100+ datasets found
  1. b

    App Downloads Data (2025)

    • businessofapps.com
    Updated Sep 1, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Business of Apps (2017). App Downloads Data (2025) [Dataset]. https://www.businessofapps.com/data/app-statistics/
    Explore at:
    Dataset updated
    Sep 1, 2017
    Dataset authored and provided by
    Business of Apps
    License

    Attribution-NonCommercial-NoDerivs 4.0 (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/
    License information was derived automatically

    Description

    App Download Key StatisticsApp and Game DownloadsiOS App and Game DownloadsGoogle Play App and Game DownloadsGame DownloadsiOS Game DownloadsGoogle Play Game DownloadsApp DownloadsiOS App...

  2. Data used by new top app downloads worldwide 2018-2020

    • statista.com
    Updated Jul 6, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2021). Data used by new top app downloads worldwide 2018-2020 [Dataset]. https://www.statista.com/statistics/1127265/data-used-top-apps-downloads-worldwide/
    Explore at:
    Dataset updated
    Jul 6, 2021
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Worldwide
    Description

    In the first quarter of 2020, a total of 596 petabytes of data were used by new downloads of the top 250 apps worldwide. In comparison, in the same quarter of the preceding year, only 446 petabytes of data was used by new downloads of the most popular apps. The increase in data used by app downloads is a result of the coronavirus pandemic, during which stay-home recommendations were common worldwide.

  3. b

    Apple App Store Statistics (2025)

    • businessofapps.com
    Updated May 16, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Business of Apps (2023). Apple App Store Statistics (2025) [Dataset]. https://www.businessofapps.com/data/apple-app-store-statistics/
    Explore at:
    Dataset updated
    May 16, 2023
    Dataset authored and provided by
    Business of Apps
    License

    Attribution-NonCommercial-NoDerivs 4.0 (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/
    License information was derived automatically

    Description

    Key Apple App Store StatisticsApple App Store App and Game RevenueApple App Store Gaming App RevenueApple App Store App RevenueApple App Store App and Game DownloadsApple App Store Game...

  4. Annual number of global mobile app downloads 2016-2023

    • statista.com
    Updated Jan 29, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Annual number of global mobile app downloads 2016-2023 [Dataset]. https://www.statista.com/statistics/271644/worldwide-free-and-paid-mobile-app-store-downloads/
    Explore at:
    Dataset updated
    Jan 29, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Worldwide
    Description

    While the number of downloads kept increasing between 2016 to 2022. However, in 2023, the global app downloads stagnated, reaching 257 billion downloads and experienced only a one percent year-over-year increase.

    The app market Mobile apps are projected to generate more than 613 billion U.S. dollars in revenues in 2025, with mobile games making up the biggest revenue share among all app categories. In 2020, gaming and video made up the largest shares of the mobile content market for the year. The ePublishing and education sectors still saw a limited market for their mobile content, despite the increase in apps usage brought by the COVID-19 pandemic disrupting regular school system settings.

    App monetization: a changing landscape As an indispensable part of the smartphone experience, the largest number of apps in the major app stores are free to download. However, in recent years, the growth of global consumer spending on apps has shown users’ healthy appetite for premium services or paid app content. In the second quarter of 2021, Android consumers have spent an average of 5.31 U.S. dollars per handset, after peaking in the last quarter of 2020 reaching an average of 10.6 U.S. dollars per mobile device. As of September 2021, the number of paid apps has shrunk to make up only six percent and four percent of the total numbers in the Apple App Store and the Google Play Store, respectively. In comparison, apps offering subscription plans are becoming increasingly popular in the monetization landscape. In 2020, the leading subscription apps in the Apple App Store generated more than 10 million U.S. dollars in global revenues.

  5. o

    Data from: Google Play Store Dataset

    • opendatabay.com
    .undefined
    Updated Jun 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bright Data (2025). Google Play Store Dataset [Dataset]. https://www.opendatabay.com/data/premium/33624898-8133-421d-9b3b-42f76e1e4fe2
    Explore at:
    .undefinedAvailable download formats
    Dataset updated
    Jun 15, 2025
    Dataset authored and provided by
    Bright Data
    Area covered
    Website Analytics & User Experience
    Description

    Google Play Store dataset to explore detailed information about apps, including ratings, descriptions, updates, and developer details. Popular use cases include app performance analysis, market research, and consumer behavior insights.

    Use our Google Play Store dataset to explore detailed information about apps available on the platform, including app titles, developers, monetization features, user ratings, reviews, and more. This dataset also includes data on app descriptions, safety measures, download counts, recent updates, and compatibility, providing a complete overview of app performance and features.

    Tailored for app developers, marketers, and researchers, this dataset offers valuable insights into user preferences, app trends, and market dynamics. Whether you're optimizing app development, conducting competitive analysis, or tracking app performance, the Google Play Store dataset is an essential resource for making data-driven decisions in the mobile app ecosystem.

    Dataset Features

    • url: The URL link to the app’s detail page on the Google Play Store.
    • title: The name of the application.
    • developer: The developer or company behind the app.
    • monetization_features: Information regarding how the app generates revenue (e.g., in-app purchases, ads).
    • images: Links or references to images associated with the app.
    • about: Details or a summary description of the app.
    • data_safety: Information regarding data safety and privacy practices.
    • rating: The overall rating of the app provided by its users.
    • number_of_reviews: The total count of user reviews received.
    • star_reviews: A breakdown of reviews by star ratings.
    • reviews: Reviews and user feedback about the app.
    • what_new: Information on the latest updates or features added to the app.
    • more_by_this_developer: Other apps by the same developer.
    • content_rating: The content rating which guides suitability based on user age.
    • downloads: The download count or range indicating the app’s popularity.
    • country: The country associated with the app listing.
    • app_category: The category or genre under which the app is classified.

    Distribution

    • Data Volume: 17 Columns and 65.54M Rows
    • Format: CSV

    Usage

    This dataset is ideal for a variety of applications:

    • App Market Analysis: Enables market researchers to extract insights on app popularity, engagement, and trends across different categories.
    • Machine Learning: Can be used by data scientists to build recommendation engines or sentiment analysis models based on app review data.
    • User Behavior Studies: Facilitates academic or industrial research into user preferences and behavior with respect to mobile applications.

    Coverage

    • Geographic Coverage: global.

    License

    CUSTOM Please review the respective licenses below: 1. Data Provider's License - Bright Data Master Service Agreement

    Who Can Use It

    • Data Scientists: To train machine learning models for app popularity prediction, sentiment analysis, or recommendation systems.
    • Researchers: For academic or scientific studies into market trends, consumer behavior, and app performance analysis.
    • Businesses: For strategic analysis, developing market insights, or enhancing app development and user engagement strategies.

    Suggested Dataset Name

    1. Play store Insights
    2. Android App Scope
    3. Market Analytics
    4. Play Store Metrics Vault

    5. AppTrend360: Google Play Edition

    Pricing

    Based on Delivery frequency

    ~Up to $0.0025 per record. Min order $250

    Approximately 10M new records are added each month. Approximately 13.8M records are updated each month. Get the complete dataset each delivery, including all records. Retrieve only the data you need with the flexibility to set Smart Updates.

    • Monthly

    New snapshot each month, 12 snapshots/year Paid monthly

    • Quarterly

    New snapshot each quarter, 4 snapshots/year Paid quarterly

    • Bi-annual

    New snapshot every 6 months, 2 snapshots/year Paid twice-a-year

    • One-time purchase

    New snapshot one-time delivery Paid once

  6. Data from: Google Play Store Datasets

    • brightdata.com
    .json, .csv, .xlsx
    Updated Jul 13, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bright Data (2025). Google Play Store Datasets [Dataset]. https://brightdata.com/products/datasets/google-play-store
    Explore at:
    .json, .csv, .xlsxAvailable download formats
    Dataset updated
    Jul 13, 2025
    Dataset authored and provided by
    Bright Datahttps://brightdata.com/
    License

    https://brightdata.com/licensehttps://brightdata.com/license

    Area covered
    Worldwide
    Description

    This dataset encompasses a wide-ranging collection of Google Play applications, providing a holistic view of the diverse ecosystem within the platform. It includes information on various attributes such as the title, developer, monetization features, images, app descriptions, data safety measures, user ratings, number of reviews, star rating distributions, user feedback, recent updates, related applications by the same developer, content ratings, estimated downloads, and timestamps. By aggregating this data, the dataset offers researchers, developers, and analysts an extensive resource to explore and analyze trends, patterns, and dynamics within the Google Play Store. Researchers can utilize this dataset to conduct comprehensive studies on user behavior, market trends, and the impact of various factors on app success. Developers can leverage the insights derived from this dataset to inform their app development strategies, improve user engagement, and optimize monetization techniques. Analysts can employ the dataset to identify emerging trends, assess the performance of different categories of applications, and gain valuable insights into consumer preferences. Overall, this dataset serves as a valuable tool for understanding the broader landscape of the Google Play Store and unlocking actionable insights for various stakeholders in the mobile app industry.

  7. c

    IOS App Store reviews dataset

    • crawlfeeds.com
    csv, zip
    Updated Jul 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Crawl Feeds (2025). IOS App Store reviews dataset [Dataset]. https://crawlfeeds.com/datasets/ios-app-store-reviews-dataset
    Explore at:
    zip, csvAvailable download formats
    Dataset updated
    Jul 7, 2025
    Dataset authored and provided by
    Crawl Feeds
    License

    https://crawlfeeds.com/privacy_policyhttps://crawlfeeds.com/privacy_policy

    Description

    Unlock the power of user feedback with our iOS App Store Reviews Dataset, a comprehensive collection of reviews from thousands of apps across various categories. This robust App Store dataset includes essential details such as app names, ratings, user comments, timestamps, and more, offering valuable insights into user experiences and preferences.

    Perfect for app developers, marketers, and data analysts, this dataset allows you to conduct sentiment analysis, monitor app performance, and identify trends in user behavior. By leveraging the iOS App Store Reviews Dataset, you can refine app features, optimize marketing strategies, and elevate user satisfaction.

    Whether you’re tracking mobile app trends, analyzing specific app categories, or developing data-driven strategies, this App Store dataset is an indispensable tool. Download the iOS App Store Reviews Dataset today or contact us for custom datasets tailored to your unique project requirements.

    Ready to take your app insights to the next level? Get the iOS App Store Reviews Dataset now or explore our custom data solutions to meet your needs.

  8. Number of Bunq bank app downloads worldwide 2021, by country

    • statista.com
    Updated Jul 9, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Number of Bunq bank app downloads worldwide 2021, by country [Dataset]. https://www.statista.com/statistics/1123825/global-number-of-app-downloads-bunq-bank-worldwide/
    Explore at:
    Dataset updated
    Jul 9, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Sep 2014 - Oct 2021
    Area covered
    Worldwide
    Description

    According to data provided by Airnow, Germany saw the second highest number of downloads made for the Netherlands based Bunq bank app. As of October 2021, the Bunq app was downloaded a total of *** million times.

  9. P

    Myket Android Application Install Dataset

    • paperswithcode.com
    Updated Aug 12, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Erfan Loghmani; Mohammadamin Fazli (2023). Myket Android Application Install Dataset [Dataset]. https://paperswithcode.com/dataset/myket-android-application-install
    Explore at:
    Dataset updated
    Aug 12, 2023
    Authors
    Erfan Loghmani; Mohammadamin Fazli
    Description

    This dataset contains information on application install interactions of users in the Myket android application market. The dataset was created for the purpose of evaluating interaction prediction models, requiring user and item identifiers along with timestamps of the interactions. Hence, the dataset can be used for interaction prediction and building a recommendation system. Furthermore, the data forms a dynamic network of interactions, and we can also perform network representation learning on the nodes in the network, which are users and applications.

    Data Creation The dataset was initially generated by the Myket data team, and later cleaned and subsampled by Erfan Loghmani a master student at Sharif University of Technology at the time. The data team focused on a two-week period and randomly sampled 1/3 of the users with interactions during that period. They then selected install and update interactions for three months before and after the two-week period, resulting in interactions spanning about 6 months and two weeks.

    We further subsampled and cleaned the data to focus on application download interactions. We identified the top 8000 most installed applications and selected interactions related to them. We retained users with more than 32 interactions, resulting in 280,391 users. From this group, we randomly selected 10,000 users, and the data was filtered to include only interactions for these users. The detailed procedure can be found in here.

    Data Structure The dataset has two main files.

    myket.csv: This file contains the interaction information and follows the same format as the datasets used in the "JODIE: Predicting Dynamic Embedding Trajectory in Temporal Interaction Networks" (ACM SIGKDD 2019) project. However, this data does not contain state labels and interaction features, resulting in associated columns being all zero. app_info_sample.csv: This file comprises features associated with applications present in the sample. For each individual application, information such as the approximate number of installs, average rating, count of ratings, and category are included. These features provide insights into the applications present in the dataset.

    Dataset Details

    Total Instances: 694,121 install interaction instances Instances Format: Triplets of user_id, app_name, timestamp 10,000 users and 7,988 android applications Item features for 7,606 applications

    For a detailed summary of the data's statistics, including information on users, applications, and interactions, please refer to the Python notebook available at summary-stats.ipynb. The notebook provides an overview of the dataset's characteristics and can be helpful for understanding the data's structure before using it for research or analysis.

    Top 20 Most Installed Applications | Package Name | Count of Interactions | | ---------------------------------- | --------------------- | | com.instagram.android | 15292 | | ir.resaneh1.iptv | 12143 | | com.tencent.ig | 7919 | | com.ForgeGames.SpecialForcesGroup2 | 7797 | | ir.nomogame.ClutchGame | 6193 | | com.dts.freefireth | 6041 | | com.whatsapp | 5876 | | com.supercell.clashofclans | 5817 | | com.mojang.minecraftpe | 5649 | | com.lenovo.anyshare.gps | 5076 | | ir.medu.shad | 4673 | | com.firsttouchgames.dls3 | 4641 | | com.activision.callofduty.shooter | 4357 | | com.tencent.iglite | 4126 | | com.aparat | 3598 | | com.kiloo.subwaysurf | 3135 | | com.supercell.clashroyale | 2793 | | co.palang.QuizOfKings | 2589 | | com.nazdika.app | 2436 | | com.digikala | 2413 |

    Comparison with SNAP Datasets The Myket dataset introduced in this repository exhibits distinct characteristics compared to the real-world datasets used by the project. The table below provides a comparative overview of the key dataset characteristics:

    Dataset#Users#Items#InteractionsAverage Interactions per UserAverage Unique Items per User
    Myket10,0007,988694,12169.454.6
    LastFM9801,0001,293,1031,319.5158.2
    Reddit10,000984672,44767.27.9
    Wikipedia8,2271,000157,47419.12.2
    MOOC7,04797411,74958.425.3

    The Myket dataset stands out by having an ample number of both users and items, highlighting its relevance for real-world, large-scale applications. Unlike LastFM, Reddit, and Wikipedia datasets, where users exhibit repetitive item interactions, the Myket dataset contains a comparatively lower amount of repetitive interactions. This unique characteristic reflects the diverse nature of user behaviors in the Android application market environment.

    Citation If you use this dataset in your research, please cite the following preprint:

    @misc{loghmani2023effect, title={Effect of Choosing Loss Function when Using T-batching for Representation Learning on Dynamic Networks}, author={Erfan Loghmani and MohammadAmin Fazli}, year={2023}, eprint={2308.06862}, archivePrefix={arXiv}, primaryClass={cs.LG} }

  10. Data from: Apple App Store Dataset

    • opendatabay.com
    .other
    Updated Jun 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bright Data (2025). Apple App Store Dataset [Dataset]. https://www.opendatabay.com/data/premium/cd5a7748-e9da-4d59-96cd-96a0c95f7994
    Explore at:
    .otherAvailable download formats
    Dataset updated
    Jun 7, 2025
    Dataset authored and provided by
    Bright Datahttps://brightdata.com/
    Area covered
    Website Analytics & User Experience
    Description

    Apple App Store dataset to explore detailed information on app popularity, user feedback, and monetization features. Popular use cases include market trend analysis, app performance evaluation, and consumer behavior insights in the mobile app ecosystem.

    Use our Apple App Store dataset to gain comprehensive insights into the mobile app ecosystem, including app popularity, user ratings, monetization features, and user feedback. This dataset covers various aspects of apps, such as descriptions, categories, and download metrics, offering a full picture of app performance and trends.

    Tailored for marketers, developers, and industry analysts, this dataset allows you to track market trends, identify emerging apps, and refine promotional strategies. Whether you're optimizing app development, analyzing competitive landscapes, or forecasting market opportunities, the Apple App Store dataset is an essential tool for making data-driven decisions in the ever-evolving mobile app industry.

    Dataset Features

    • url: The URL linking to the app’s page on the Apple App Store.
    • title: The name of the app.
    • sub_title: A brief subtitle or tagline for the app.
    • developer: The name of the entity or individual that developed the app.
    • top_charts: Indicates if the app appears in top charts.
    • monetization_features: Information on monetization aspects (such as in-app purchases or advertisements).
    • image: A reference to the main app image.
    • screenshots: Contains screenshot images of the app.
    • description: Detailed app description outlining main features.
    • what_new: Details on the latest updates or new features.
    • rating: The overall rating based on user reviews.
    • number_of_raters: The total number of users who have rated the app.
    • reviews_by_stars: Breakdown of the number of reviews by star rating.
    • reviews: An aggregation of user reviews.
    • events: Any associated events or promotions.
    • data_linked_to_you: Indicates if any data is linked to the user.
    • seller: The entity responsible for selling or distributing the app.
    • category: The category or genre of the app.
    • languages: Languages supported by the app.
    • copyright: Copyright information provided by the developer.
    • size: The file size of the app.
    • compatibility: Device or OS compatibility details.
    • age_rating: The recommended age rating for the app.
    • price: The price of the app.
    • In_app_purchases: Details on in-app purchase options.
    • support: Information related to app support.
    • more_by_this_developer: Suggestions for other apps by the same developer.
    • you_might_also_like: Recommendations for similar apps.
    • app_support: Additional support details.
    • privacy_policy: Link or reference to the app’s privacy policy.
    • developer_website: The website of the app developer.
    • featured_in: Information on any features or showcases the app has being part of.
    • country: The country from which the app’s data was sourced.
    • timestamp: A timestamp indicating when the data record was last updated.
    • latest_app_version: The most recent version of the app available.
    • app_id: A unique identifier for the app.

    Distribution

    • Data Volume: 36 Columns and 68M Rows
    • Format: CSV

    Usage

    This dataset is versatile and can be used for various applications: - Market Analysis: Analyze app pricing strategies, monetization features, and category distribution to understand market trends and opportunities in the App Store. This can help developers and businesses make informed decisions about their app development and pricing strategies. - User Experience Research: Study the relationship between app ratings, number of reviews, and app features to understand what drives user satisfaction. The detailed review data and ratings can provide insights into user preferences and pain points. - Competitive Intelligence: Track and analyze apps within specific categories, comparing features, pricing, and user engagement metrics to identify successful patterns and market gaps. Particularly useful for developers planning new apps or improving existing ones. - Performance Prediction: Build predictive models using features like app size, category, pricing, and language support to forecast potential app success metrics. This can help in making data-driven decisions during app development. - Localization Strategy: Analyze the languages supported and regional performance to inform decisions about app localization and international market expansion.

    Coverage

    • Geographic Coverage: Global

    License

    CUSTOM Please review the respective licenses below: 1. Data Provider's License - Bright Data Master Service Agreement

    Who Can Use It

    • Data Scientists: Can leverage this dataset for training machine learning algorithms and building predictive models concerning app tr
  11. d

    Kaohsiung City Government 107 Year APPS Total Downloads Data Table

    • data.gov.tw
    csv, json
    Updated Jun 30, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Research,Development and Evaluation Commission,KCG (2025). Kaohsiung City Government 107 Year APPS Total Downloads Data Table [Dataset]. https://data.gov.tw/en/datasets/128445
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Jun 30, 2025
    Dataset authored and provided by
    Research,Development and Evaluation Commission,KCG
    License

    https://data.gov.tw/licensehttps://data.gov.tw/license

    Area covered
    Kaohsiung City
    Description

    Provide the table of cumulative download times for the Kaohsiung City Government's 107-year APPS.

  12. d

    Kaohsiung City Governments 111-year cumulative download count data table of...

    • data.gov.tw
    csv, json
    Updated Feb 13, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Research,Development and Evaluation Commission,KCG (2022). Kaohsiung City Governments 111-year cumulative download count data table of APPS [Dataset]. https://data.gov.tw/en/datasets/148551
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Feb 13, 2022
    Dataset authored and provided by
    Research,Development and Evaluation Commission,KCG
    License

    https://data.gov.tw/licensehttps://data.gov.tw/license

    Area covered
    Kaohsiung City
    Description

    Provide the Kaohsiung City Government's 111-year cumulative APPS download data table

  13. Most downloaded mobile apps worldwide 2024

    • statista.com
    Updated Jun 26, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Most downloaded mobile apps worldwide 2024 [Dataset]. https://www.statista.com/statistics/1285960/top-downloaded-mobile-apps-worldwide/
    Explore at:
    Dataset updated
    Jun 26, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Jan 1, 2024 - Nov 12, 2024
    Area covered
    Worldwide
    Description

    In 2024, TikTok was still the most downloaded mobile app worldwide. The short-video sharing app generated 825.5 million downloads during the same year. The social video app Instagram followed with 817 million downloads. Fast-fashion app Temu ranked in fifth, with over 516 million downloads for global users in the last examined year, while ByteDance-published video editing app CapCut had around 410 million downloads. TikTok Owned by the Beijing-based tech company ByteDance and launched in 2017, TikTok quickly gained popularity after the acquisition of Musical.ly in 2018. In 2025, the number of TikTok users worldwide was expected to exceed 955 million, with the United States being one of the leading markets. In 2024, TikTok engaged the largest audience from Indonesia, with over 157 million consumers from the region using the app. United States, and Brazil followed with 120.5 and 105.2 users, respectively. Meta Platforms In October 2021, Facebook was renamed and rebranded as Meta, with the CEO Mark Zuckerberg aiming to be associated with the metaverse. Meta’s products include Facebook, Messager, Instagram, and WhatsApp, also known as Meta’s Family of Apps (FoA), generating most of Meta’s revenue. Moreover, these are among the most popular social networks worldwide. As part of its rebranding, Meta’s Reality Labs business segment develops a series of virtual reality (VR) headsets, the Meta Quest - one of the leading VR devices on the market.

  14. d

    Kaohsiung City Government Civil Affairs Bureau 110-year cumulative download...

    • data.gov.tw
    csv, json
    Updated Jun 30, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Civil Affairs Bureau,KCG (2025). Kaohsiung City Government Civil Affairs Bureau 110-year cumulative download count data table of APPS [Dataset]. https://data.gov.tw/en/datasets/137003
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Jun 30, 2025
    Dataset authored and provided by
    Civil Affairs Bureau,KCG
    License

    https://data.gov.tw/licensehttps://data.gov.tw/license

    Area covered
    Kaohsiung City
    Description

    Year, month, agency name, APP name, type, cumulative number of downloads

  15. Global downloads of Shein shopping app 2016-2025

    • statista.com
    Updated Jun 30, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Global downloads of Shein shopping app 2016-2025 [Dataset]. https://www.statista.com/statistics/1283317/shein-group-number-of-app-downloads-worldwide/
    Explore at:
    Dataset updated
    Jun 30, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    China, Worldwide
    Description

    The Chinese fashion e-commerce giant Shein Group has surged to prominence. Founded in 2008 as ZZKKO, it quickly evolved into the world's largest fashion retailer in 2022. Its app attracted almost ** million downloads worldwide between January 1 and June 29, 2025. Faster and cheaper The online-only fast-fashion company has a unique business model. Enabled by algorithms and data analytics, its swift production and fashion trend prediction abilities have set it apart in the fast fashion e-commerce world. Its algorithm-driven supply chain enables it to reduce the production time to * days and offer thousands of new items on its site every week at much lower price levels than its competitors. Behind the low-price tags The fashion retailer also collaborates with numerous fashion bloggers to harness platforms like TikTok and Instagram. Combined with its adept use of social media marketing, SHEIN achieved a staggering ** billion U.S. dollars in gross merchandise value in 2024. Despite its rapid growth and popularity, Shein's reputation is marred by a barrage of controversies, ranging from labor rights violations and trademark disputes to environmental concerns to health and safety issues.

  16. Z

    Coronavirus-themed Mobile Apps (Malware) Dataset

    • data.niaid.nih.gov
    • explore.openaire.eu
    • +1more
    Updated Apr 21, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    covid19apps (2021). Coronavirus-themed Mobile Apps (Malware) Dataset [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_3875975
    Explore at:
    Dataset updated
    Apr 21, 2021
    Dataset authored and provided by
    covid19apps
    Description

    As COVID-19 continues to spread across the world, a growing number of malicious campaigns are exploiting the pandemic. It is reported that COVID-19 is being used in a variety of online malicious activities, including Email scam, ransomware and malicious domains. As the number of the afflicted cases continue to surge, malicious campaigns that use coronavirus as a lure are increasing. Malicious developers take advantage of this opportunity to lure mobile users to download and install malicious apps.

    However, besides a few media reports, the coronavirus-themed mobile malware has not been well studied. Our community lacks of the comprehensive understanding of the landscape of the coronavirus-themed mobile malware, and no accessible dataset could be used by our researchers to boost COVID-19 related cybersecurity studies.

    We make efforts to create a daily growing COVID-19 related mobile app dataset. By the time of mid-November, we have curated a dataset of 4,322 COVID-19 themed apps, and 611 of them are considered to be malicious. The number is growing daily and our dataset will update weekly. For more details, please visit https://covid19apps.github.io

    This dataset includes the following files:

    (1) covid19apps.xlsx

    In this file, we list all the COVID-19 themed apps information, including apk file hashes, released date, package name, AV-Rank, etc.

    (2)covid19apps.zip

    We put the COVID-19 themed apps Apk samples in zip files . In order to reduce the size of a single file, we divide the sample into multiple zip files for storage. And the APK file name after the file SHA256.

    If your papers or articles use our dataset, please use the following bibtex reference to cite our paper: https://arxiv.org/abs/2005.14619

    (Accepted to Empirical Software Engineering)

    @misc{wang2021virus, title={Beyond the Virus: A First Look at Coronavirus-themed Mobile Malware}, author={Liu Wang and Ren He and Haoyu Wang and Pengcheng Xia and Yuanchun Li and Lei Wu and Yajin Zhou and Xiapu Luo and Yulei Sui and Yao Guo and Guoai Xu}, year={2021}, eprint={2005.14619}, archivePrefix={arXiv}, primaryClass={cs.CR} }

  17. d

    Ministry of Public Administration and Security_Public Data Usage (File_API)

    • data.go.kr
    csv
    Updated Jun 17, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Ministry of Public Administration and Security_Public Data Usage (File_API) [Dataset]. https://www.data.go.kr/en/data/15076332/fileData.do
    Explore at:
    csvAvailable download formats
    Dataset updated
    Jun 17, 2025
    License

    https://data.go.kr/ugs/selectPortalPolicyView.dohttps://data.go.kr/ugs/selectPortalPolicyView.do

    Description

    It provides the number of downloads and API utilization requests by year (2011-2023) of file data registered in the public data portal, and is useful for analyzing the trend of increase in public data utilization. The file format is provided in CSV format, and the meta items are statistical year, registration agency, list name, data name, file downloads, and API utilization requests. You can download file data from the public data portal without logging in, and to utilize the open API, you must register as a public data portal member and log in to apply for utilization.

  18. 🏆Uber, FB, Waze, etc US Apple App Store Reviews

    • kaggle.com
    Updated Nov 19, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    BwandoWando (2023). 🏆Uber, FB, Waze, etc US Apple App Store Reviews [Dataset]. http://doi.org/10.34740/kaggle/ds/4023539
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Nov 19, 2023
    Dataset provided by
    Kaggle
    Authors
    BwandoWando
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    App Reviews

    https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F1842206%2Fd4a6033b6bd31af45d5175d02e697934%2FAPPLEAPPS2.png?generation=1700357122842963&alt=media" alt="">

    1. uber-request-a-ride-us- 73787 rows
    2. waze-navigation-live-traffic-us- 26260 rows
    3. facebook-us- 24200 rows
    4. spotify-music-and-podcasts-us- 15580 rows
    5. netflix-us- 11760 rows
    6. pinterest-us- 10860 rows
    7. X-us- 8160 rows
    8. tiktok-us- 2542 rows
    9. tinder-dating-chat-friends-us- 1060 rows
    10. instagram-us- 300 rows

    These reviews are from Apple App Store

    Usage

    This dataset should paint a good picture on what is the public's perception of the apps over the years. Using this dataset, we can do the following

    1. Extract sentiments and trends
    2. Identify which version of an app had the most positive feedback, the worst.
    3. Use topic modelling to identify the pain points of the application.

    (AND MANY MORE!)

    Note

    Images generated using Bing Image Generator

  19. Data from: Hall-of-Apps: The Top Android Apps Metadata Archive

    • zenodo.org
    bz2, zip
    Updated Mar 20, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Laura Bello-Jiménez; Laura Bello-Jiménez; Camilo Escobar-Velásquez; Camilo Escobar-Velásquez; Anamaria Mojica-Hanke; Anamaria Mojica-Hanke; Santiago Cortés-Fernandéz; Santiago Cortés-Fernandéz; Mario Linares-Vásquez; Mario Linares-Vásquez (2020). Hall-of-Apps: The Top Android Apps Metadata Archive [Dataset]. http://doi.org/10.5281/zenodo.3653367
    Explore at:
    zip, bz2Available download formats
    Dataset updated
    Mar 20, 2020
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Laura Bello-Jiménez; Laura Bello-Jiménez; Camilo Escobar-Velásquez; Camilo Escobar-Velásquez; Anamaria Mojica-Hanke; Anamaria Mojica-Hanke; Santiago Cortés-Fernandéz; Santiago Cortés-Fernandéz; Mario Linares-Vásquez; Mario Linares-Vásquez
    License

    Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
    License information was derived automatically

    Description

    The amount of Android apps available for download is constantly increasing, exerting a continuous pressure on developers to publish outstanding apps. Google Play (GP) is the default distribution channel for Android apps, which provides mobile app users with metrics to identify and report apps quality such as rating, amount of downloads, previous users comments, etc. In addition to those metrics, GP presents a set of top charts that highlight the outstanding apps in different categories. Both metrics and top app charts help developers to identify whether their development decisions are well valued by the community. Therefore, app presence in these top charts is a valuable information when understanding the features of top-apps. In this paper we present Hall-of-Apps, a dataset containing top charts' apps metadata extracted (weekly) from GP, for 4 different countries, during 30 weeks. The data is presented as (i) raw HTML files, (ii) a MongoDB database with all the information contained in app's HTML files (e.g., app description, category, general rating, etc.), and (iii) data visualizations built with the D3.js framework. A first characterization of the data along with the urls to retrieve it can be found in our online appendix: https://thesoftwaredesignlab.github.io/hall-of-apps-tools/

  20. b

    Health App Revenue and Usage Statistics (2025)

    • businessofapps.com
    Updated Jun 2, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Business of Apps (2023). Health App Revenue and Usage Statistics (2025) [Dataset]. https://www.businessofapps.com/data/health-app-market/
    Explore at:
    Dataset updated
    Jun 2, 2023
    Dataset authored and provided by
    Business of Apps
    License

    Attribution-NonCommercial-NoDerivs 4.0 (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/
    License information was derived automatically

    Description

    Keeping track of your health is, for many people, a continuous task. Monitoring what you eat, how often you exercise and how much water you drink can be time-consuming, fortunately there are tens of...

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Business of Apps (2017). App Downloads Data (2025) [Dataset]. https://www.businessofapps.com/data/app-statistics/

App Downloads Data (2025)

Explore at:
203 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Sep 1, 2017
Dataset authored and provided by
Business of Apps
License

Attribution-NonCommercial-NoDerivs 4.0 (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/
License information was derived automatically

Description

App Download Key StatisticsApp and Game DownloadsiOS App and Game DownloadsGoogle Play App and Game DownloadsGame DownloadsiOS Game DownloadsGoogle Play Game DownloadsApp DownloadsiOS App...

Search
Clear search
Close search
Google apps
Main menu