Attribution-NonCommercial-NoDerivs 4.0 (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/
License information was derived automatically
App Download Key StatisticsApp and Game DownloadsiOS App and Game DownloadsGoogle Play App and Game DownloadsGame DownloadsiOS Game DownloadsGoogle Play Game DownloadsApp DownloadsiOS App...
In the first quarter of 2020, a total of 596 petabytes of data were used by new downloads of the top 250 apps worldwide. In comparison, in the same quarter of the preceding year, only 446 petabytes of data was used by new downloads of the most popular apps. The increase in data used by app downloads is a result of the coronavirus pandemic, during which stay-home recommendations were common worldwide.
Attribution-NonCommercial-NoDerivs 4.0 (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/
License information was derived automatically
Key Apple App Store StatisticsApple App Store App and Game RevenueApple App Store Gaming App RevenueApple App Store App RevenueApple App Store App and Game DownloadsApple App Store Game...
While the number of downloads kept increasing between 2016 to 2022. However, in 2023, the global app downloads stagnated, reaching 257 billion downloads and experienced only a one percent year-over-year increase.
The app market Mobile apps are projected to generate more than 613 billion U.S. dollars in revenues in 2025, with mobile games making up the biggest revenue share among all app categories. In 2020, gaming and video made up the largest shares of the mobile content market for the year. The ePublishing and education sectors still saw a limited market for their mobile content, despite the increase in apps usage brought by the COVID-19 pandemic disrupting regular school system settings.
App monetization: a changing landscape As an indispensable part of the smartphone experience, the largest number of apps in the major app stores are free to download. However, in recent years, the growth of global consumer spending on apps has shown users’ healthy appetite for premium services or paid app content. In the second quarter of 2021, Android consumers have spent an average of 5.31 U.S. dollars per handset, after peaking in the last quarter of 2020 reaching an average of 10.6 U.S. dollars per mobile device. As of September 2021, the number of paid apps has shrunk to make up only six percent and four percent of the total numbers in the Apple App Store and the Google Play Store, respectively. In comparison, apps offering subscription plans are becoming increasingly popular in the monetization landscape. In 2020, the leading subscription apps in the Apple App Store generated more than 10 million U.S. dollars in global revenues.
Google Play Store dataset to explore detailed information about apps, including ratings, descriptions, updates, and developer details. Popular use cases include app performance analysis, market research, and consumer behavior insights.
Use our Google Play Store dataset to explore detailed information about apps available on the platform, including app titles, developers, monetization features, user ratings, reviews, and more. This dataset also includes data on app descriptions, safety measures, download counts, recent updates, and compatibility, providing a complete overview of app performance and features.
Tailored for app developers, marketers, and researchers, this dataset offers valuable insights into user preferences, app trends, and market dynamics. Whether you're optimizing app development, conducting competitive analysis, or tracking app performance, the Google Play Store dataset is an essential resource for making data-driven decisions in the mobile app ecosystem.
This dataset is ideal for a variety of applications:
CUSTOM Please review the respective licenses below: 1. Data Provider's License - Bright Data Master Service Agreement
~Up to $0.0025 per record. Min order $250
Approximately 10M new records are added each month. Approximately 13.8M records are updated each month. Get the complete dataset each delivery, including all records. Retrieve only the data you need with the flexibility to set Smart Updates.
New snapshot each month, 12 snapshots/year Paid monthly
New snapshot each quarter, 4 snapshots/year Paid quarterly
New snapshot every 6 months, 2 snapshots/year Paid twice-a-year
New snapshot one-time delivery Paid once
https://brightdata.com/licensehttps://brightdata.com/license
This dataset encompasses a wide-ranging collection of Google Play applications, providing a holistic view of the diverse ecosystem within the platform. It includes information on various attributes such as the title, developer, monetization features, images, app descriptions, data safety measures, user ratings, number of reviews, star rating distributions, user feedback, recent updates, related applications by the same developer, content ratings, estimated downloads, and timestamps. By aggregating this data, the dataset offers researchers, developers, and analysts an extensive resource to explore and analyze trends, patterns, and dynamics within the Google Play Store. Researchers can utilize this dataset to conduct comprehensive studies on user behavior, market trends, and the impact of various factors on app success. Developers can leverage the insights derived from this dataset to inform their app development strategies, improve user engagement, and optimize monetization techniques. Analysts can employ the dataset to identify emerging trends, assess the performance of different categories of applications, and gain valuable insights into consumer preferences. Overall, this dataset serves as a valuable tool for understanding the broader landscape of the Google Play Store and unlocking actionable insights for various stakeholders in the mobile app industry.
https://crawlfeeds.com/privacy_policyhttps://crawlfeeds.com/privacy_policy
Unlock the power of user feedback with our iOS App Store Reviews Dataset, a comprehensive collection of reviews from thousands of apps across various categories. This robust App Store dataset includes essential details such as app names, ratings, user comments, timestamps, and more, offering valuable insights into user experiences and preferences.
Perfect for app developers, marketers, and data analysts, this dataset allows you to conduct sentiment analysis, monitor app performance, and identify trends in user behavior. By leveraging the iOS App Store Reviews Dataset, you can refine app features, optimize marketing strategies, and elevate user satisfaction.
Whether you’re tracking mobile app trends, analyzing specific app categories, or developing data-driven strategies, this App Store dataset is an indispensable tool. Download the iOS App Store Reviews Dataset today or contact us for custom datasets tailored to your unique project requirements.
Ready to take your app insights to the next level? Get the iOS App Store Reviews Dataset now or explore our custom data solutions to meet your needs.
According to data provided by Airnow, Germany saw the second highest number of downloads made for the Netherlands based Bunq bank app. As of October 2021, the Bunq app was downloaded a total of *** million times.
This dataset contains information on application install interactions of users in the Myket android application market. The dataset was created for the purpose of evaluating interaction prediction models, requiring user and item identifiers along with timestamps of the interactions. Hence, the dataset can be used for interaction prediction and building a recommendation system. Furthermore, the data forms a dynamic network of interactions, and we can also perform network representation learning on the nodes in the network, which are users and applications.
Data Creation The dataset was initially generated by the Myket data team, and later cleaned and subsampled by Erfan Loghmani a master student at Sharif University of Technology at the time. The data team focused on a two-week period and randomly sampled 1/3 of the users with interactions during that period. They then selected install and update interactions for three months before and after the two-week period, resulting in interactions spanning about 6 months and two weeks.
We further subsampled and cleaned the data to focus on application download interactions. We identified the top 8000 most installed applications and selected interactions related to them. We retained users with more than 32 interactions, resulting in 280,391 users. From this group, we randomly selected 10,000 users, and the data was filtered to include only interactions for these users. The detailed procedure can be found in here.
Data Structure The dataset has two main files.
myket.csv: This file contains the interaction information and follows the same format as the datasets used in the "JODIE: Predicting Dynamic Embedding Trajectory in Temporal Interaction Networks" (ACM SIGKDD 2019) project. However, this data does not contain state labels and interaction features, resulting in associated columns being all zero. app_info_sample.csv: This file comprises features associated with applications present in the sample. For each individual application, information such as the approximate number of installs, average rating, count of ratings, and category are included. These features provide insights into the applications present in the dataset.
Dataset Details
Total Instances: 694,121 install interaction instances Instances Format: Triplets of user_id, app_name, timestamp 10,000 users and 7,988 android applications Item features for 7,606 applications
For a detailed summary of the data's statistics, including information on users, applications, and interactions, please refer to the Python notebook available at summary-stats.ipynb. The notebook provides an overview of the dataset's characteristics and can be helpful for understanding the data's structure before using it for research or analysis.
Top 20 Most Installed Applications | Package Name | Count of Interactions | | ---------------------------------- | --------------------- | | com.instagram.android | 15292 | | ir.resaneh1.iptv | 12143 | | com.tencent.ig | 7919 | | com.ForgeGames.SpecialForcesGroup2 | 7797 | | ir.nomogame.ClutchGame | 6193 | | com.dts.freefireth | 6041 | | com.whatsapp | 5876 | | com.supercell.clashofclans | 5817 | | com.mojang.minecraftpe | 5649 | | com.lenovo.anyshare.gps | 5076 | | ir.medu.shad | 4673 | | com.firsttouchgames.dls3 | 4641 | | com.activision.callofduty.shooter | 4357 | | com.tencent.iglite | 4126 | | com.aparat | 3598 | | com.kiloo.subwaysurf | 3135 | | com.supercell.clashroyale | 2793 | | co.palang.QuizOfKings | 2589 | | com.nazdika.app | 2436 | | com.digikala | 2413 |
Comparison with SNAP Datasets The Myket dataset introduced in this repository exhibits distinct characteristics compared to the real-world datasets used by the project. The table below provides a comparative overview of the key dataset characteristics:
Dataset | #Users | #Items | #Interactions | Average Interactions per User | Average Unique Items per User |
---|---|---|---|---|---|
Myket | 10,000 | 7,988 | 694,121 | 69.4 | 54.6 |
LastFM | 980 | 1,000 | 1,293,103 | 1,319.5 | 158.2 |
10,000 | 984 | 672,447 | 67.2 | 7.9 | |
Wikipedia | 8,227 | 1,000 | 157,474 | 19.1 | 2.2 |
MOOC | 7,047 | 97 | 411,749 | 58.4 | 25.3 |
The Myket dataset stands out by having an ample number of both users and items, highlighting its relevance for real-world, large-scale applications. Unlike LastFM, Reddit, and Wikipedia datasets, where users exhibit repetitive item interactions, the Myket dataset contains a comparatively lower amount of repetitive interactions. This unique characteristic reflects the diverse nature of user behaviors in the Android application market environment.
Citation If you use this dataset in your research, please cite the following preprint:
@misc{loghmani2023effect, title={Effect of Choosing Loss Function when Using T-batching for Representation Learning on Dynamic Networks}, author={Erfan Loghmani and MohammadAmin Fazli}, year={2023}, eprint={2308.06862}, archivePrefix={arXiv}, primaryClass={cs.LG} }
Apple App Store dataset to explore detailed information on app popularity, user feedback, and monetization features. Popular use cases include market trend analysis, app performance evaluation, and consumer behavior insights in the mobile app ecosystem.
Use our Apple App Store dataset to gain comprehensive insights into the mobile app ecosystem, including app popularity, user ratings, monetization features, and user feedback. This dataset covers various aspects of apps, such as descriptions, categories, and download metrics, offering a full picture of app performance and trends.
Tailored for marketers, developers, and industry analysts, this dataset allows you to track market trends, identify emerging apps, and refine promotional strategies. Whether you're optimizing app development, analyzing competitive landscapes, or forecasting market opportunities, the Apple App Store dataset is an essential tool for making data-driven decisions in the ever-evolving mobile app industry.
This dataset is versatile and can be used for various applications: - Market Analysis: Analyze app pricing strategies, monetization features, and category distribution to understand market trends and opportunities in the App Store. This can help developers and businesses make informed decisions about their app development and pricing strategies. - User Experience Research: Study the relationship between app ratings, number of reviews, and app features to understand what drives user satisfaction. The detailed review data and ratings can provide insights into user preferences and pain points. - Competitive Intelligence: Track and analyze apps within specific categories, comparing features, pricing, and user engagement metrics to identify successful patterns and market gaps. Particularly useful for developers planning new apps or improving existing ones. - Performance Prediction: Build predictive models using features like app size, category, pricing, and language support to forecast potential app success metrics. This can help in making data-driven decisions during app development. - Localization Strategy: Analyze the languages supported and regional performance to inform decisions about app localization and international market expansion.
CUSTOM Please review the respective licenses below: 1. Data Provider's License - Bright Data Master Service Agreement
https://data.gov.tw/licensehttps://data.gov.tw/license
Provide the table of cumulative download times for the Kaohsiung City Government's 107-year APPS.
https://data.gov.tw/licensehttps://data.gov.tw/license
Provide the Kaohsiung City Government's 111-year cumulative APPS download data table
In 2024, TikTok was still the most downloaded mobile app worldwide. The short-video sharing app generated 825.5 million downloads during the same year. The social video app Instagram followed with 817 million downloads. Fast-fashion app Temu ranked in fifth, with over 516 million downloads for global users in the last examined year, while ByteDance-published video editing app CapCut had around 410 million downloads. TikTok Owned by the Beijing-based tech company ByteDance and launched in 2017, TikTok quickly gained popularity after the acquisition of Musical.ly in 2018. In 2025, the number of TikTok users worldwide was expected to exceed 955 million, with the United States being one of the leading markets. In 2024, TikTok engaged the largest audience from Indonesia, with over 157 million consumers from the region using the app. United States, and Brazil followed with 120.5 and 105.2 users, respectively. Meta Platforms In October 2021, Facebook was renamed and rebranded as Meta, with the CEO Mark Zuckerberg aiming to be associated with the metaverse. Meta’s products include Facebook, Messager, Instagram, and WhatsApp, also known as Meta’s Family of Apps (FoA), generating most of Meta’s revenue. Moreover, these are among the most popular social networks worldwide. As part of its rebranding, Meta’s Reality Labs business segment develops a series of virtual reality (VR) headsets, the Meta Quest - one of the leading VR devices on the market.
https://data.gov.tw/licensehttps://data.gov.tw/license
Year, month, agency name, APP name, type, cumulative number of downloads
The Chinese fashion e-commerce giant Shein Group has surged to prominence. Founded in 2008 as ZZKKO, it quickly evolved into the world's largest fashion retailer in 2022. Its app attracted almost ** million downloads worldwide between January 1 and June 29, 2025. Faster and cheaper The online-only fast-fashion company has a unique business model. Enabled by algorithms and data analytics, its swift production and fashion trend prediction abilities have set it apart in the fast fashion e-commerce world. Its algorithm-driven supply chain enables it to reduce the production time to * days and offer thousands of new items on its site every week at much lower price levels than its competitors. Behind the low-price tags The fashion retailer also collaborates with numerous fashion bloggers to harness platforms like TikTok and Instagram. Combined with its adept use of social media marketing, SHEIN achieved a staggering ** billion U.S. dollars in gross merchandise value in 2024. Despite its rapid growth and popularity, Shein's reputation is marred by a barrage of controversies, ranging from labor rights violations and trademark disputes to environmental concerns to health and safety issues.
As COVID-19 continues to spread across the world, a growing number of malicious campaigns are exploiting the pandemic. It is reported that COVID-19 is being used in a variety of online malicious activities, including Email scam, ransomware and malicious domains. As the number of the afflicted cases continue to surge, malicious campaigns that use coronavirus as a lure are increasing. Malicious developers take advantage of this opportunity to lure mobile users to download and install malicious apps.
However, besides a few media reports, the coronavirus-themed mobile malware has not been well studied. Our community lacks of the comprehensive understanding of the landscape of the coronavirus-themed mobile malware, and no accessible dataset could be used by our researchers to boost COVID-19 related cybersecurity studies.
We make efforts to create a daily growing COVID-19 related mobile app dataset. By the time of mid-November, we have curated a dataset of 4,322 COVID-19 themed apps, and 611 of them are considered to be malicious. The number is growing daily and our dataset will update weekly. For more details, please visit https://covid19apps.github.io
This dataset includes the following files:
(1) covid19apps.xlsx
In this file, we list all the COVID-19 themed apps information, including apk file hashes, released date, package name, AV-Rank, etc.
(2)covid19apps.zip
We put the COVID-19 themed apps Apk samples in zip files . In order to reduce the size of a single file, we divide the sample into multiple zip files for storage. And the APK file name after the file SHA256.
If your papers or articles use our dataset, please use the following bibtex reference to cite our paper: https://arxiv.org/abs/2005.14619
(Accepted to Empirical Software Engineering)
@misc{wang2021virus, title={Beyond the Virus: A First Look at Coronavirus-themed Mobile Malware}, author={Liu Wang and Ren He and Haoyu Wang and Pengcheng Xia and Yuanchun Li and Lei Wu and Yajin Zhou and Xiapu Luo and Yulei Sui and Yao Guo and Guoai Xu}, year={2021}, eprint={2005.14619}, archivePrefix={arXiv}, primaryClass={cs.CR} }
https://data.go.kr/ugs/selectPortalPolicyView.dohttps://data.go.kr/ugs/selectPortalPolicyView.do
It provides the number of downloads and API utilization requests by year (2011-2023) of file data registered in the public data portal, and is useful for analyzing the trend of increase in public data utilization. The file format is provided in CSV format, and the meta items are statistical year, registration agency, list name, data name, file downloads, and API utilization requests. You can download file data from the public data portal without logging in, and to utilize the open API, you must register as a public data portal member and log in to apply for utilization.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F1842206%2Fd4a6033b6bd31af45d5175d02e697934%2FAPPLEAPPS2.png?generation=1700357122842963&alt=media" alt="">
These reviews are from Apple App Store
This dataset should paint a good picture on what is the public's perception of the apps over the years. Using this dataset, we can do the following
(AND MANY MORE!)
Images generated using Bing Image Generator
Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
The amount of Android apps available for download is constantly increasing, exerting a continuous pressure on developers to publish outstanding apps. Google Play (GP) is the default distribution channel for Android apps, which provides mobile app users with metrics to identify and report apps quality such as rating, amount of downloads, previous users comments, etc. In addition to those metrics, GP presents a set of top charts that highlight the outstanding apps in different categories. Both metrics and top app charts help developers to identify whether their development decisions are well valued by the community. Therefore, app presence in these top charts is a valuable information when understanding the features of top-apps. In this paper we present Hall-of-Apps, a dataset containing top charts' apps metadata extracted (weekly) from GP, for 4 different countries, during 30 weeks. The data is presented as (i) raw HTML files, (ii) a MongoDB database with all the information contained in app's HTML files (e.g., app description, category, general rating, etc.), and (iii) data visualizations built with the D3.js framework. A first characterization of the data along with the urls to retrieve it can be found in our online appendix: https://thesoftwaredesignlab.github.io/hall-of-apps-tools/
Attribution-NonCommercial-NoDerivs 4.0 (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/
License information was derived automatically
Keeping track of your health is, for many people, a continuous task. Monitoring what you eat, how often you exercise and how much water you drink can be time-consuming, fortunately there are tens of...
Attribution-NonCommercial-NoDerivs 4.0 (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/
License information was derived automatically
App Download Key StatisticsApp and Game DownloadsiOS App and Game DownloadsGoogle Play App and Game DownloadsGame DownloadsiOS Game DownloadsGoogle Play Game DownloadsApp DownloadsiOS App...