1 dataset found
  1. NeurOST-SSH Maps for Ocean Data Challenge 2023a_SSH_mapping_OSE

    • zenodo.org
    zip
    Updated Sep 12, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Scott Martin; Scott Martin (2024). NeurOST-SSH Maps for Ocean Data Challenge 2023a_SSH_mapping_OSE [Dataset]. http://doi.org/10.5281/zenodo.13755409
    Explore at:
    zipAvailable download formats
    Dataset updated
    Sep 12, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Scott Martin; Scott Martin
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Global maps of sea surface height (SSH) and surface geostrophic currents generated using NeurOST, a deep learning for mapping SSH from nadir satellite altimetry and sea surface temperature, generated for the observing system experiment outlined in the Ocean Data Challenge '2023a_SSH_mapping_OSE'.

    Ocean Data Challenge link: https://github.com/ocean-data-challenges/2023a_SSH_mapping_OSE/tree/main

    These maps were made using only L3 SSH (not including SST).

    NeurOST citations:

    • Martin, S. A., Manucharyan, G. E., and Klein, P. (2024). Deep Learning Improves Global Satellite Observations of Ocean Eddy Dynamics. Geophysical Research Letters, 51, e2024GL110059. https://doi.org/10.1029/2024GL110059
    • Martin, S. A., Manucharyan, G. E., and Klein, P. (2023). Synthesizing Sea Surface Temperature and Satellite Altimetry Observations Using Deep Learning Improves the Accuracy and Resolution of Gridded Sea Surface Height Anomalies. Journal of Advances in Modeling Earth Systems, 15, e2022MS003589. https://doi.org/10.1029/2022MS003589
  2. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Scott Martin; Scott Martin (2024). NeurOST-SSH Maps for Ocean Data Challenge 2023a_SSH_mapping_OSE [Dataset]. http://doi.org/10.5281/zenodo.13755409
Organization logo

NeurOST-SSH Maps for Ocean Data Challenge 2023a_SSH_mapping_OSE

Explore at:
zipAvailable download formats
Dataset updated
Sep 12, 2024
Dataset provided by
Zenodohttp://zenodo.org/
Authors
Scott Martin; Scott Martin
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

Global maps of sea surface height (SSH) and surface geostrophic currents generated using NeurOST, a deep learning for mapping SSH from nadir satellite altimetry and sea surface temperature, generated for the observing system experiment outlined in the Ocean Data Challenge '2023a_SSH_mapping_OSE'.

Ocean Data Challenge link: https://github.com/ocean-data-challenges/2023a_SSH_mapping_OSE/tree/main

These maps were made using only L3 SSH (not including SST).

NeurOST citations:

  • Martin, S. A., Manucharyan, G. E., and Klein, P. (2024). Deep Learning Improves Global Satellite Observations of Ocean Eddy Dynamics. Geophysical Research Letters, 51, e2024GL110059. https://doi.org/10.1029/2024GL110059
  • Martin, S. A., Manucharyan, G. E., and Klein, P. (2023). Synthesizing Sea Surface Temperature and Satellite Altimetry Observations Using Deep Learning Improves the Accuracy and Resolution of Gridded Sea Surface Height Anomalies. Journal of Advances in Modeling Earth Systems, 15, e2022MS003589. https://doi.org/10.1029/2022MS003589
Search
Clear search
Close search
Google apps
Main menu