Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analysis of ‘Property Prices Index By City 2009 to 2021’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/jolenech/property-prices-index-by-city-2009-to-2021 on 13 February 2022.
--- Dataset description provided by original source is as follows ---
I wanted to see how affordable housing is across countries and wanted to compare the price of housing. But I could not find a properly documented and easily downloaded dataset hence I created one with the help of web-scraping with Python and Pandas.
I spent a lot of time searching for a source for the information I wanted in order to compare affordability. I stumbled upon a great website which was exactly what I was looking for Numbeo The website has a lot of details like affordability index, prime to income ratio, price to rent ratios in and out of city centre and more!
Now I had the data, I needed to download it. Since I couldn't get the raw form of the data, I did web scraping in order to get details in the table for 2009 to 2021 using a for loop to go through all links and create csv files for every year.
Details of columns Note: There are a few null values in the 2009 dataset (mortgage and Affordability Index columns.
Check out the code I used on Github.
I couldn't have gotten the data without Numbeo!
I was working on a project trying to see if Price of Housing in Singapore can be justified and wanted more data that's global instead of just from Singapore. Let me know if you have any questions!
--- Original source retains full ownership of the source dataset ---
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Quality of Life Index (higher is better) is an estimation of overall quality of life by using an empirical formula which takes into account purchasing power index (higher is better), pollution index (lower is better), house price to income ratio (lower is better), cost of living index (lower is better), safety index (higher is better), health care index (higher is better), traffic commute time index (lower is better) and climate index (higher is better).
Current formula (written in Java programming language):
index.main = Math.max(0, 100 + purchasingPowerInclRentIndex / 2.5 - (housePriceToIncomeRatio * 1.0) - costOfLivingIndex / 10 + safetyIndex / 2.0 + healthIndex / 2.5 - trafficTimeIndex / 2.0 - pollutionIndex * 2.0 / 3.0 + climateIndex / 3.0);
For details how purchasing power (including rent) index, pollution index, property price to income ratios, cost of living index, safety index, climate index, health index and traffic index are calculated please look up their respective pages.
Formulas used in the past
Formula used between June 2017 and Decembar 2017
We decided to decrease weight from costOfLivingIndex in this formula:
index.main = Math.max(0, 100 + purchasingPowerInclRentIndex / 2.5 - (housePriceToIncomeRatio * 1.0) - costOfLivingIndex / 5 + safetyIndex / 2.0 + healthIndex / 2.5 - trafficTimeIndex / 2.0 - pollutionIndex * 2.0 / 3.0 + climateIndex / 3.0);
The World Happiness 2017, which ranks 155 countries by their happiness levels, was released at the United Nations at an event celebrating International Day of Happiness on March 20th. The report continues to gain global recognition as governments, organizations and civil society increasingly use happiness indicators to inform their policy-making decisions. Leading experts across fields – economics, psychology, survey analysis, national statistics, health, public policy and more – describe how measurements of well-being can be used effectively to assess the progress of nations. The reports review the state of happiness in the world today and show how the new science of happiness explains personal and national variations in happiness.
The scores are based on answers to the main life evaluation question asked in the poll. This question, known as the Cantril ladder, asks respondents to think of a ladder with the best possible life for them being a 10 and the worst possible life being a 0 and to rate their own current lives on that scale. The scores are from nationally representative samples for 2017 and use the Gallup weights to make the estimates representative. The columns following the happiness score estimate the extent to which each of six factors – economic production, social support, life expectancy, freedom, absence of corruption, and generosity – contribute to making life evaluations higher in each country than they are in Dystopia, a hypothetical country that has values equal to the world’s lowest national averages for each of the six factors. They have no impact on the total score reported for each country, but they do explain why some countries rank higher than others.
Quality of life index, link: https://www.numbeo.com/quality-of-life/indices_explained.jsp
Happiness store, link: https://www.kaggle.com/unsdsn/world-happiness/home
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analysis of ‘Property Prices Index By City 2009 to 2021’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/jolenech/property-prices-index-by-city-2009-to-2021 on 13 February 2022.
--- Dataset description provided by original source is as follows ---
I wanted to see how affordable housing is across countries and wanted to compare the price of housing. But I could not find a properly documented and easily downloaded dataset hence I created one with the help of web-scraping with Python and Pandas.
I spent a lot of time searching for a source for the information I wanted in order to compare affordability. I stumbled upon a great website which was exactly what I was looking for Numbeo The website has a lot of details like affordability index, prime to income ratio, price to rent ratios in and out of city centre and more!
Now I had the data, I needed to download it. Since I couldn't get the raw form of the data, I did web scraping in order to get details in the table for 2009 to 2021 using a for loop to go through all links and create csv files for every year.
Details of columns Note: There are a few null values in the 2009 dataset (mortgage and Affordability Index columns.
Check out the code I used on Github.
I couldn't have gotten the data without Numbeo!
I was working on a project trying to see if Price of Housing in Singapore can be justified and wanted more data that's global instead of just from Singapore. Let me know if you have any questions!
--- Original source retains full ownership of the source dataset ---