50 datasets found
  1. T

    Nvidia | NVDA - Stock Price | Live Quote | Historical Chart

    • tradingeconomics.com
    csv, excel, json, xml
    Updated May 29, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2017). Nvidia | NVDA - Stock Price | Live Quote | Historical Chart [Dataset]. https://tradingeconomics.com/nvda:us
    Explore at:
    json, csv, excel, xmlAvailable download formats
    Dataset updated
    May 29, 2017
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 1, 2000 - Aug 1, 2025
    Area covered
    United States
    Description

    Nvidia stock price, live market quote, shares value, historical data, intraday chart, earnings per share and news.

  2. NVIDIA monthly share price on the Nasdaq stock exchange 2010-2025

    • statista.com
    Updated Jun 25, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). NVIDIA monthly share price on the Nasdaq stock exchange 2010-2025 [Dataset]. https://www.statista.com/statistics/1331201/nvidia-share-price-development-monthly/
    Explore at:
    Dataset updated
    Jun 25, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Jan 2010 - Feb 2025
    Area covered
    United States
    Description

    The price of NVIDIA shares traded on the Nasdaq stock exchange remained rather stable between July 2010 and January 2017. With the beginning of 2017, the price of NVIDIA shares started to increase, standing at ***** U.S. dollars per share in November 2021. Since then, the price of NVIDIA shares rose significantly and reached its highest value at ****** U.S. dollars as of the end of November 2024.

  3. T

    Nvidia | NVDA - Stock

    • tradingeconomics.com
    csv, excel, json, xml
    Updated Apr 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). Nvidia | NVDA - Stock [Dataset]. https://tradingeconomics.com/nvda:us:stock
    Explore at:
    csv, excel, xml, jsonAvailable download formats
    Dataset updated
    Apr 15, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 1, 2000 - Jul 31, 2025
    Area covered
    United States
    Description

    Nvidia reported $11.33B in Stock for its fiscal quarter ending in April of 2025. Data for Nvidia | NVDA - Stock including historical, tables and charts were last updated by Trading Economics this last July in 2025.

  4. T

    Nvidia | NVDA - Current Assets

    • tradingeconomics.com
    csv, excel, json, xml
    Updated Jan 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). Nvidia | NVDA - Current Assets [Dataset]. https://tradingeconomics.com/nvda:us:current-assets
    Explore at:
    csv, json, excel, xmlAvailable download formats
    Dataset updated
    Jan 15, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 1, 2000 - Aug 1, 2025
    Area covered
    United States
    Description

    Nvidia reported $80.13B in Current Assets for its fiscal quarter ending in January of 2025. Data for Nvidia | NVDA - Current Assets including historical, tables and charts were last updated by Trading Economics this last August in 2025.

  5. m

    NVIDIA Corporation - Stock Price Series

    • macro-rankings.com
    csv, excel
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    macro-rankings, NVIDIA Corporation - Stock Price Series [Dataset]. https://www.macro-rankings.com/markets/stocks/nvda-nasdaq
    Explore at:
    excel, csvAvailable download formats
    Dataset authored and provided by
    macro-rankings
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    united states
    Description

    Stock Price Time Series for NVIDIA Corporation. NVIDIA Corporation, a computing infrastructure company, provides graphics and compute and networking solutions in the United States, Singapore, Taiwan, China, Hong Kong, and internationally. The Compute & Networking segment comprises Data Center computing platforms and end-to-end networking platforms, including Quantum for InfiniBand and Spectrum for Ethernet; NVIDIA DRIVE automated-driving platform and automotive development agreements; Jetson robotics and other embedded platforms; NVIDIA AI Enterprise and other software; and DGX Cloud software and services. The Graphics segment offers GeForce GPUs for gaming and PCs, the GeForce NOW game streaming service and related infrastructure, and solutions for gaming platforms; Quadro/NVIDIA RTX GPUs for enterprise workstation graphics; virtual GPU or vGPU software for cloud-based visual and virtual computing; automotive platforms for infotainment systems; and Omniverse software for building and operating industrial AI and digital twin applications. It also customized agentic solutions designed in collaboration with NVIDIA to accelerate enterprise AI adoption. The company's products are used in gaming, professional visualization, data center, and automotive markets. It sells its products to original equipment manufacturers, original device manufacturers, system integrators and distributors, independent software vendors, cloud service providers, consumer internet companies, add-in board manufacturers, distributors, automotive manufacturers and tier-1 automotive suppliers, and other ecosystem participants. NVIDIA Corporation was incorporated in 1993 and is headquartered in Santa Clara, California.

  6. NVIDIA: Still a Wise Investment? (NVDA) (Forecast)

    • kappasignal.com
    Updated Apr 27, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2024). NVIDIA: Still a Wise Investment? (NVDA) (Forecast) [Dataset]. https://www.kappasignal.com/2024/04/nvidia-still-wise-investment-nvda.html
    Explore at:
    Dataset updated
    Apr 27, 2024
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    NVIDIA: Still a Wise Investment? (NVDA)

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  7. The Nvidia Stock Price: A Game Theory Analysis (Forecast)

    • kappasignal.com
    Updated Jun 2, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2023). The Nvidia Stock Price: A Game Theory Analysis (Forecast) [Dataset]. https://www.kappasignal.com/2023/06/the-nvidia-stock-price-game-theory.html
    Explore at:
    Dataset updated
    Jun 2, 2023
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    The Nvidia Stock Price: A Game Theory Analysis

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  8. T

    Nvidia | NVDA - Market Capitalization

    • tradingeconomics.com
    csv, excel, json, xml
    Updated Jan 22, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2016). Nvidia | NVDA - Market Capitalization [Dataset]. https://tradingeconomics.com/nvda:us:market-capitalization
    Explore at:
    xml, json, csv, excelAvailable download formats
    Dataset updated
    Jan 22, 2016
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 1, 2000 - Jul 31, 2025
    Area covered
    United States
    Description

    Nvidia reported $4.39T in Market Capitalization this July of 2025, considering the latest stock price and the number of outstanding shares.Data for Nvidia | NVDA - Market Capitalization including historical, tables and charts were last updated by Trading Economics this last July in 2025.

  9. Nvidia Stock Price (All Time)

    • kaggle.com
    zip
    Updated Sep 23, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kannan Ravinther (2021). Nvidia Stock Price (All Time) [Dataset]. https://www.kaggle.com/kannan1314/nvidia-stock-price-all-time
    Explore at:
    zip(121557 bytes)Available download formats
    Dataset updated
    Sep 23, 2021
    Authors
    Kannan Ravinther
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Company Description

    NVIDIA Corp. engages in the design and manufacture of computer graphics processors, chipsets, and related multimedia software. It operates through the following segments: Graphics Processing Unit (GPU), Tegra Processor, and All Other. The GPU segment comprises of product brands, which aims specialized markets including GeForce for gamers; Quadro for designers; Tesla and DGX for AI data scientists and big data researchers; and GRID for cloud-based visual computing users. The Tegra Processor segment integrates an entire computer onto a single chip, and incorporates GPUs and multi-core CPUs to drive supercomputing for autonomous robots, drones, and cars, as well as for consoles and mobile gaming and entertainment devices. The All Other segment refers to the stock-based compensation expense, corporate infrastructure and support costs, acquisition-related costs, legal settlement costs, and other non-recurring charges. The company was founded by Jen Hsun Huang, Chris A. Malachowsky, and Curtis R. Priem in January 1993 and is headquartered in Santa Clara, CA.

    Contact Information

    NVIDIA Corp. 2788 San Tomas Expressway Santa Clara California 95051 P:(408) 486-2000 www.nvidia.com

    Shareholders

    Mutual fund holders 39.32% Other institutional 30.89% Individual stakeholders 3.75%

  10. Nvidia Stock Hits All-Time High: What's Driving the Bull Run? (Forecast)

    • kappasignal.com
    Updated May 27, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2023). Nvidia Stock Hits All-Time High: What's Driving the Bull Run? (Forecast) [Dataset]. https://www.kappasignal.com/2023/05/nvidia-stock-hits-all-time-high-whats.html
    Explore at:
    Dataset updated
    May 27, 2023
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    Nvidia Stock Hits All-Time High: What's Driving the Bull Run?

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  11. (NVDA) NVIDIA: Riding the AI Wave (Forecast)

    • kappasignal.com
    Updated Sep 23, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2024). (NVDA) NVIDIA: Riding the AI Wave (Forecast) [Dataset]. https://www.kappasignal.com/2024/09/nvda-nvidia-riding-ai-wave.html
    Explore at:
    Dataset updated
    Sep 23, 2024
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    (NVDA) NVIDIA: Riding the AI Wave

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  12. Understanding the Volatility of NVIDIA Stock: A Comprehensive Analysis...

    • kappasignal.com
    Updated May 25, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2023). Understanding the Volatility of NVIDIA Stock: A Comprehensive Analysis (Forecast) [Dataset]. https://www.kappasignal.com/2023/05/understanding-volatility-of-nvidia.html
    Explore at:
    Dataset updated
    May 25, 2023
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    Understanding the Volatility of NVIDIA Stock: A Comprehensive Analysis

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  13. T

    Nvidia | NVDA - Current Liabilities

    • tradingeconomics.com
    csv, excel, json, xml
    Updated Jan 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). Nvidia | NVDA - Current Liabilities [Dataset]. https://tradingeconomics.com/nvda:us:current-liabilities
    Explore at:
    csv, excel, xml, jsonAvailable download formats
    Dataset updated
    Jan 15, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 1, 2000 - Aug 1, 2025
    Area covered
    United States
    Description

    Nvidia reported $18.05B in Current Liabilities for its fiscal quarter ending in January of 2025. Data for Nvidia | NVDA - Current Liabilities including historical, tables and charts were last updated by Trading Economics this last August in 2025.

  14. Nvidia's Earnings Show the Power of AI and Data Centers (Forecast)

    • kappasignal.com
    Updated May 27, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2023). Nvidia's Earnings Show the Power of AI and Data Centers (Forecast) [Dataset]. https://www.kappasignal.com/2023/05/nvidias-earnings-show-power-of-ai-and.html
    Explore at:
    Dataset updated
    May 27, 2023
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    Nvidia's Earnings Show the Power of AI and Data Centers

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  15. Nvidia (NVDA) Chip Giant's Next Chapter (Forecast)

    • kappasignal.com
    Updated Aug 27, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2024). Nvidia (NVDA) Chip Giant's Next Chapter (Forecast) [Dataset]. https://www.kappasignal.com/2024/08/nvidia-nvda-chip-giants-next-chapter.html
    Explore at:
    Dataset updated
    Aug 27, 2024
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    Nvidia (NVDA) Chip Giant's Next Chapter

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  16. šŸ’±15Y Stock Data: NVDA, AAPL, MSFT, GOOGL & AMZNšŸ’¹

    • kaggle.com
    Updated Apr 20, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    maria nadeem (2025). šŸ’±15Y Stock Data: NVDA, AAPL, MSFT, GOOGL & AMZNšŸ’¹ [Dataset]. https://www.kaggle.com/datasets/marianadeem755/stock-market-data/code
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Apr 20, 2025
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    maria nadeem
    License

    Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
    License information was derived automatically

    Description
    • This is the Historical Stock Market Data of five major Big Tech companies: NVIDIA (NVDA), Apple (AAPL), Microsoft (MSFT), Google (GOOGL), and Amazon (AMZN) over a 15 years from January 1, 2010 to January 1, 2025.
    • It includes daily stock data with opening and closing prices, highs, lows and trading volume.
    • This dataset serves as a valuable resource for analyzing long term growth trends, volatility and market behavior of leading tech giants.
    • By analyzing this dataset, we can gain a deeper understanding of NVDA, AAPL, MSFT, GOOGL, and AMZN's historical stock behavior over 15 years and make predictions about their future performance.

    Columns Description:

    1. Date: The trading date of the stock data entry.
    2. Close_AAPL: Apple’s stock price at market close at the end of the trading days.
    3. Close_AMZN: Amazon’s stock price at market close at the end of the trading days.
    4. Close_GOOGL: Google’s stock price at market close at the end of the trading days.
    5. Close_MSFT: Microsoft’s stock price at the end of the trading days.
    6. Close_NVDA: NVIDIA’s stock price at the end of the trading days.
    7. High_AAPL: The highest price of Apple’s stock reached during the trading days.
    8. High_AMZN: The highest price of Amazon’s stock reached during the trading days.
    9. High_GOOGL: The highest price of Google’s stock reached during the trading days.
    10. High_MSFT: The highest price of Microsoft’s stock reached during the trading days.
    11. High_NVDA: The highest price of NVIDIA’s stock reached during the trading days.
    12. Low_AAPL: The lowest price of Apple’s stock reached during the trading days.
    13. Low_AMZN: The lowest price of Amazon’s stock reached during the trading days.
    14. Low_GOOGL: The lowest price of Google’s stock reached during the trading days.
    15. Low_MSFT: The lowest price of Microsoft’s stock reached during the trading days.
    16. Low_NVDA: The lowest price NVIDIA’s stock reached during the trading days.
    17. Open_AAPL: Apple’s opening stock price at the beginning of the trading days.
    18. Open_AMZN: Amazon’s opening stock price at the beginning of the trading days.
    19. Open_GOOGL: Google’s opening stock price at the beginning of the trading days.
    20. Open_MSFT: Microsoft’s opening stock price at the beginning of the trading days.
    21. Open_NVDA: NVIDIA’s opening stock price at the beginning of the trading days.
    22. Volume_AAPL: The number of shares traded of Apple’s stock during the trading days.
    23. Volume_AMZN: The number of shares traded of Amazon’s stock during the trading days.
    24. Volume_GOOGL: The number of shares traded of Google’s stock during the trading days.
    25. Volume_MSFT: The number of shares traded of Microsoft’s stock during the trading days.
    26. Volume_NVDA: The number of shares traded of NVIDIA’s stock during the trading days.

    Usefulness of Data:

    1. Trend Analysis: This dataset can be used for the analysis of long term stock price trends for major 5 tech companies. By analyzing this dataset and taking deep insights about the data and stock patterns over 15 years, investors can identify potential opportunities.
    2. Volatility and Risk Assessment: The data helps to assess the volatility of 5 big tech companies' stocks by comparing highs and lows and provides the management strategies to the investors.
    3. Predictive Modeling: With stock prices, this dataset can be used for developing predictive models such as forecasting future stock prices using techniques such as ARIMA, SARIMAX, or Deep Learning Models.
    4. Comparative Analysis: By analyzing this Dataset, researchers and analysts can compare the performance of NVIDIA, Apple, Microsoft, Google, and Amazon over 15 years, which helps to identify trends in the stock market and relative growth between these companies.
    5. Market Behavior Understanding: By analyzing how each stock reacts to major market events (e.g., earnings reports & macroeconomic changes, etc.), we can understand the companies' growth & patterns.

    https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F17226110%2Fb9d7d8fe0c03086606ebbd7e2e2db04d%2FSock%20Market%20Image.png?generation=1745136427757536&alt=media" alt="">

  17. Top Tech Companies Stock Price

    • kaggle.com
    Updated Nov 24, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Tomas Mantero (2020). Top Tech Companies Stock Price [Dataset]. https://www.kaggle.com/datasets/tomasmantero/top-tech-companies-stock-price
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Nov 24, 2020
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Tomas Mantero
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Context

    In this dataset you can find the Top 100 companies in the technology sector. You can also find 5 of the most important and used indices in the financial market as well as a list of all the companies in the S&P 500 index and in the technology sector.

    The Global Industry Classification Standard also known as GICS is the primary financial industry standard for defining sector classifications. The Global Industry Classification Standard was developed by index providers MSCI and Standard and Poor’s. Its hierarchy begins with 11 sectors which can be further delineated to 24 industry groups, 69 industries, and 158 sub-industries.

    You can read the definition of each sector here.

    The 11 broad GICS sectors commonly used for sector breakdown reporting include the following: Energy, Materials, Industrials, Consumer Discretionary, Consumer Staples, Health Care, Financials, Information Technology, Telecommunication Services, Utilities and Real Estate.

    In this case we will focuse in the Technology Sector. You can see all the sectors and industry groups here.

    To determine which companies, correspond to the technology sector, we use Yahoo Finance, where we rank the companies according to their ā€œMarket Capā€. After having the list of the Top 100 best valued companies in the sector, we proceeded to download the historical data of each of the companies using the NASDAQ website.

    Regarding to the indices, we searched various sources to find out which were the most used and determined that the 5 most frequently used indices are: Dow Jones Industrial Average (DJI), S&P 500 (SPX), NASDAQ Composite (IXIC), Wilshire 5000 Total Market Inde (W5000) and to specifically view the technology sector SPDR Select Sector Fund - Technology (XLK). Historical data for these indices was also obtained from the NASDQ website.

    Content

    In total there are 107 files in csv format. They are composed as follows:

    • 100 files contain the historical data of tech companies.
    • 5 files contain the historical data of the most used indices.
    • 1 file contain the list of all the companies in the S&P 500 index.
    • 1 file contain the list of all the companies in the technology sector.

    Column Description

    Every company and index file has the same structure with the same columns:

    Date: It is the date on which the prices were recorded. High: Is the highest price at which a stock traded during the course of the trading day. Low: Is the lowest price at which a stock traded during the course of the trading day. Open: Is the price at which a stock started trading when the opening bell rang. Close: Is the last price at which a stock trades during a regular trading session. Volume: Is the number of shares that changed hands during a given day. Adj Close: The adjusted closing price factors in corporate actions, such as stock splits, dividends, and rights offerings.

    The two other files have different columns names:

    List of S&P 500 companies

    Symbol: Ticker symbol of the company. Name: Name of the company. Sector: The sector to which the company belongs.

    Technology Sector Companies List

    Symbol: Ticker symbol of the company. Name: Name of the company. Price: Current price at which a stock can be purchased or sold. (11/24/20) Change: Net change is the difference between closing prices from one day to the next. % Change: Is the difference between closing prices from one day to the next in percentage. Volume: Is the number of shares that changed hands during a given day. Avg Vol: Is the daily average of the cumulative trading volume during the last three months. Market Cap (Billions): Is the total value of a company’s shares outstanding at a given moment in time. It is calculated by multiplying the number of shares outstanding by the price of a single share. PE Ratio: Is the ratio of a company's share (stock) price to the company's earnings per share. The ratio is used for valuing companies and to find out whether they are overvalued or undervalued.

    Acknowledgements

    SEC EDGAR | Company Filings NASDAQ | Historical Quotes Yahoo Finance | Technology Sector Wikipedia | List of S&P 500 companies S&P Dow Jones Indices | S&P 500 [S&P Dow Jones Indices | DJI](https://www.spglobal.com/spdji/en/i...

  18. T

    Nvidia | NVDA - EPS Earnings Per Share

    • tradingeconomics.com
    csv, excel, json, xml
    Updated Apr 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Nvidia | NVDA - EPS Earnings Per Share [Dataset]. https://tradingeconomics.com/nvda:us:eps
    Explore at:
    xml, json, csv, excelAvailable download formats
    Dataset updated
    Apr 15, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 1, 2000 - Jul 31, 2025
    Area covered
    United States
    Description

    Nvidia reported $0.96 in EPS Earnings Per Share for its fiscal quarter ending in April of 2025. Data for Nvidia | NVDA - EPS Earnings Per Share including historical, tables and charts were last updated by Trading Economics this last July in 2025.

  19. Global import data of Nvidia

    • volza.com
    csv
    Updated Sep 7, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Volza FZ LLC (2025). Global import data of Nvidia [Dataset]. https://www.volza.com/imports-global/global-import-data-of-nvidia
    Explore at:
    csvAvailable download formats
    Dataset updated
    Sep 7, 2025
    Dataset provided by
    Authors
    Volza FZ LLC
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Variables measured
    Count of importers, Sum of import value, 2014-01-01/2021-09-30, Count of import shipments
    Description

    6856 Global import shipment records of Nvidia with prices, volume & current Buyer's suppliers relationships based on actual Global export trade database.

  20. Nvidia: The Brains Behind Autonomous Driving (Forecast)

    • kappasignal.com
    Updated Jun 18, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2023). Nvidia: The Brains Behind Autonomous Driving (Forecast) [Dataset]. https://www.kappasignal.com/2023/06/nvidia-brains-behind-autonomous-driving.html
    Explore at:
    Dataset updated
    Jun 18, 2023
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    Nvidia: The Brains Behind Autonomous Driving

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
TRADING ECONOMICS (2017). Nvidia | NVDA - Stock Price | Live Quote | Historical Chart [Dataset]. https://tradingeconomics.com/nvda:us

Nvidia | NVDA - Stock Price | Live Quote | Historical Chart

Explore at:
json, csv, excel, xmlAvailable download formats
Dataset updated
May 29, 2017
Dataset authored and provided by
TRADING ECONOMICS
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Time period covered
Jan 1, 2000 - Aug 1, 2025
Area covered
United States
Description

Nvidia stock price, live market quote, shares value, historical data, intraday chart, earnings per share and news.

Search
Clear search
Close search
Google apps
Main menu