Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
To create the dataset, the top 10 countries leading in the incidence of COVID-19 in the world were selected as of October 22, 2020 (on the eve of the second full of pandemics), which are presented in the Global 500 ranking for 2020: USA, India, Brazil, Russia, Spain, France and Mexico. For each of these countries, no more than 10 of the largest transnational corporations included in the Global 500 rating for 2020 and 2019 were selected separately. The arithmetic averages were calculated and the change (increase) in indicators such as profitability and profitability of enterprises, their ranking position (competitiveness), asset value and number of employees. The arithmetic mean values of these indicators for all countries of the sample were found, characterizing the situation in international entrepreneurship as a whole in the context of the COVID-19 crisis in 2020 on the eve of the second wave of the pandemic. The data is collected in a general Microsoft Excel table. Dataset is a unique database that combines COVID-19 statistics and entrepreneurship statistics. The dataset is flexible data that can be supplemented with data from other countries and newer statistics on the COVID-19 pandemic. Due to the fact that the data in the dataset are not ready-made numbers, but formulas, when adding and / or changing the values in the original table at the beginning of the dataset, most of the subsequent tables will be automatically recalculated and the graphs will be updated. This allows the dataset to be used not just as an array of data, but as an analytical tool for automating scientific research on the impact of the COVID-19 pandemic and crisis on international entrepreneurship. The dataset includes not only tabular data, but also charts that provide data visualization. The dataset contains not only actual, but also forecast data on morbidity and mortality from COVID-19 for the period of the second wave of the pandemic in 2020. The forecasts are presented in the form of a normal distribution of predicted values and the probability of their occurrence in practice. This allows for a broad scenario analysis of the impact of the COVID-19 pandemic and crisis on international entrepreneurship, substituting various predicted morbidity and mortality rates in risk assessment tables and obtaining automatically calculated consequences (changes) on the characteristics of international entrepreneurship. It is also possible to substitute the actual values identified in the process and following the results of the second wave of the pandemic to check the reliability of pre-made forecasts and conduct a plan-fact analysis. The dataset contains not only the numerical values of the initial and predicted values of the set of studied indicators, but also their qualitative interpretation, reflecting the presence and level of risks of a pandemic and COVID-19 crisis for international entrepreneurship.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This comprehensive dataset provides a wealth of information about all countries worldwide, covering a wide range of indicators and attributes. It encompasses demographic statistics, economic indicators, environmental factors, healthcare metrics, education statistics, and much more. With every country represented, this dataset offers a complete global perspective on various aspects of nations, enabling in-depth analyses and cross-country comparisons.
- Country: Name of the country.
- Density (P/Km2): Population density measured in persons per square kilometer.
- Abbreviation: Abbreviation or code representing the country.
- Agricultural Land (%): Percentage of land area used for agricultural purposes.
- Land Area (Km2): Total land area of the country in square kilometers.
- Armed Forces Size: Size of the armed forces in the country.
- Birth Rate: Number of births per 1,000 population per year.
- Calling Code: International calling code for the country.
- Capital/Major City: Name of the capital or major city.
- CO2 Emissions: Carbon dioxide emissions in tons.
- CPI: Consumer Price Index, a measure of inflation and purchasing power.
- CPI Change (%): Percentage change in the Consumer Price Index compared to the previous year.
- Currency_Code: Currency code used in the country.
- Fertility Rate: Average number of children born to a woman during her lifetime.
- Forested Area (%): Percentage of land area covered by forests.
- Gasoline_Price: Price of gasoline per liter in local currency.
- GDP: Gross Domestic Product, the total value of goods and services produced in the country.
- Gross Primary Education Enrollment (%): Gross enrollment ratio for primary education.
- Gross Tertiary Education Enrollment (%): Gross enrollment ratio for tertiary education.
- Infant Mortality: Number of deaths per 1,000 live births before reaching one year of age.
- Largest City: Name of the country's largest city.
- Life Expectancy: Average number of years a newborn is expected to live.
- Maternal Mortality Ratio: Number of maternal deaths per 100,000 live births.
- Minimum Wage: Minimum wage level in local currency.
- Official Language: Official language(s) spoken in the country.
- Out of Pocket Health Expenditure (%): Percentage of total health expenditure paid out-of-pocket by individuals.
- Physicians per Thousand: Number of physicians per thousand people.
- Population: Total population of the country.
- Population: Labor Force Participation (%): Percentage of the population that is part of the labor force.
- Tax Revenue (%): Tax revenue as a percentage of GDP.
- Total Tax Rate: Overall tax burden as a percentage of commercial profits.
- Unemployment Rate: Percentage of the labor force that is unemployed.
- Urban Population: Percentage of the population living in urban areas.
- Latitude: Latitude coordinate of the country's location.
- Longitude: Longitude coordinate of the country's location.
- Analyze population density and land area to study spatial distribution patterns.
- Investigate the relationship between agricultural land and food security.
- Examine carbon dioxide emissions and their impact on climate change.
- Explore correlations between economic indicators such as GDP and various socio-economic factors.
- Investigate educational enrollment rates and their implications for human capital development.
- Analyze healthcare metrics such as infant mortality and life expectancy to assess overall well-being.
- Study labor market dynamics through indicators such as labor force participation and unemployment rates.
- Investigate the role of taxation and its impact on economic development.
- Explore urbanization trends and their social and environmental consequences.
Data Source: This dataset was compiled from multiple data sources
If this was helpful, a vote is appreciated ❤️ Thank you 🙂
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
By Huggingface Hub [source]
The Airoboros-3.1 dataset is the perfect tool to help machine learning models excel in the difficult realm of complicated mathematical operations. This data collection features thousands of conversations between machines and humans, formatted in ShareGPT to maximize optimization in an OS ecosystem. The dataset’s focus on advanced subjects like factorials, trigonometry, and larger numerical values will help drive machine learning models to the next level - facilitating critical acquisition of sophisticated mathematical skills that are essential for ML success. As AI technology advances at such a rapid pace, training neural networks to correspondingly move forward can be a daunting and complicated challenge - but with Airoboros-3.1’s powerful datasets designed around difficult mathematical operations it just became one step closer to achievable!
For more datasets, click here.
- 🚨 Your notebook can be here! 🚨!
To get started, download the dataset from Kaggle and use the train.csv file. This file contains over two thousand examples of conversations between ML models and humans which have been formatted using ShareGPT - fast and efficient OS ecosystem fine-tuning tools designed to help with understanding mathematical operations more easily. The file includes two columns: category and conversations, both of which are marked as strings in the data itself.
Once you have downloaded the train file you can begin setting up your own ML training environment by using any of your preferred frameworks or methods. Your model should focus on predicting what kind of mathematical operations will likely be involved in future conversations by referring back to previous dialogues within this dataset for reference (category column). You can also create your own test sets from this data, adding new conversation topics either by modifying existing rows or creating new ones entirely with conversation topics related to mathematics. Finally, compare your model’s results against other established models or algorithms that are already published online!
Happy training!
- It can be used to build custom neural networks or machine learning algorithms that are specifically designed for complex mathematical operations.
- This data set can be used to teach and debug more general-purpose machine learning models to recognize large numbers, and intricate calculations within natural language processing (NLP).
- The Airoboros-3.1 dataset can also be utilized as a supervised learning task: models could learn from the conversations provided in the dataset how to respond correctly when presented with complex mathematical operations
If you use this dataset in your research, please credit the original authors. Data Source
License: CC0 1.0 Universal (CC0 1.0) - Public Domain Dedication No Copyright - You can copy, modify, distribute and perform the work, even for commercial purposes, all without asking permission. See Other Information.
File: train.csv | Column name | Description | |:------------------|:-----------------------------------------------------------------------------| | category | The type of mathematical operation being discussed. (String) | | conversations | The conversations between the machine learning model and the human. (String) |
If you use this dataset in your research, please credit the original authors. If you use this dataset in your research, please credit Huggingface Hub.
Facebook
Twitterhttps://cubig.ai/store/terms-of-servicehttps://cubig.ai/store/terms-of-service
1) Data Introduction • The Power BI Sample Data is a financial sample dataset provided for Power BI practice and data visualization exercises that includes a variety of financial metrics and transaction information, including sales, profits, and expenses.
2) Data Utilization (1) Power BI Sample Data has characteristics that: • This dataset consists of numerical and categorical variables such as transaction date, region, product category, sales, profit, and cost, optimized for aggregation, analysis, and visualization. (2) Power BI Sample Data can be used to: • Revenue and Revenue Analysis: Analyze sales and profit data by region, product, and period to understand business performance and trends. • Power BI Dashboard Practice: Utilize a variety of financial metrics and transaction data to design and practice dashboards, reports, visualization charts, and more directly at Power BI.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Public health-related decision-making on policies aimed at controlling the COVID-19 pandemic outbreak depends on complex epidemiological models that are compelled to be robust and use all relevant available data. This data article provides a new combined worldwide COVID-19 dataset obtained from official data sources with improved systematic measurement errors and a dedicated dashboard for online data visualization and summary. The dataset adds new measures and attributes to the normal attributes of official data sources, such as daily mortality, and fatality rates. We used comparative statistical analysis to evaluate the measurement errors of COVID-19 official data collections from the Chinese Center for Disease Control and Prevention (Chinese CDC), World Health Organization (WHO) and European Centre for Disease Prevention and Control (ECDC). The data is collected by using text mining techniques and reviewing pdf reports, metadata, and reference data. The combined dataset includes complete spatial data such as countries area, international number of countries, Alpha-2 code, Alpha-3 code, latitude, longitude, and some additional attributes such as population. The improved dataset benefits from major corrections on the referenced data sets and official reports such as adjustments in the reporting dates, which suffered from a one to two days lag, removing negative values, detecting unreasonable changes in historical data in new reports and corrections on systematic measurement errors, which have been increasing as the pandemic outbreak spreads and more countries contribute data for the official repositories. Additionally, the root mean square error of attributes in the paired comparison of datasets was used to identify the main data problems. The data for China is presented separately and in more detail, and it has been extracted from the attached reports available on the main page of the CCDC website. This dataset is a comprehensive and reliable source of worldwide COVID-19 data that can be used in epidemiological models assessing the magnitude and timeline for confirmed cases, long-term predictions of deaths or hospital utilization, the effects of quarantine, stay-at-home orders and other social distancing measures, the pandemic’s turning point or in economic and social impact analysis, helping to inform national and local authorities on how to implement an adaptive response approach to re-opening the economy, re-open schools, alleviate business and social distancing restrictions, design economic programs or allow sports events to resume.
Facebook
Twitterhttps://datacatalog.worldbank.org/public-licenses?fragment=cchttps://datacatalog.worldbank.org/public-licenses?fragment=cc
This dataset contains metadata (title, abstract, date of publication, field, etc) for around 1 million academic articles. Each record contains additional information on the country of study and whether the article makes use of data. Machine learning tools were used to classify the country of study and data use.
Our data source of academic articles is the Semantic Scholar Open Research Corpus (S2ORC) (Lo et al. 2020). The corpus contains more than 130 million English language academic papers across multiple disciplines. The papers included in the Semantic Scholar corpus are gathered directly from publishers, from open archives such as arXiv or PubMed, and crawled from the internet.
We placed some restrictions on the articles to make them usable and relevant for our purposes. First, only articles with an abstract and parsed PDF or latex file are included in the analysis. The full text of the abstract is necessary to classify the country of study and whether the article uses data. The parsed PDF and latex file are important for extracting important information like the date of publication and field of study. This restriction eliminated a large number of articles in the original corpus. Around 30 million articles remain after keeping only articles with a parsable (i.e., suitable for digital processing) PDF, and around 26% of those 30 million are eliminated when removing articles without an abstract. Second, only articles from the year 2000 to 2020 were considered. This restriction eliminated an additional 9% of the remaining articles. Finally, articles from the following fields of study were excluded, as we aim to focus on fields that are likely to use data produced by countries’ national statistical system: Biology, Chemistry, Engineering, Physics, Materials Science, Environmental Science, Geology, History, Philosophy, Math, Computer Science, and Art. Fields that are included are: Economics, Political Science, Business, Sociology, Medicine, and Psychology. This third restriction eliminated around 34% of the remaining articles. From an initial corpus of 136 million articles, this resulted in a final corpus of around 10 million articles.
Due to the intensive computer resources required, a set of 1,037,748 articles were randomly selected from the 10 million articles in our restricted corpus as a convenience sample.
The empirical approach employed in this project utilizes text mining with Natural Language Processing (NLP). The goal of NLP is to extract structured information from raw, unstructured text. In this project, NLP is used to extract the country of study and whether the paper makes use of data. We will discuss each of these in turn.
To determine the country or countries of study in each academic article, two approaches are employed based on information found in the title, abstract, or topic fields. The first approach uses regular expression searches based on the presence of ISO3166 country names. A defined set of country names is compiled, and the presence of these names is checked in the relevant fields. This approach is transparent, widely used in social science research, and easily extended to other languages. However, there is a potential for exclusion errors if a country’s name is spelled non-standardly.
The second approach is based on Named Entity Recognition (NER), which uses machine learning to identify objects from text, utilizing the spaCy Python library. The Named Entity Recognition algorithm splits text into named entities, and NER is used in this project to identify countries of study in the academic articles. SpaCy supports multiple languages and has been trained on multiple spellings of countries, overcoming some of the limitations of the regular expression approach. If a country is identified by either the regular expression search or NER, it is linked to the article. Note that one article can be linked to more than one country.
The second task is to classify whether the paper uses data. A supervised machine learning approach is employed, where 3500 publications were first randomly selected and manually labeled by human raters using the Mechanical Turk service (Paszke et al. 2019).[1] To make sure the human raters had a similar and appropriate definition of data in mind, they were given the following instructions before seeing their first paper:
Each of these documents is an academic article. The goal of this study is to measure whether a specific academic article is using data and from which country the data came.
There are two classification tasks in this exercise:
1. identifying whether an academic article is using data from any country
2. Identifying from which country that data came.
For task 1, we are looking specifically at the use of data. Data is any information that has been collected, observed, generated or created to produce research findings. As an example, a study that reports findings or analysis using a survey data, uses data. Some clues to indicate that a study does use data includes whether a survey or census is described, a statistical model estimated, or a table or means or summary statistics is reported.
After an article is classified as using data, please note the type of data used. The options are population or business census, survey data, administrative data, geospatial data, private sector data, and other data. If no data is used, then mark "Not applicable". In cases where multiple data types are used, please click multiple options.[2]
For task 2, we are looking at the country or countries that are studied in the article. In some cases, no country may be applicable. For instance, if the research is theoretical and has no specific country application. In some cases, the research article may involve multiple countries. In these cases, select all countries that are discussed in the paper.
We expect between 10 and 35 percent of all articles to use data.
The median amount of time that a worker spent on an article, measured as the time between when the article was accepted to be classified by the worker and when the classification was submitted was 25.4 minutes. If human raters were exclusively used rather than machine learning tools, then the corpus of 1,037,748 articles examined in this study would take around 50 years of human work time to review at a cost of $3,113,244, which assumes a cost of $3 per article as was paid to MTurk workers.
A model is next trained on the 3,500 labelled articles. We use a distilled version of the BERT (bidirectional Encoder Representations for transformers) model to encode raw text into a numeric format suitable for predictions (Devlin et al. (2018)). BERT is pre-trained on a large corpus comprising the Toronto Book Corpus and Wikipedia. The distilled version (DistilBERT) is a compressed model that is 60% the size of BERT and retains 97% of the language understanding capabilities and is 60% faster (Sanh, Debut, Chaumond, Wolf 2019). We use PyTorch to produce a model to classify articles based on the labeled data. Of the 3,500 articles that were hand coded by the MTurk workers, 900 are fed to the machine learning model. 900 articles were selected because of computational limitations in training the NLP model. A classification of “uses data” was assigned if the model predicted an article used data with at least 90% confidence.
The performance of the models classifying articles to countries and as using data or not can be compared to the classification by the human raters. We consider the human raters as giving us the ground truth. This may underestimate the model performance if the workers at times got the allocation wrong in a way that would not apply to the model. For instance, a human rater could mistake the Republic of Korea for the Democratic People’s Republic of Korea. If both humans and the model perform the same kind of errors, then the performance reported here will be overestimated.
The model was able to predict whether an article made use of data with 87% accuracy evaluated on the set of articles held out of the model training. The correlation between the number of articles written about each country using data estimated under the two approaches is given in the figure below. The number of articles represents an aggregate total of
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
MLFMF MLFMF (Machine Learning for Mathematical Formalization) is a collection of data sets for benchmarking recommendation systems used to support formalization of mathematics with proof assistants. These systems help humans identify which previous entries (theorems, constructions, datatypes, and postulates) are relevant in proving a new theorem or carrying out a new construction. The MLFMF data sets provide solid benchmarking support for further investigation of the numerous machine learning approaches to formalized mathematics. With more than 250,000 entries in total, this is currently the largest collection of formalized mathematical knowledge in machine learnable format. In addition to benchmarking the recommendation systems, the data sets can also be used for benchmarking node classification and link prediction algorithms. The four data sets Each data set is derived from a library of formalized mathematics written in proof assistants Agda or Lean. The collection includes
the largest Lean 4 library Mathlib, the three largest Agda libraries:
the standard library the library of univalent mathematics Agda-unimath, and the TypeTopology library. Each data set represents the corresponding library in two ways: as a heterogeneous network, and as a list of syntax trees of all the entries in the library. The network contains the (modular) structure of the library and the references between entries, while the syntax trees give complete and easily parsed information about each entry. The Lean library data set was obtained by converting .olean files into s-expressions (see the lean2sexp tool). The Agda data sets were obtained with an s-expression extension of the official Agda repository (use either master-sexp or release-2.6.3-sexp branch). For more details, see our arXiv copy of the paper. Directory structure First, the mlfmf.zip archive needs to be unzipped. It contains a separate directory for every library (for example, the standard library of Agda can be found in the stdlib directory) and some auxiliary files. Every library directory contains
the network file from which the heterogeneous network can be loaded, a zip of the entries directory that contains (many) files with abstract syntax trees. Each of those files describes a single entry of the library. In addition to the auxiliary files which are used for loading the data (and described below), the zipped sources of lean2sexp and Agda s-expression extension are present. Loading the data In addition to the data files, there is also a simple python script main.py for loading the data. To run it, you will have to install the packages listed in the file requirements.txt: tqdm and networkx. The easiest way to do so is calling pip install -r requirements.txt. When running main.py for the first time, the script will unzip the entry files into the directory named entries. After that, the script loads the syntax trees of the entries (see the Entry class) and the network (as networkx.MultiDiGraph object). Note. The entry files have extension .dag (directed acyclic graph), since Lean uses node sharing, which breaks the tree structure (a shared node has more than one parent node). More information For more information about the data collection process, detailed data (and data format) description, and baseline experiments that were already performed with these data, see our arXiv copy of the paper. For the code that was used to perform the experiments and data format description, visit our github repository https://github.com/ul-fmf/mlfmf-data. Funding Since not all the funders are available in the Zenodo's database, we list them here:
This material is based upon work supported by the Air Force Office of Scientific Research under award number FA9550-21-1-0024. The authors also acknowledge the financial support of the Slovenian Research Agency via the research core funding No. P2-0103 and No. P1-0294.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The complete dataset used in the analysis comprises 36 samples, each described by 11 numeric features and 1 target. The attributes considered were caspase 3/7 activity, Mitotracker red CMXRos area and intensity (3 h and 24 h incubations with both compounds), Mitosox oxidation (3 h incubation with the referred compounds) and oxidation rate, DCFDA fluorescence (3 h and 24 h incubations with either compound) and oxidation rate, and DQ BSA hydrolysis. The target of each instance corresponds to one of the 9 possible classes (4 samples per class): Control, 6.25, 12.5, 25 and 50 µM for 6-OHDA and 0.03, 0.06, 0.125 and 0.25 µM for rotenone. The dataset is balanced, it does not contain any missing values and data was standardized across features. The small number of samples prevented a full and strong statistical analysis of the results. Nevertheless, it allowed the identification of relevant hidden patterns and trends.
Exploratory data analysis, information gain, hierarchical clustering, and supervised predictive modeling were performed using Orange Data Mining version 3.25.1 [41]. Hierarchical clustering was performed using the Euclidean distance metric and weighted linkage. Cluster maps were plotted to relate the features with higher mutual information (in rows) with instances (in columns), with the color of each cell representing the normalized level of a particular feature in a specific instance. The information is grouped both in rows and in columns by a two-way hierarchical clustering method using the Euclidean distances and average linkage. Stratified cross-validation was used to train the supervised decision tree. A set of preliminary empirical experiments were performed to choose the best parameters for each algorithm, and we verified that, within moderate variations, there were no significant changes in the outcome. The following settings were adopted for the decision tree algorithm: minimum number of samples in leaves: 2; minimum number of samples required to split an internal node: 5; stop splitting when majority reaches: 95%; criterion: gain ratio. The performance of the supervised model was assessed using accuracy, precision, recall, F-measure and area under the ROC curve (AUC) metrics.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This paper explores a unique dataset of all the SET ratings provided by students of one university in Poland at the end of the winter semester of the 2020/2021 academic year. The SET questionnaire used by this university is presented in Appendix 1. The dataset is unique for several reasons. It covers all SET surveys filled by students in all fields and levels of study offered by the university. In the period analysed, the university was entirely in the online regime amid the Covid-19 pandemic. While the expected learning outcomes formally have not been changed, the online mode of study could have affected the grading policy and could have implications for some of the studied SET biases. This Covid-19 effect is captured by econometric models and discussed in the paper. The average SET scores were matched with the characteristics of the teacher for degree, seniority, gender, and SET scores in the past six semesters; the course characteristics for time of day, day of the week, course type, course breadth, class duration, and class size; the attributes of the SET survey responses as the percentage of students providing SET feedback; and the grades of the course for the mean, standard deviation, and percentage failed. Data on course grades are also available for the previous six semesters. This rich dataset allows many of the biases reported in the literature to be tested for and new hypotheses to be formulated, as presented in the introduction section. The unit of observation or the single row in the data set is identified by three parameters: teacher unique id (j), course unique id (k) and the question number in the SET questionnaire (n ϵ {1, 2, 3, 4, 5, 6, 7, 8, 9} ). It means that for each pair (j,k), we have nine rows, one for each SET survey question, or sometimes less when students did not answer one of the SET questions at all. For example, the dependent variable SET_score_avg(j,k,n) for the triplet (j=Calculus, k=John Smith, n=2) is calculated as the average of all Likert-scale answers to question nr 2 in the SET survey distributed to all students that took the Calculus course taught by John Smith. The data set has 8,015 such observations or rows. The full list of variables or columns in the data set included in the analysis is presented in the attached filesection. Their description refers to the triplet (teacher id = j, course id = k, question number = n). When the last value of the triplet (n) is dropped, it means that the variable takes the same values for all n ϵ {1, 2, 3, 4, 5, 6, 7, 8, 9}.Two attachments:- word file with variables description- Rdata file with the data set (for R language).Appendix 1. Appendix 1. The SET questionnaire was used for this paper. Evaluation survey of the teaching staff of [university name] Please, complete the following evaluation form, which aims to assess the lecturer’s performance. Only one answer should be indicated for each question. The answers are coded in the following way: 5- I strongly agree; 4- I agree; 3- Neutral; 2- I don’t agree; 1- I strongly don’t agree. Questions 1 2 3 4 5 I learnt a lot during the course. ○ ○ ○ ○ ○ I think that the knowledge acquired during the course is very useful. ○ ○ ○ ○ ○ The professor used activities to make the class more engaging. ○ ○ ○ ○ ○ If it was possible, I would enroll for the course conducted by this lecturer again. ○ ○ ○ ○ ○ The classes started on time. ○ ○ ○ ○ ○ The lecturer always used time efficiently. ○ ○ ○ ○ ○ The lecturer delivered the class content in an understandable and efficient way. ○ ○ ○ ○ ○ The lecturer was available when we had doubts. ○ ○ ○ ○ ○ The lecturer treated all students equally regardless of their race, background and ethnicity. ○ ○
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Advances in neuroimaging, genomic, motion tracking, eye-tracking and many other technology-based data collection methods have led to a torrent of high dimensional datasets, which commonly have a small number of samples because of the intrinsic high cost of data collection involving human participants. High dimensional data with a small number of samples is of critical importance for identifying biomarkers and conducting feasibility and pilot work, however it can lead to biased machine learning (ML) performance estimates. Our review of studies which have applied ML to predict autistic from non-autistic individuals showed that small sample size is associated with higher reported classification accuracy. Thus, we have investigated whether this bias could be caused by the use of validation methods which do not sufficiently control overfitting. Our simulations show that K-fold Cross-Validation (CV) produces strongly biased performance estimates with small sample sizes, and the bias is still evident with sample size of 1000. Nested CV and train/test split approaches produce robust and unbiased performance estimates regardless of sample size. We also show that feature selection if performed on pooled training and testing data is contributing to bias considerably more than parameter tuning. In addition, the contribution to bias by data dimensionality, hyper-parameter space and number of CV folds was explored, and validation methods were compared with discriminable data. The results suggest how to design robust testing methodologies when working with small datasets and how to interpret the results of other studies based on what validation method was used.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
By Huggingface Hub [source]
This Grade School Math 8K Linguistically Diverse Training & Test Set is designed to help you develop and improve your understanding of multi-step reasoning question answering. The dataset contains three separate data files: the socratic_test.csv, main_test.csv, and main_train.csv, each containing a set of questions and answers related to grade school math that consists of multiple steps. Each file contains the same columns:
question,answer. The questions contained in this dataset are thoughtfully crafted to lead you through the reasoning journey for arriving at the correct answer each time, allowing you immense opportunities for learning through practice. With over 8 thousand entries for both training and testing purposes in this GSM8K dataset, it takes advanced multi-step reasoning skills to ace these questions! Deepen your knowledge today and master any challenge with ease using this amazing GSM8K set!
For more datasets, click here.
- 🚨 Your notebook can be here! 🚨!
This dataset provides a unique opportunity to study multi-step reasoning for question answering. The GSM8K Linguistically Diverse Training & Test Set consists of 8,000 questions and answers that have been created to simulate real-world scenarios in grade school mathematics. Each question is paired with one answer based on a comprehensive test set. The questions cover topics such as algebra, arithmetic, probability and more.
The dataset consists of two files: main_train.csv and main_test.csv; the former contains questions and answers specifically related to grade school math while the latter includes multi-step reasoning tests for each category of the Ontario Math Curriculum (OMC). In addition, it has three columns - Question (Question), Answer ([Answer]) – meaning that each row contains 3 sequential question/answer pairs making it possible to take a single path from the start of any given answer or branch out from there according to the logic construction required by each respective problem scenario; these columns can be used in combination with text analysis algorithms like ELMo or BERT to explore different formats of representation for responding accurately during natural language processing tasks such as Q&A or building predictive models for numerical data applications like measuring classifying resource efficiency initiatives or forecasting sales volumes in retail platforms..
To use this dataset efficiently you should first get familiar with its structure by reading through its documentation so you are aware all available info regarding items content definition & format requirements then study examples that best suits your specific purpose whether is performing an experiment inspired by education research needs, generate insights related marketing analytics reports making predictions over artificial intelligence project capacity improvements optimization gains etcetera having full access knowledge about available source keeps you up & running from preliminary background work toward knowledge mining endeavor completion success Support User success qualitative exploration sessions make sure learn all variables definitions employed heterogeneous tools before continue Research journey starts experienced Researchers come prepared valuable resource items employed go beyond discovery false alarm halt advancement flow focus unprocessed raw values instead ensure clear cutting vision behind objectives support UserHelp plans going mean project meaningful campaign deliverables production planning safety milestones dovetail short deliveries enable design interfaces session workforce making everything automated fun entry functioning final transformation awaited offshoot Goals outcome parameters monitor life cycle management ensures ongoing projects feedbacks monitored video enactment resources tapped Proficiently balanced activity sheets tracking activities progress deliberation points evaluation radius highlights outputs primary phase visit egress collaboration agendas Client cumulative returns records capture performance illustrated collectively diarized successive setup sweetens conditions researched environments overview debriefing arcane matters turn acquaintances esteemed directives social
- Training language models for improving accuracy in natural language processing applications such as question answering or dialogue systems.
- Generating new grade school math questions and answers using g...
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
A fictional dataset for exploratory data analysis (EDA) and to test simple prediction models.
This toy dataset features 150000 rows and 6 columns.
Note: All data is fictional. The data has been generated so that their distributions are convenient for statistical analysis.
Number: A simple index number for each row
City: The location of a person (Dallas, New York City, Los Angeles, Mountain View, Boston, Washington D.C., San Diego and Austin)
Gender: Gender of a person (Male or Female)
Age: The age of a person (Ranging from 25 to 65 years)
Income: Annual income of a person (Ranging from -674 to 177175)
Illness: Is the person Ill? (Yes or No)
Stock photo by Mika Baumeister on Unsplash.
Facebook
TwitterDescription: This dataset (Version 10) contains a collection of research papers along with various attributes and metadata. It is a comprehensive and diverse dataset that can be used for a wide range of research and analysis tasks. The dataset encompasses papers from different fields of study, including computer science, mathematics, physics, and more.
Fields in the Dataset: - id: A unique identifier for each paper. - title: The title of the research paper. - authors: The list of authors involved in the paper. - venue: The journal or venue where the paper was published. - year: The year when the paper was published. - n_citation: The number of citations received by the paper. - references: A list of paper IDs that are cited by the current paper. - abstract: The abstract of the paper.
Example: - "id": "013ea675-bb58-42f8-a423-f5534546b2b1", - "title": "Prediction of consensus binding mode geometries for related chemical series of positive allosteric modulators of adenosine and muscarinic acetylcholine receptors", - "authors": ["Leon A. Sakkal", "Kyle Z. Rajkowski", "Roger S. Armen"], - "venue": "Journal of Computational Chemistry", - "year": 2017, - "n_citation": 0, - "references": ["4f4f200c-0764-4fef-9718-b8bccf303dba", "aa699fbf-fabe-40e4-bd68-46eaf333f7b1"], - "abstract": "This paper studies ..."
Facebook
Twitterhttp://opendatacommons.org/licenses/dbcl/1.0/http://opendatacommons.org/licenses/dbcl/1.0/
This dataset compiles the top 2500 datasets from Kaggle, encompassing a diverse range of topics and contributors. It provides insights into dataset creation, usability, popularity, and more, offering valuable information for researchers, analysts, and data enthusiasts.
Research Analysis: Researchers can utilize this dataset to analyze trends in dataset creation, popularity, and usability scores across various categories.
Contributor Insights: Kaggle contributors can explore the dataset to gain insights into factors influencing the success and engagement of their datasets, aiding in optimizing future submissions.
Machine Learning Training: Data scientists and machine learning enthusiasts can use this dataset to train models for predicting dataset popularity or usability based on features such as creator, category, and file types.
Market Analysis: Analysts can leverage the dataset to conduct market analysis, identifying emerging trends and popular topics within the data science community on Kaggle.
Educational Purposes: Educators and students can use this dataset to teach and learn about data analysis, visualization, and interpretation within the context of real-world datasets and community-driven platforms like Kaggle.
Column Definitions:
Dataset Name: Name of the dataset. Created By: Creator(s) of the dataset. Last Updated in number of days: Time elapsed since last update. Usability Score: Score indicating the ease of use. Number of File: Quantity of files included. Type of file: Format of files (e.g., CSV, JSON). Size: Size of the dataset. Total Votes: Number of votes received. Category: Categorization of the dataset's subject matter.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The "Amsterdam Library of Object Images" is a collection of 110250 images of 1000 small objects, taken under various light conditions and rotation angles. All objects were placed on a black background. Thus the images are taken under rather uniform conditions, which means there is little uncontrolled bias in the data set (unless mixed with other sources). They do however not resemble a "typical" image collection. The data set has a rather unique property for its size: there are around 100 different images of each object, so it is well suited for clustering. By downsampling some objects it can also be used for outlier detection. For multi-view research, we offer a number of different feature vector sets for evaluating this data set.
Facebook
TwitterThese datasets contain 1.48 million question and answer pairs about products from Amazon.
Metadata includes
question and answer text
is the question binary (yes/no), and if so does it have a yes/no answer?
timestamps
product ID (to reference the review dataset)
Basic Statistics:
Questions: 1.48 million
Answers: 4,019,744
Labeled yes/no questions: 309,419
Number of unique products with questions: 191,185
Facebook
TwitterThe dataset is a relational dataset of 8,000 households households, representing a sample of the population of an imaginary middle-income country. The dataset contains two data files: one with variables at the household level, the other one with variables at the individual level. It includes variables that are typically collected in population censuses (demography, education, occupation, dwelling characteristics, fertility, mortality, and migration) and in household surveys (household expenditure, anthropometric data for children, assets ownership). The data only includes ordinary households (no community households). The dataset was created using REaLTabFormer, a model that leverages deep learning methods. The dataset was created for the purpose of training and simulation and is not intended to be representative of any specific country.
The full-population dataset (with about 10 million individuals) is also distributed as open data.
The dataset is a synthetic dataset for an imaginary country. It was created to represent the population of this country by province (equivalent to admin1) and by urban/rural areas of residence.
Household, Individual
The dataset is a fully-synthetic dataset representative of the resident population of ordinary households for an imaginary middle-income country.
ssd
The sample size was set to 8,000 households. The fixed number of households to be selected from each enumeration area was set to 25. In a first stage, the number of enumeration areas to be selected in each stratum was calculated, proportional to the size of each stratum (stratification by geo_1 and urban/rural). Then 25 households were randomly selected within each enumeration area. The R script used to draw the sample is provided as an external resource.
other
The dataset is a synthetic dataset. Although the variables it contains are variables typically collected from sample surveys or population censuses, no questionnaire is available for this dataset. A "fake" questionnaire was however created for the sample dataset extracted from this dataset, to be used as training material.
The synthetic data generation process included a set of "validators" (consistency checks, based on which synthetic observation were assessed and rejected/replaced when needed). Also, some post-processing was applied to the data to result in the distributed data files.
This is a synthetic dataset; the "response rate" is 100%.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Sheet 1 (Raw-Data): The raw data of the study is provided, presenting the tagging results for the used measures described in the paper. For each subject, it includes multiple columns: A. a sequential student ID B an ID that defines a random group label and the notation C. the used notation: user Story or use Cases D. the case they were assigned to: IFA, Sim, or Hos E. the subject's exam grade (total points out of 100). Empty cells mean that the subject did not take the first exam F. a categorical representation of the grade L/M/H, where H is greater or equal to 80, M is between 65 included and 80 excluded, L otherwise G. the total number of classes in the student's conceptual model H. the total number of relationships in the student's conceptual model I. the total number of classes in the expert's conceptual model J. the total number of relationships in the expert's conceptual model K-O. the total number of encountered situations of alignment, wrong representation, system-oriented, omitted, missing (see tagging scheme below) P. the researchers' judgement on how well the derivation process explanation was explained by the student: well explained (a systematic mapping that can be easily reproduced), partially explained (vague indication of the mapping ), or not present.
Tagging scheme:
Aligned (AL) - A concept is represented as a class in both models, either
with the same name or using synonyms or clearly linkable names;
Wrongly represented (WR) - A class in the domain expert model is
incorrectly represented in the student model, either (i) via an attribute,
method, or relationship rather than class, or
(ii) using a generic term (e.g., user'' instead ofurban
planner'');
System-oriented (SO) - A class in CM-Stud that denotes a technical
implementation aspect, e.g., access control. Classes that represent legacy
system or the system under design (portal, simulator) are legitimate;
Omitted (OM) - A class in CM-Expert that does not appear in any way in
CM-Stud;
Missing (MI) - A class in CM-Stud that does not appear in any way in
CM-Expert.
All the calculations and information provided in the following sheets
originate from that raw data.
Sheet 2 (Descriptive-Stats): Shows a summary of statistics from the data collection,
including the number of subjects per case, per notation, per process derivation rigor category, and per exam grade category.
Sheet 3 (Size-Ratio):
The number of classes within the student model divided by the number of classes within the expert model is calculated (describing the size ratio). We provide box plots to allow a visual comparison of the shape of the distribution, its central value, and its variability for each group (by case, notation, process, and exam grade) . The primary focus in this study is on the number of classes. However, we also provided the size ratio for the number of relationships between student and expert model.
Sheet 4 (Overall):
Provides an overview of all subjects regarding the encountered situations, completeness, and correctness, respectively. Correctness is defined as the ratio of classes in a student model that is fully aligned with the classes in the corresponding expert model. It is calculated by dividing the number of aligned concepts (AL) by the sum of the number of aligned concepts (AL), omitted concepts (OM), system-oriented concepts (SO), and wrong representations (WR). Completeness on the other hand, is defined as the ratio of classes in a student model that are correctly or incorrectly represented over the number of classes in the expert model. Completeness is calculated by dividing the sum of aligned concepts (AL) and wrong representations (WR) by the sum of the number of aligned concepts (AL), wrong representations (WR) and omitted concepts (OM). The overview is complemented with general diverging stacked bar charts that illustrate correctness and completeness.
For sheet 4 as well as for the following four sheets, diverging stacked bar
charts are provided to visualize the effect of each of the independent and mediated variables. The charts are based on the relative numbers of encountered situations for each student. In addition, a "Buffer" is calculated witch solely serves the purpose of constructing the diverging stacked bar charts in Excel. Finally, at the bottom of each sheet, the significance (T-test) and effect size (Hedges' g) for both completeness and correctness are provided. Hedges' g was calculated with an online tool: https://www.psychometrica.de/effect_size.html. The independent and moderating variables can be found as follows:
Sheet 5 (By-Notation):
Model correctness and model completeness is compared by notation - UC, US.
Sheet 6 (By-Case):
Model correctness and model completeness is compared by case - SIM, HOS, IFA.
Sheet 7 (By-Process):
Model correctness and model completeness is compared by how well the derivation process is explained - well explained, partially explained, not present.
Sheet 8 (By-Grade):
Model correctness and model completeness is compared by the exam grades, converted to categorical values High, Low , and Medium.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Study information The sample included in this dataset represents five children who participated in a number line intervention study. Originally six children were included in the study, but one of them fulfilled the criterion for exclusion after missing several consecutive sessions. Thus, their data is not included in the dataset. All participants were currently attending Year 1 of primary school at an independent school in New South Wales, Australia. For children to be able to eligible to participate they had to present with low mathematics achievement by performing at or below the 25th percentile in the Maths Problem Solving and/or Numerical Operations subtests from the Wechsler Individual Achievement Test III (WIAT III A & NZ, Wechsler, 2016). Participants were excluded from participating if, as reported by their parents, they have any other diagnosed disorders such as attention deficit hyperactivity disorder, autism spectrum disorder, intellectual disability, developmental language disorder, cerebral palsy or uncorrected sensory disorders. The study followed a multiple baseline case series design, with a baseline phase, a treatment phase, and a post-treatment phase. The baseline phase varied between two and three measurement points, the treatment phase varied between four and seven measurement points, and all participants had 1 post-treatment measurement point. The number of measurement points were distributed across participants as follows: Participant 1 – 3 baseline, 6 treatment, 1 post-treatment Participant 3 – 2 baseline, 7 treatment, 1 post-treatment Participant 5 – 2 baseline, 5 treatment, 1 post-treatment Participant 6 – 3 baseline, 4 treatment, 1 post-treatment Participant 7 – 2 baseline, 5 treatment, 1 post-treatment In each session across all three phases children were assessed in their performance on a number line estimation task, a single-digit computation task, a multi-digit computation task, a dot comparison task and a number comparison task. Furthermore, during the treatment phase, all children completed the intervention task after these assessments. The order of the assessment tasks varied randomly between sessions.
Measures Number Line Estimation. Children completed a computerised bounded number line task (0-100). The number line is presented in the middle of the screen, and the target number is presented above the start point of the number line to avoid signalling the midpoint (Dackermann et al., 2018). Target numbers included two non-overlapping sets (trained and untrained) of 30 items each. Untrained items were assessed on all phases of the study. Trained items were assessed independent of the intervention during baseline and post-treatment phases, and performance on the intervention is used to index performance on the trained set during the treatment phase. Within each set, numbers were equally distributed throughout the number range, with three items within each ten (0-10, 11-20, 21-30, etc.). Target numbers were presented in random order. Participants did not receive performance-based feedback. Accuracy is indexed by percent absolute error (PAE) [(number estimated - target number)/ scale of number line] x100.
Single-Digit Computation. The task included ten additions with single-digit addends (1-9) and single-digit results (2-9). The order was counterbalanced so that half of the additions present the lowest addend first (e.g., 3 + 5) and half of the additions present the highest addend first (e.g., 6 + 3). This task also included ten subtractions with single-digit minuends (3-9), subtrahends (1-6) and differences (1-6). The items were presented horizontally on the screen accompanied by a sound and participants were required to give a verbal response. Participants did not receive performance-based feedback. Performance on this task was indexed by item-based accuracy.
Multi-digit computational estimation. The task included eight additions and eight subtractions presented with double-digit numbers and three response options. None of the response options represent the correct result. Participants were asked to select the option that was closest to the correct result. In half of the items the calculation involved two double-digit numbers, and in the other half one double and one single digit number. The distance between the correct response option and the exact result of the calculation was two for half of the trials and three for the other half. The calculation was presented vertically on the screen with the three options shown below. The calculations remained on the screen until participants responded by clicking on one of the options on the screen. Participants did not receive performance-based feedback. Performance on this task is measured by item-based accuracy.
Dot Comparison and Number Comparison. Both tasks included the same 20 items, which were presented twice, counterbalancing left and right presentation. Magnitudes to be compared were between 5 and 99, with four items for each of the following ratios: .91, .83, .77, .71, .67. Both quantities were presented horizontally side by side, and participants were instructed to press one of two keys (F or J), as quickly as possible, to indicate the largest one. Items were presented in random order and participants did not receive performance-based feedback. In the non-symbolic comparison task (dot comparison) the two sets of dots remained on the screen for a maximum of two seconds (to prevent counting). Overall area and convex hull for both sets of dots is kept constant following Guillaume et al. (2020). In the symbolic comparison task (Arabic numbers), the numbers remained on the screen until a response was given. Performance on both tasks was indexed by accuracy.
The Number Line Intervention During the intervention sessions, participants estimated the position of 30 Arabic numbers in a 0-100 bounded number line. As a form of feedback, within each item, the participants’ estimate remained visible, and the correct position of the target number appeared on the number line. When the estimate’s PAE was lower than 2.5, a message appeared on the screen that read “Excellent job”, when PAE was between 2.5 and 5 the message read “Well done, so close! and when PAE was higher than 5 the message read “Good try!” Numbers were presented in random order.
Variables in the dataset Age = age in ‘years, months’ at the start of the study Sex = female/male/non-binary or third gender/prefer not to say (as reported by parents) Math_Problem_Solving_raw = Raw score on the Math Problem Solving subtest from the WIAT III (WIAT III A & NZ, Wechsler, 2016). Math_Problem_Solving_Percentile = Percentile equivalent on the Math Problem Solving subtest from the WIAT III (WIAT III A & NZ, Wechsler, 2016). Num_Ops_Raw = Raw score on the Numerical Operations subtest from the WIAT III (WIAT III A & NZ, Wechsler, 2016). Math_Problem_Solving_Percentile = Percentile equivalent on the Numerical Operations subtest from the WIAT III (WIAT III A & NZ, Wechsler, 2016).
The remaining variables refer to participants’ performance on the study tasks. Each variable name is composed by three sections. The first one refers to the phase and session. For example, Base1 refers to the first measurement point of the baseline phase, Treat1 to the first measurement point on the treatment phase, and post1 to the first measurement point on the post-treatment phase.
The second part of the variable name refers to the task, as follows: DC = dot comparison SDC = single-digit computation NLE_UT = number line estimation (untrained set) NLE_T= number line estimation (trained set) CE = multidigit computational estimation NC = number comparison The final part of the variable name refers to the type of measure being used (i.e., acc = total correct responses and pae = percent absolute error).
Thus, variable Base2_NC_acc corresponds to accuracy on the number comparison task during the second measurement point of the baseline phase and Treat3_NLE_UT_pae refers to the percent absolute error on the untrained set of the number line task during the third session of the Treatment phase.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
MLFMF MLFMF (Machine Learning for Mathematical Formalization) is a collection of data sets for benchmarking recommendation systems used to support formalization of mathematics with proof assistants. These systems help humans identify which previous entries (theorems, constructions, datatypes, and postulates) are relevant in proving a new theorem or carrying out a new construction. The MLFMF data sets provide solid benchmarking support for further investigation of the numerous machine learning approaches to formalized mathematics. With more than 250,000 entries in total, this is currently the largest collection of formalized mathematical knowledge in machine learnable format. In addition to benchmarking the recommendation systems, the data sets can also be used for benchmarking node classification and link prediction algorithms. The four data sets Each data set is derived from a library of formalized mathematics written in proof assistants Agda or Lean. The collection includes
the largest Lean 4 library Mathlib, the three largest Agda libraries:
the standard library the library of univalent mathematics Agda-unimath, and the TypeTopology library. Each data set represents the corresponding library in two ways: as a heterogeneous network, and as a list of syntax trees of all the entries in the library. The network contains the (modular) structure of the library and the references between entries, while the syntax trees give complete and easily parsed information about each entry. The Lean library data set was obtained by converting .olean files into s-expressions (see the lean2sexp tool). The Agda data sets were obtained with an s-expression extension of the official Agda repository (use either master-sexp or release-2.6.3-sexp branch). For more details, see our arXiv copy of the paper. Directory structure First, the mlfmf.zip archive needs to be unzipped. It contains a separate directory for every library (for example, the standard library of Agda can be found in the stdlib directory) and some auxiliary files. Every library directory contains
the network file from which the heterogeneous network can be loaded, a zip of the entries directory that contains (many) files with abstract syntax trees. Each of those files describes a single entry of the library. In addition to the auxiliary files which are used for loading the data (and described below), the zipped sources of lean2sexp and Agda s-expression extension are present. Loading the data In addition to the data files, there is also a simple python script main.py for loading the data. To run it, you will have to install the packages listed in the file requirements.txt: tqdm and networkx. The easiest way to do so is calling pip install -r requirements.txt. When running main.py for the first time, the script will unzip the entry files into the directory named entries. After that, the script loads the syntax trees of the entries (see the Entry class) and the network (as networkx.MultiDiGraph object). Note. The entry files have extension .dag (directed acyclic graph), since Lean uses node sharing, which breaks the tree structure (a shared node has more than one parent node). More information For more information about the data collection process, detailed data (and data format) description, and baseline experiments that were already performed with these data, see our arXiv copy of the paper. For the code that was used to perform the experiments and data format description, visit our github repository https://github.com/ul-fmf/mlfmf-data. Funding Since not all the funders are available in the Zenodo's database, we list them here:
This material is based upon work supported by the Air Force Office of Scientific Research under award number FA9550-21-1-0024. The authors also acknowledge the financial support of the Slovenian Research Agency via the research core funding No. P2-0103 and No. P1-0294.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
To create the dataset, the top 10 countries leading in the incidence of COVID-19 in the world were selected as of October 22, 2020 (on the eve of the second full of pandemics), which are presented in the Global 500 ranking for 2020: USA, India, Brazil, Russia, Spain, France and Mexico. For each of these countries, no more than 10 of the largest transnational corporations included in the Global 500 rating for 2020 and 2019 were selected separately. The arithmetic averages were calculated and the change (increase) in indicators such as profitability and profitability of enterprises, their ranking position (competitiveness), asset value and number of employees. The arithmetic mean values of these indicators for all countries of the sample were found, characterizing the situation in international entrepreneurship as a whole in the context of the COVID-19 crisis in 2020 on the eve of the second wave of the pandemic. The data is collected in a general Microsoft Excel table. Dataset is a unique database that combines COVID-19 statistics and entrepreneurship statistics. The dataset is flexible data that can be supplemented with data from other countries and newer statistics on the COVID-19 pandemic. Due to the fact that the data in the dataset are not ready-made numbers, but formulas, when adding and / or changing the values in the original table at the beginning of the dataset, most of the subsequent tables will be automatically recalculated and the graphs will be updated. This allows the dataset to be used not just as an array of data, but as an analytical tool for automating scientific research on the impact of the COVID-19 pandemic and crisis on international entrepreneurship. The dataset includes not only tabular data, but also charts that provide data visualization. The dataset contains not only actual, but also forecast data on morbidity and mortality from COVID-19 for the period of the second wave of the pandemic in 2020. The forecasts are presented in the form of a normal distribution of predicted values and the probability of their occurrence in practice. This allows for a broad scenario analysis of the impact of the COVID-19 pandemic and crisis on international entrepreneurship, substituting various predicted morbidity and mortality rates in risk assessment tables and obtaining automatically calculated consequences (changes) on the characteristics of international entrepreneurship. It is also possible to substitute the actual values identified in the process and following the results of the second wave of the pandemic to check the reliability of pre-made forecasts and conduct a plan-fact analysis. The dataset contains not only the numerical values of the initial and predicted values of the set of studied indicators, but also their qualitative interpretation, reflecting the presence and level of risks of a pandemic and COVID-19 crisis for international entrepreneurship.