Facebook
TwitterAmong COVID-19 patients in the United States from February 12 to March 16, 2020, estimated case-fatality rates were highest for adults aged 85 years and older. Younger people appeared to have milder symptoms, and there were no deaths reported among persons aged 19 years and under.
Tracking the virus in the United States The outbreak of a previously unknown viral pneumonia was first reported in China toward the end of December 2019. The first U.S. case of COVID-19 was recorded in mid-January 2020, confirmed in a patient who had returned to the United States from China. The virus quickly started to spread, and the first community-acquired case was confirmed one month later in California. Overall, there had been approximately 4.5 million coronavirus cases in the country by the start of August 2020.
U.S. health care system stretched California, Florida, and Texas are among the states with the most coronavirus cases. Even the best-resourced hospitals in the United States have struggled to cope with the crisis, and certain areas of the country were dealt further blows by new waves of infections in July 2020. Attention is rightly focused on fighting the pandemic, but as health workers are redirected to care for COVID-19 patients, the United States must not lose sight of other important health care issues.
Facebook
TwitterNote: Note: Starting October 10th, 2025 this dataset is deprecated and is no longer being updated. As of April 27, 2023 updates changed from daily to weekly. Summary The cumulative number of confirmed COVID-19 deaths among Maryland residents by age: 0-9; 10-19; 20-29; 30-39; 40-49; 50-59; 60-69; 70-79; 80+; Unknown. Description The MD COVID-19 - Confirmed Deaths by Age Distribution data layer is a collection of the statewide confirmed COVID-19 related deaths that have been reported each day by the Vital Statistics Administration by designated age ranges. A death is classified as confirmed if the person had a laboratory-confirmed positive COVID-19 test result. Some data on deaths may be unavailable due to the time lag between the death, typically reported by a hospital or other facility, and the submission of the complete death certificate. Probable deaths are available from the MD COVID-19 - Probable Deaths by Age Distribution data layer. Terms of Use The Spatial Data, and the information therein, (collectively the "Data") is provided "as is" without warranty of any kind, either expressed, implied, or statutory. The user assumes the entire risk as to quality and performance of the Data. No guarantee of accuracy is granted, nor is any responsibility for reliance thereon assumed. In no event shall the State of Maryland be liable for direct, indirect, incidental, consequential or special damages of any kind. The State of Maryland does not accept liability for any damages or misrepresentation caused by inaccuracies in the Data or as a result to changes to the Data, nor is there responsibility assumed to maintain the Data in any manner or form. The Data can be freely distributed as long as the metadata entry is not modified or deleted. Any data derived from the Data must acknowledge the State of Maryland in the metadata.
Facebook
TwitterCOVID-19 rate of death, or the known deaths divided by confirmed cases, was over ten percent in Yemen, the only country that has 1,000 or more cases. This according to a calculation that combines coronavirus stats on both deaths and registered cases for 221 different countries. Note that death rates are not the same as the chance of dying from an infection or the number of deaths based on an at-risk population. By April 26, 2022, the virus had infected over 510.2 million people worldwide, and led to a loss of 6.2 million. The source seemingly does not differentiate between "the Wuhan strain" (2019-nCOV) of COVID-19, "the Kent mutation" (B.1.1.7) that appeared in the UK in late 2020, the 2021 Delta variant (B.1.617.2) from India or the Omicron variant (B.1.1.529) from South Africa.
Where are these numbers coming from?
The numbers shown here were collected by Johns Hopkins University, a source that manually checks the data with domestic health authorities. For the majority of countries, this is from national authorities. In some cases, like China, the United States, Canada or Australia, city reports or other various state authorities were consulted. In this statistic, these separately reported numbers were put together. Note that Statista aims to also provide domestic source material for a more complete picture, and not to just look at one particular source. Examples are these statistics on the confirmed coronavirus cases in Russia or the COVID-19 cases in Italy, both of which are from domestic sources. For more information or other freely accessible content, please visit our dedicated Facts and Figures page.
A word on the flaws of numbers like this
People are right to ask whether these numbers are at all representative or not for several reasons. First, countries worldwide decide differently on who gets tested for the virus, meaning that comparing case numbers or death rates could to some extent be misleading. Germany, for example, started testing relatively early once the country’s first case was confirmed in Bavaria in January 2020, whereas Italy tests for the coronavirus postmortem. Second, not all people go to see (or can see, due to testing capacity) a doctor when they have mild symptoms. Countries like Norway and the Netherlands, for example, recommend people with non-severe symptoms to just stay at home. This means not all cases are known all the time, which could significantly alter the death rate as it is presented here. Third and finally, numbers like this change very frequently depending on how the pandemic spreads or the national healthcare capacity. It is therefore recommended to look at other (freely accessible) content that dives more into specifics, such as the coronavirus testing capacity in India or the number of hospital beds in the UK. Only with additional pieces of information can you get the full picture, something that this statistic in its current state simply cannot provide.
Facebook
TwitterOpen Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Odds ratios for the risk of dying from the coronavirus (COVID-19) by ethnicity in England and Wales.
Facebook
TwitterBetween the beginning of January 2020 and June 14, 2023, of the 1,134,641 deaths caused by COVID-19 in the United States, around 307,169 had occurred among those aged 85 years and older. This statistic shows the number of coronavirus disease 2019 (COVID-19) deaths in the U.S. from January 2020 to June 2023, by age.
Facebook
TwitterBlack men and women in the United Kingdom were four times more likely to die from Coronavirus than white people of the same gender as of April 2020. Several other ethnic groups were also at an increased risk from Coronavirus than the white population, with men of Bangladeshi or Pakistani origin 3.6 times more likely, and women 3.4 more likely to die from Coronavirus.
For further information about the coronavirus (COVID-19) pandemic, please visit our dedicated Facts and Figures page.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Socioeconomic disparities play an important role in the development of severe clinical outcomes including deaths from COVID-19. However, the current scientific evidence in regard the association between measures of poverty and COVID-19 mortality in hospitalized patients is scant. The objective of this study was to investigate whether there is an association between the Colombian Multidimensional Poverty Index (CMPI) and mortality from COVID-19 in hospitalized patients in Colombia from May 1, 2020 to August 15, 2021. This was an ecological study using individual data on hospitalized patients from the National Institute of Health of Colombia (INS), and municipal level data from the High-Cost Account and the National Administrative Department of Statistics. The main outcome variable was mortality due to COVID-19. The main exposure variable was the CMPI that ranges from 0 to 100% and was categorized into five levels: (i) level I (0%−20%), (ii) level II (20%−40%), (iii) level III (40%−60%), (iv) level IV (60%−80%); and (v) level V (80%−100%). The higher the level, the higher the level of multidimensional poverty. A Bayesian multilevel logistic regression model was applied to estimate Odds Ratio (OR) and their corresponding 95% credible intervals (CI). In addition, a subgroup analysis was performed according to the epidemiological COVID-19 waves using the same model. The odds for dying from COVID-19 was 1.46 (95% CI 1.4–1.53) for level II, 1.41 (95% CI 1.33–1.49) for level III and 1.70 (95% CI 1.54–1.89) for level IV hospitalized COVID-19 patients compared with the least poor patients (CMPI level I). In addition, age and male sex also increased mortality in COVID-19 hospitalized patients. Patients between 26 and 50 years-of-age had 4.17-fold increased odds (95% CI 4.07–4.3) of death compared with younger than 26-years-old patients. The corresponding for 51–75 years-old patients and those above the age of 75 years were 9.17 (95% CI 8.93–9.41) and 17.1 (95% CI 16.63–17.56), respectively. Finally, the odds of death from COVID-19 in hospitalized patients gradually decreased as the pandemic evolved. In conclusion, socioeconomic disparities were a major risk factor for mortality in patients hospitalized for COVID-19 in Colombia.
Facebook
TwitterRelative risk (RR) of COVID-19 related hospitalization/death.
Facebook
TwitterOfficial statistics are produced impartially and free from political influence.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Risk of COVID-19 death in CYP with a SARS-CoV-2 positive test within 100 days by demographics (adjusted and unadjusted odds ratios).
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Abstract We investigated the predictors of delay in the diagnosis and mortality of patients with COVID-19 in Rio de Janeiro, Brazil. A cohort of 3,656 patients were evaluated (Feb-Apr 2020) and patients’ sociodemographic characteristics, and social development index (SDI) were used as determinant factors of diagnosis delays and mortality. Kaplan-Meier survival analyses, time-dependent Cox regression models, and multivariate logistic regression analyses were conducted. The median time from symptoms onset to diagnosis was eight days (interquartile range [IQR] 7.23-8.99 days). Half of the patients recovered during the evaluated period, and 8.3% died. Mortality rates were higher in men. Delays in diagnosis were associated with male gender (p = 0.015) and patients living in low SDI areas (p < 0.001). The age groups statistically associated with death were: 70-79 years, 80-89 years, and 90-99 years. Delays to diagnosis greater than eight days were also risk factors for death. Delays in diagnosis and risk factors for death from COVID-19 were associated with male gender, age under 60 years, and patients living in regions with lower SDI. Delays superior to eight days to diagnosis increased mortality rates.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
ObjectiveWe developed and validated a prediction model based on individuals' risk profiles to predict the severity of lung involvement and death in patients hospitalized with coronavirus disease 2019 (COVID-19) infection.MethodsIn this retrospective study, we studied hospitalized COVID-19 patients with data on chest CT scans performed during hospital stay (February 2020-April 2021) in a training dataset (TD) (n = 2,251) and an external validation dataset (eVD) (n = 993). We used the most relevant demographical, clinical, and laboratory variables (n = 25) as potential predictors of COVID-19-related outcomes. The primary and secondary endpoints were the severity of lung involvement quantified as mild (≤25%), moderate (26–50%), severe (>50%), and in-hospital death, respectively. We applied random forest (RF) classifier, a machine learning technique, and multivariable logistic regression analysis to study our objectives.ResultsIn the TD and the eVD, respectively, the mean [standard deviation (SD)] age was 57.9 (18.0) and 52.4 (17.6) years; patients with severe lung involvement [n (%):185 (8.2) and 116 (11.7)] were significantly older [mean (SD) age: 64.2 (16.9), and 56.2 (18.9)] than the other two groups (mild and moderate). The mortality rate was higher in patients with severe (64.9 and 38.8%) compared to moderate (5.5 and 12.4%) and mild (2.3 and 7.1%) lung involvement. The RF analysis showed age, C reactive protein (CRP) levels, and duration of hospitalizations as the three most important predictors of lung involvement severity at the time of the first CT examination. Multivariable logistic regression analysis showed a significant strong association between the extent of the severity of lung involvement (continuous variable) and death; adjusted odds ratio (OR): 9.3; 95% CI: 7.1–12.1 in the TD and 2.6 (1.8–3.5) in the eVD.ConclusionIn hospitalized patients with COVID-19, the severity of lung involvement is a strong predictor of death. Age, CRP levels, and duration of hospitalizations are the most important predictors of severe lung involvement. A simple prediction model based on available clinical and imaging data provides a validated tool that predicts the severity of lung involvement and death probability among hospitalized patients with COVID-19.
Facebook
TwitterObjective: To study the differences in clinical characteristics, risk factors, and complications across age-groups among the inpatients with the coronavirus disease 2019 (COVID-19).Methods: In this population-based retrospective study, we included all the positive hospitalized patients with COVID-19 at Wuhan City from December 29, 2019 to April 15, 2020, during the first pandemic wave. Multivariate logistic regression analyses were used to explore the risk factors for death from COVID-19. Canonical correlation analysis (CCA) was performed to study the associations between comorbidities and complications.Results: There are 36,358 patients in the final cohort, of whom 2,492 (6.85%) died. Greater age (odds ration [OR] = 1.061 [95% CI 1.057–1.065], p < 0.001), male gender (OR = 1.726 [95% CI 1.582–1.885], p < 0.001), alcohol consumption (OR = 1.558 [95% CI 1.355–1.786], p < 0.001), smoking (OR = 1.326 [95% CI 1.055–1.652], p = 0.014), hypertension (OR = 1.175 [95% CI 1.067–1.293], p = 0.001), diabetes (OR = 1.258 [95% CI 1.118–1.413], p < 0.001), cancer (OR = 1.86 [95% CI 1.507–2.279], p < 0.001), chronic kidney disease (CKD) (OR = 1.745 [95% CI 1.427–2.12], p < 0.001), and intracerebral hemorrhage (ICH) (OR = 1.96 [95% CI 1.323–2.846], p = 0.001) were independent risk factors for death from COVID-19. Patients aged 40–80 years make up the majority of the whole patients, and them had similar risk factors with the whole patients. For patients aged <40 years, only cancer (OR = 17.112 [95% CI 6.264–39.73], p < 0.001) and ICH (OR = 31.538 [95% CI 5.213–158.787], p < 0.001) were significantly associated with higher odds of death. For patients aged >80 years, only age (OR = 1.033 [95% CI 1.008–1.059], p = 0.01) and male gender (OR = 1.585 [95% CI 1.301–1.933], p < 0.001) were associated with higher odds of death. The incidence of most complications increases with age, but arrhythmias, gastrointestinal bleeding, and sepsis were more common in younger deceased patients with COVID-19, with only arrhythmia reaching statistical difference (p = 0.039). We found a relatively poor correlation between preexisting risk factors and complications.Conclusions: Coronavirus disease 2019 are disproportionally affected by age for its clinical manifestations, risk factors, complications, and outcomes. Prior complications have little effect on the incidence of extrapulmonary complications.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Odds ratios of death from COVID-19 based on age, gender, race/ethnicity, income, education, and veteran status.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Background: Individuals with severe mental disorder (SMD) have a higher risk of somatic comorbidity and mortality than the rest of the population. We set up a population-based study to assess whether individuals with SMD had a higher risk of death associated with a COVID-19 infection (COVID-19 associated death) than individuals without SMD.Methods: Exploratory analysis with a cross-sectional design in the framework of a population-based register study covering the entire Swedish population. The Swedish Board for Health and Welfare (Socialstyrelsen) provided anonymized tabulated summary data for further analysis. We compared numbers of COVID-19 associated death in individuals with SMD (cases) and without SMD (controls). We calculated the odds ratio (OR) for the whole sample and by age group and four comorbidities, namely diabetes, cardiovascular disease, hypertension, chronic lung disease.Results: The sample comprised of 7,923,859 individuals, 103,999 with SMD and 7,819,860 controls. There were 130 (0.1%) COVID-19 associated deaths in the SMD group and 4,945 (0.06%) in the control group, corresponding to an OR of 1.98 (CI 1.66-2.35; p < 0.001). The odds were 4-fold for the age groups between 60 and 79 years and 1.5-fold for cardiovascular diseases. Individuals with SMD without any of the risk factors under study had 3-fold odds of COVID-19 associated death.Conclusion: Our preliminary results identify individuals with SMD as a further group at increased risk of COVID-19 associated death. In regard to comorbidities, future studies should explore the potential confounding or mediation role in the relationship between SMD and COVID-19 associated deaths.
Facebook
TwitterData for CDC’s COVID Data Tracker site on Rates of COVID-19 Cases and Deaths by Vaccination Status. Click 'More' for important dataset description and footnotes
Dataset and data visualization details: These data were posted on October 21, 2022, archived on November 18, 2022, and revised on February 22, 2023. These data reflect cases among persons with a positive specimen collection date through September 24, 2022, and deaths among persons with a positive specimen collection date through September 3, 2022.
Vaccination status: A person vaccinated with a primary series had SARS-CoV-2 RNA or antigen detected on a respiratory specimen collected ≥14 days after verifiably completing the primary series of an FDA-authorized or approved COVID-19 vaccine. An unvaccinated person had SARS-CoV-2 RNA or antigen detected on a respiratory specimen and has not been verified to have received COVID-19 vaccine. Excluded were partially vaccinated people who received at least one FDA-authorized vaccine dose but did not complete a primary series ≥14 days before collection of a specimen where SARS-CoV-2 RNA or antigen was detected. Additional or booster dose: A person vaccinated with a primary series and an additional or booster dose had SARS-CoV-2 RNA or antigen detected on a respiratory specimen collected ≥14 days after receipt of an additional or booster dose of any COVID-19 vaccine on or after August 13, 2021. For people ages 18 years and older, data are graphed starting the week including September 24, 2021, when a COVID-19 booster dose was first recommended by CDC for adults 65+ years old and people in certain populations and high risk occupational and institutional settings. For people ages 12-17 years, data are graphed starting the week of December 26, 2021, 2 weeks after the first recommendation for a booster dose for adolescents ages 16-17 years. For people ages 5-11 years, data are included starting the week of June 5, 2022, 2 weeks after the first recommendation for a booster dose for children aged 5-11 years. For people ages 50 years and older, data on second booster doses are graphed starting the week including March 29, 2022, when the recommendation was made for second boosters. Vertical lines represent dates when changes occurred in U.S. policy for COVID-19 vaccination (details provided above). Reporting is by primary series vaccine type rather than additional or booster dose vaccine type. The booster dose vaccine type may be different than the primary series vaccine type. ** Because data on the immune status of cases and associated deaths are unavailable, an additional dose in an immunocompromised person cannot be distinguished from a booster dose. This is a relevant consideration because vaccines can be less effective in this group. Deaths: A COVID-19–associated death occurred in a person with a documented COVID-19 diagnosis who died; health department staff reviewed to make a determination using vital records, public health investigation, or other data sources. Rates of COVID-19 deaths by vaccination status are reported based on when the patient was tested for COVID-19, not the date they died. Deaths usually occur up to 30 days after COVID-19 diagnosis. Participating jurisdictions: Currently, these 31 health departments that regularly link their case surveillance to immunization information system data are included in these incidence rate estimates: Alabama, Arizona, Arkansas, California, Colorado, Connecticut, District of Columbia, Florida, Georgia, Idaho, Indiana, Kansas, Kentucky, Louisiana, Massachusetts, Michigan, Minnesota, Nebraska, New Jersey, New Mexico, New York, New York City (New York), North Carolina, Philadelphia (Pennsylvania), Rhode Island, South Dakota, Tennessee, Texas, Utah, Washington, and West Virginia; 30 jurisdictions also report deaths among vaccinated and unvaccinated people. These jurisdictions represent 72% of the total U.S. population and all ten of the Health and Human Services Regions. Data on cases
Facebook
TwitterData for CDC’s COVID Data Tracker site on Rates of COVID-19 Cases and Deaths by Vaccination Status. Click 'More' for important dataset description and footnotes
Dataset and data visualization details: These data were posted on October 21, 2022, archived on November 18, 2022, and revised on February 22, 2023. These data reflect cases among persons with a positive specimen collection date through September 24, 2022, and deaths among persons with a positive specimen collection date through September 3, 2022.
Vaccination status: A person vaccinated with a primary series had SARS-CoV-2 RNA or antigen detected on a respiratory specimen collected ≥14 days after verifiably completing the primary series of an FDA-authorized or approved COVID-19 vaccine. An unvaccinated person had SARS-CoV-2 RNA or antigen detected on a respiratory specimen and has not been verified to have received COVID-19 vaccine. Excluded were partially vaccinated people who received at least one FDA-authorized vaccine dose but did not complete a primary series ≥14 days before collection of a specimen where SARS-CoV-2 RNA or antigen was detected. Additional or booster dose: A person vaccinated with a primary series and an additional or booster dose had SARS-CoV-2 RNA or antigen detected on a respiratory specimen collected ≥14 days after receipt of an additional or booster dose of any COVID-19 vaccine on or after August 13, 2021. For people ages 18 years and older, data are graphed starting the week including September 24, 2021, when a COVID-19 booster dose was first recommended by CDC for adults 65+ years old and people in certain populations and high risk occupational and institutional settings. For people ages 12-17 years, data are graphed starting the week of December 26, 2021, 2 weeks after the first recommendation for a booster dose for adolescents ages 16-17 years. For people ages 5-11 years, data are included starting the week of June 5, 2022, 2 weeks after the first recommendation for a booster dose for children aged 5-11 years. For people ages 50 years and older, data on second booster doses are graphed starting the week including March 29, 2022, when the recommendation was made for second boosters. Vertical lines represent dates when changes occurred in U.S. policy for COVID-19 vaccination (details provided above). Reporting is by primary series vaccine type rather than additional or booster dose vaccine type. The booster dose vaccine type may be different than the primary series vaccine type. ** Because data on the immune status of cases and associated deaths are unavailable, an additional dose in an immunocompromised person cannot be distinguished from a booster dose. This is a relevant consideration because vaccines can be less effective in this group. Deaths: A COVID-19–associated death occurred in a person with a documented COVID-19 diagnosis who died; health department staff reviewed to make a determination using vital records, public health investigation, or other data sources. Rates of COVID-19 deaths by vaccination status are reported based on when the patient was tested for COVID-19, not the date they died. Deaths usually occur up to 30 days after COVID-19 diagnosis. Participating jurisdictions: Currently, these 31 health departments that regularly link their case surveillance to immunization information system data are included in these incidence rate estimates: Alabama, Arizona, Arkansas, California, Colorado, Connecticut, District of Columbia, Florida, Georgia, Idaho, Indiana, Kansas, Kentucky, Louisiana, Massachusetts, Michigan, Minnesota, Nebraska, New Jersey, New Mexico, New York, New York City (New York), North Carolina, Philadelphia (Pennsylvania), Rhode Island, South Dakota, Tennessee, Texas, Utah, Washington, and West Virginia; 30 jurisdictions also report deaths among vaccinated and unvaccinated people. These jurisdictions represent 72% of the total U.S. population and all ten of the Health and Human Services Regions. Data on cases
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Understanding the social determinants of Covid-19 infection and death is vital for effective Covid-19 early detection and mitigation strategies. This study aims to examine social determinants of Covid-19 infection and death in the context of rural Indonesia. We used Malang district government Covid-19 contact tracing data from 14,264 individuals, spanning the period from March 1, 2020 to July 29, 2020. The contact tracing data was merged with administrative data from 390 villages to determine whether village characteristics (i.e., the number of health workers, number of community-based healthcare interventions, access to Covid-19 referred hospitals, number of indigenous socio-cultural activities, poverty level and distance to a Covid-19 epicentre city) are associated with Covid-19 infection and death. We used multilevel logistic regression to take advantage of the nested structure of data at the village level. We found among the 14,264 samples, 551 individuals were confirmed infected with Covid-19, and 62 died of Covid-19. Individuals aged 18 and older, civil servants (non-health workers), and those having close contact with people with confirmed cases had a higher likelihood of infection with Covid-19. Greater numbers of community-based healthcare interventions and a lesser distance to a pandemic epicentre reduced the likelihood of infection with the virus. Males, older people, individuals with hypertension, individuals diagnosed with pneumonia, and those diagnosed with respiratory failure had a higher likelihood of death due to Covid-19. A greater number of community-based healthcare interventions seems to reduce the likelihood of Covid-19 infection, while better access to a Covid-19 referred hospital seems to reduce the risk of death among Covid-19 patients. The findings suggest the government to prioritise strategies to control the pandemic in rural area through empowering rural community in health education to prevent Covid-19 and in monitoring people mobility, while providing Covid-19 emergency services for rural areas for reducing mortality.
Facebook
TwitterOpen Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Estimates of the risk of all-cause and cardiac death in the 12 weeks after vaccination or positive SARS-CoV-2 test compared with subsequent weeks for people aged 12 to 29 years in England using two sources of mortality data: ONS death registrations and deaths recorded in Hospital Episode Statistics. 8 December 2020 to 25 May 2022. Experimental Statistics.
Facebook
TwitterAmong COVID-19 patients in the United States from February 12 to March 16, 2020, estimated case-fatality rates were highest for adults aged 85 years and older. Younger people appeared to have milder symptoms, and there were no deaths reported among persons aged 19 years and under.
Tracking the virus in the United States The outbreak of a previously unknown viral pneumonia was first reported in China toward the end of December 2019. The first U.S. case of COVID-19 was recorded in mid-January 2020, confirmed in a patient who had returned to the United States from China. The virus quickly started to spread, and the first community-acquired case was confirmed one month later in California. Overall, there had been approximately 4.5 million coronavirus cases in the country by the start of August 2020.
U.S. health care system stretched California, Florida, and Texas are among the states with the most coronavirus cases. Even the best-resourced hospitals in the United States have struggled to cope with the crisis, and certain areas of the country were dealt further blows by new waves of infections in July 2020. Attention is rightly focused on fighting the pandemic, but as health workers are redirected to care for COVID-19 patients, the United States must not lose sight of other important health care issues.