed by NASA at Wallops Flight Facility in Virginia, measures ground elevation with a vertical resolution of 15 centimeters. A sampling rate of 3 kilohertz or higher results in an extremely dense spatial elevation dataset. Over 100 kilometers of coastline can be easily surveyed within a 3- to 4-hour mission. When subsequent elevation maps for an area are analyzed, they provide resource managers with a useful tool regarding land development. For more information on Lidar science and the Experimental Advanced Airborne Research Lidar (EAARL) system and surveys, see http://ngom.usgs.gov/dsp/overview/index.php and http://ngom.usgs.gov/dsp/tech/eaarl/index.php .

  15. d

    Data from: EAARL Topography-Thomas Stone National Historic Site

    • catalog.data.gov
    • data.usgs.gov
    • +1more
    Updated Jul 6, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). EAARL Topography-Thomas Stone National Historic Site [Dataset]. https://catalog.data.gov/dataset/eaarl-topography-thomas-stone-national-historic-site
    Explore at:
    Dataset updated
    Jul 6, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Description

    A first surface elevation map (also known as a Digital Elevation Model or DEM) of Thomas Stone National Historic Site was produced from remotely-sensed, geographically-referenced elevation measurements in cooperation with the U.S. Geological Survey (USGS), National Air and Space Administration (NASA), and the National Park Service (NPS). Elevation measurements were collected over the area using the NASA Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high frequency laser beams directed at the earth's surface through an opening in the bottom of the aircraft's fuselage. The laser system records the time difference between emission of the laser beam and the reception of the reflected laser signal in the aircraft. The plane travels over the target area at approximately 50 meters per second at an elevation of approximately 300 m. The EAARL, developed by NASA at Wallops Flight Facility in Virginia, measures ground elevation with a vertical resolution of 15 centimeters. A sampling rate of 3 kHz or higher results in an extremely dense spatial elevation data set. Over 100 kilometers of coastline can be easily surveyed within a 3- to 4-hour mission time period. When subsequent elevation maps for an area are analyzed, they provide a useful tool to make management decisions regarding land development. For more information on Lidar science and the Experimental Advanced Airborne Research Lidar (EAARL) system and surveys, see http://ngom.usgs.gov/dsp/overview/index.php and http://ngom.usgs.gov/dsp/tech/eaarl/index.php .

  16. g

    Geospatial data for the Vegetation Mapping Inventory Project of Colonial...

    • gimi9.com
    • catalog.data.gov
    • +1more
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Geospatial data for the Vegetation Mapping Inventory Project of Colonial National Historical Park [Dataset]. https://gimi9.com/dataset/data-gov_geospatial-data-for-the-vegetation-mapping-inventory-project-of-colonial-national-historic
    Explore at:
    Description

    The files linked to this reference are the geospatial data created as part of the completion of the baseline vegetation inventory project for the NPS park unit. Current format is ArcGIS file geodatabase but older formats may exist as shapefiles. Spatial data from field observation points and quantitative plots were used to edit the formation-level maps of Colonial National Historical Park to better reflect vegetation classes. Using ArcView 3.3, polygon boundaries were revised onscreen over leaf-off photography. Units used to label polygons on the map (i.e. map classes) are equivalent to one or more vegetation classes from the regional vegetation classification, or to a land-use class from the Anderson (Anderson et al. 1976) Level II classification system. Each polygon on the Colonial National Historical Park map was assigned to one of forty map classes based on plot data, field observations, aerial photography signatures, and topographic maps. The mapping boundary was based on park boundary data obtained Colonial National Historical Park in May 2003. The mapping boundary includes lands under a scenic easement at Swanns Point and it excludes the Cheatham Annex, an area that returned to US Navy ownership in February 2004. The vegetation map was clipped at the park boundary because areas outside the park were not surveyed or included in the accuracy assessment.

  17. d

    Landing Page

    • datadiscoverystudio.org
    Updated Jun 27, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2018). Landing Page [Dataset]. http://datadiscoverystudio.org/geoportal/rest/metadata/item/27db01ab317b411b8b15466b92bd1c12/html
    Explore at:
    Dataset updated
    Jun 27, 2018
    Authors
    Esri
    Area covered
    Description

    Link to landing page referenced by identifier. Service Protocol: Link to landing page referenced by identifier. Link Function: information-- dc:identifier.

  18. d

    EAARL Topography-Fire Island National Seaashore

    • catalog.data.gov
    • data.usgs.gov
    • +1more
    Updated Jul 6, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). EAARL Topography-Fire Island National Seaashore [Dataset]. https://catalog.data.gov/dataset/eaarl-topography-fire-island-national-seaashore
    Explore at:
    Dataset updated
    Jul 6, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Area covered
    Fire Island
    Description

    A first return elevation map (also known as a Digital Elevation Model or DEM) of Fire Island National Seashore was produced from remotely-sensed, geographically-referenced elevation measurements in cooperation with the U.S. Geological Survey (USGS), National Air and Space Administration (NASA), and the National Park Service (NPS). Elevation measurements were collected over the area using the NASA Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high frequency laser beams directed at the earth's surface through an opening in the bottom of the aircraft's fuselage. The laser system records the time difference between emission of the laser beam and the reception of the reflected laser signal in the aircraft. The plane travels over the target area at approximately 50 meters per second at an elevation of approximately 300 m. The EAARL, developed by NASA at Wallops Flight Facility in Virginia, measures ground elevation with a vertical resolution of 15 centimeters. A sampling rate of 3 kHz or higher results in an extremely dense spatial elevation data set. Over 100 kilometers of coastline can be easily surveyed within a 3- to 4-hour mission time period. When subsequent elevation maps for an area are analyzed, they provide a useful tool to make management decisions regarding land development. For more information on Lidar science and the Experimental Advanced Airborne Research Lidar (EAARL) system and surveys, see http://ngom.usgs.gov/dsp/overview/index.php and http://ngom.usgs.gov/dsp/tech/eaarl/index.php .

  19. d

    Data from: EAARL Coastal Topography--Gateway National Recreation Area, New...

    • datadiscoverystudio.org
    • data.usgs.gov
    • +4more
    Updated May 21, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2018). EAARL Coastal Topography--Gateway National Recreation Area, New Jersey and New York, 2009. [Dataset]. http://datadiscoverystudio.org/geoportal/rest/metadata/item/4e2fa0870d084a67985cd44aab8b5c2f/html
    Explore at:
    Dataset updated
    May 21, 2018
    Description

    description: A digital elevation map (also known as a Digital Elevation Model, or DEM) of a portion of the Gateway National Recreation Area in New Jersey and New York was produced from remotely sensed, geographically referenced elevation measurements cooperatively by the U.S. Geological Survey (USGS), the National Park Service (NPS), and the National Aeronautics and Space Administration (NASA). Elevation measurements were collected over the area using the NASA Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high-frequency laser beams directed at the Earth's surface through an opening in the bottom of the aircraft's fuselage. The laser system records the time difference between emission of the laser beam and the reception of the reflected laser signal in the aircraft. The plane travels over the target area at approximately 50 meters per second at an elevation of approximately 300 meters. The EAARL, developed by NASA at Wallops Flight Facility in Virginia, measures ground elevation with a vertical resolution of +/-15 centimeters. A sampling rate of 3 kilohertz or higher results in an extremely dense spatial elevation dataset. Over 100 kilometers of coastline can be surveyed easily within a 3- to 4-hour mission. When subsequent elevation maps for an area are analyzed, they provide a useful tool to make management decisions regarding land development. For more information on Lidar science and the Experimental Advanced Airborne Research Lidar (EAARL) system and surveys, see http://ngom.usgs.gov/dsp/overview/index.php and http://ngom.usgs.gov/dsp/tech/eaarl/index.php .; abstract: A digital elevation map (also known as a Digital Elevation Model, or DEM) of a portion of the Gateway National Recreation Area in New Jersey and New York was produced from remotely sensed, geographically referenced elevation measurements cooperatively by the U.S. Geological Survey (USGS), the National Park Service (NPS), and the National Aeronautics and Space Administration (NASA). Elevation measurements were collected over the area using the NASA Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high-frequency laser beams directed at the Earth's surface through an opening in the bottom of the aircraft's fuselage. The laser system records the time difference between emission of the laser beam and the reception of the reflected laser signal in the aircraft. The plane travels over the target area at approximately 50 meters per second at an elevation of approximately 300 meters. The EAARL, developed by NASA at Wallops Flight Facility in Virginia, measures ground elevation with a vertical resolution of +/-15 centimeters. A sampling rate of 3 kilohertz or higher results in an extremely dense spatial elevation dataset. Over 100 kilometers of coastline can be surveyed easily within a 3- to 4-hour mission. When subsequent elevation maps for an area are analyzed, they provide a useful tool to make management decisions regarding land development. For more information on Lidar science and the Experimental Advanced Airborne Research Lidar (EAARL) system and surveys, see http://ngom.usgs.gov/dsp/overview/index.php and http://ngom.usgs.gov/dsp/tech/eaarl/index.php .

  20. d

    EAARL Bare Earth Topography-Fire Island National Seashore

    • catalog.data.gov
    • data.usgs.gov
    • +3more
    Updated Jul 6, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). EAARL Bare Earth Topography-Fire Island National Seashore [Dataset]. https://catalog.data.gov/dataset/eaarl-bare-earth-topography-fire-island-national-seashore
    Explore at:
    Dataset updated
    Jul 6, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Area covered
    Earth, Fire Island
    Description

    A bare earth elevation map (also known as a Digital Elevation Model or DEM) of Fire Island National Seashore was produced from remotely-sensed, geographically-referenced elevation measurements in cooperation with the U.S. Geological Survey (USGS), National Air and Space Administration (NASA), and the National Park Service (NPS). Elevation measurements were collected over the area using the NASA Experimental Advanced Airborne Research Lidar (EAARL), a pulsed laser ranging system mounted onboard an aircraft to measure ground elevation, vegetation canopy, and coastal topography. The system uses high frequency laser beams directed at the earth's surface through an opening in the bottom of the aircraft's fuselage. The laser system records the time difference between emission of the laser beam and the reception of the reflected laser signal in the aircraft. The plane travels over the target area at approximately 50 meters per second at an elevation of approximately 300 m. The EAARL, developed by NASA at Wallops Flight Facility in Virginia, measures ground elevation with a vertical resolution of 15 centimeters. A sampling rate of 3 kHz or higher results in an extremely dense spatial elevation data set. Over 100 kilometers of coastline can be easily surveyed within a 3- to 4-hour mission time period. When subsequent elevation maps for an area are analyzed, they provide a useful tool to make management decisions regarding land development. For more information on Lidar science and the Experimental Advanced Airborne Research Lidar (EAARL) system and surveys, see http://ngom.usgs.gov/dsp/overview/index.php and http://ngom.usgs.gov/dsp/tech/eaarl/index.php .

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
GIS Portal (2025). USA Topo Maps [Dataset]. https://data.openlaredo.com/dataset/usa-topo-maps
Organization logo

USA Topo Maps

Explore at:
61 scholarly articles cite this dataset (View in Google Scholar)
htmlAvailable download formats
Dataset updated
Feb 28, 2025
Dataset provided by
Esrihttp://esri.com/
Authors
GIS Portal
Area covered
United States
Description

Important Note: This item is in mature support as of June 2021 and is no longer updated.

This map presents land cover and detailed topographic maps for the United States. It uses the USA Topographic Map service. The map includes the National Park Service (NPS) Natural Earth physical map at 1.24km per pixel for the world at small scales, i-cubed eTOPO 1:250,000-scale maps for the contiguous United States at medium scales, and National Geographic TOPO! 1:100,000 and 1:24,000-scale maps (1:250,000 and 1:63,000 in Alaska) for the United States at large scales. The TOPO! maps are seamless, scanned images of United States Geological Survey (USGS) paper topographic maps.

The maps provide a very useful basemap for a variety of applications, particularly in rural areas where the topographic maps provide unique detail and features from other basemaps.

To add this map service into a desktop application directly, go to the entry for the USA Topo Maps map service.

Tip: Here are some famous locations as they appear in this web map, accessed by including their location in the URL that launches the map:

Grand Canyon, Arizona

Golden Gate, California

The Statue of Liberty, New York

Washington DC

Canyon De Chelly, Arizona

Yellowstone National Park, Wyoming

Area 51, Nevada

Search
Clear search
Close search
Google apps
Main menu