4 datasets found
  1. h

    pareto-ogbn-arxiv

    • huggingface.co
    Updated Feb 14, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Saurav Maheshkar (2024). pareto-ogbn-arxiv [Dataset]. https://huggingface.co/datasets/SauravMaheshkar/pareto-ogbn-arxiv
    Explore at:
    Dataset updated
    Feb 14, 2024
    Authors
    Saurav Maheshkar
    License

    https://choosealicense.com/licenses/cc/https://choosealicense.com/licenses/cc/

    Description

    Dataset Information

    Nodes

    Edges

    Features

    169,343 1,166,243 128

    Pre-processed as per the official codebase of https://arxiv.org/abs/2210.02016

      Citations
    

    @article{ju2023multi, title={Multi-task Self-supervised Graph Neural Networks Enable Stronger Task Generalization}, author={Ju, Mingxuan and Zhao, Tong and Wen, Qianlong and Yu, Wenhao and Shah, Neil and Ye, Yanfang and Zhang, Chuxu}, booktitle={International Conference on Learning… See the full description on the dataset page: https://huggingface.co/datasets/SauravMaheshkar/pareto-ogbn-arxiv.

  2. OGBN-Proteins (Processed for PyG)

    • kaggle.com
    zip
    Updated Feb 27, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Redao da Taupl (2021). OGBN-Proteins (Processed for PyG) [Dataset]. https://www.kaggle.com/dataup1/ogbn-proteins
    Explore at:
    zip(677947148 bytes)Available download formats
    Dataset updated
    Feb 27, 2021
    Authors
    Redao da Taupl
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    OGBN-Proteins

    Webpage: https://ogb.stanford.edu/docs/nodeprop/#ogbn-proteins

    Usage in Python

    import os.path as osp
    import pandas as pd
    import torch
    import torch_geometric.transforms as T
    from ogb.nodeproppred import PygNodePropPredDataset
    
    class PygOgbnProteins(PygNodePropPredDataset):
      def _init_(self, meta_csv = None):
        root, name, transform = '/kaggle/input', 'ogbn-proteins', T.ToSparseTensor()
        if meta_csv is None:
          meta_csv = osp.join(root, name, 'ogbn-master.csv')
        master = pd.read_csv(meta_csv, index_col = 0)
        meta_dict = master[name]
        meta_dict['dir_path'] = osp.join(root, name)
        super()._init_(name = name, root = root, transform = transform, meta_dict = meta_dict)
      def get_idx_split(self, split_type = None):
        if split_type is None:
          split_type = self.meta_info['split']
        path = osp.join(self.root, 'split', split_type)
        if osp.isfile(os.path.join(path, 'split_dict.pt')):
          return torch.load(os.path.join(path, 'split_dict.pt'))
        if self.is_hetero:
          train_idx_dict, valid_idx_dict, test_idx_dict = read_nodesplitidx_split_hetero(path)
          for nodetype in train_idx_dict.keys():
            train_idx_dict[nodetype] = torch.from_numpy(train_idx_dict[nodetype]).to(torch.long)
            valid_idx_dict[nodetype] = torch.from_numpy(valid_idx_dict[nodetype]).to(torch.long)
            test_idx_dict[nodetype] = torch.from_numpy(test_idx_dict[nodetype]).to(torch.long)
            return {'train': train_idx_dict, 'valid': valid_idx_dict, 'test': test_idx_dict}
        else:
          train_idx = dt.fread(osp.join(path, 'train.csv'), header = None).to_numpy().T[0]
          train_idx = torch.from_numpy(train_idx).to(torch.long)
          valid_idx = dt.fread(osp.join(path, 'valid.csv'), header = None).to_numpy().T[0]
          valid_idx = torch.from_numpy(valid_idx).to(torch.long)
          test_idx = dt.fread(osp.join(path, 'test.csv'), header = None).to_numpy().T[0]
          test_idx = torch.from_numpy(test_idx).to(torch.long)
          return {'train': train_idx, 'valid': valid_idx, 'test': test_idx}
    
    dataset = PygOgbnProteins()
    split_idx = dataset.get_idx_split()
    train_idx, valid_idx, test_idx = split_idx['train'], split_idx['valid'], split_idx['test']
    graph = dataset[0] # PyG Graph object
    

    Description

    Graph: The ogbn-proteins dataset is an undirected, weighted, and typed (according to species) graph. Nodes represent proteins, and edges indicate different types of biologically meaningful associations between proteins, e.g., physical interactions, co-expression or homology [1,2]. All edges come with 8-dimensional features, where each dimension represents the strength of a single association type and takes values between 0 and 1 (the larger the value is, the stronger the association is). The proteins come from 8 species.

    Prediction task: The task is to predict the presence of protein functions in a multi-label binary classification setup, where there are 112 kinds of labels to predict in total. The performance is measured by the average of ROC-AUC scores across the 112 tasks.

    Dataset splitting: The authors split the protein nodes into training/validation/test sets according to the species which the proteins come from. This enables the evaluation of the generalization performance of the model across different species.

    Note: For undirected graphs, the loaded graphs will have the doubled number of edges because the bidirectional edges will be added automatically.

    Summary

    Package#Nodes#EdgesSplit TypeTask TypeMetric
    ogb>=1.1.1132,53439,561,252SpeciesMulti-label binary classificationROC-AUC

    Open Graph Benchmark

    Website: https://ogb.stanford.edu

    The Open Graph Benchmark (OGB) [3] is a collection of realistic, large-scale, and diverse benchmark datasets for machine learning on graphs. OGB datasets are automatically downloaded, processed, and split using the OGB Data Loader. The model performance can be evaluated using the OGB Evaluator in a unified manner.

    References

    [1] Damian Szklarczyk, Annika L Gable, David Lyon, Alexander Junge, Stefan Wyder, Jaime Huerta-Cepas, Milan Simonovic, Nadezhda T Doncheva, John H Morris, Peer Bork, et al. STRING v11: protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Research, 47(D1):D607–D613, 2019. [2] Gene Ontology Consortium. The gene ontology resource: 20 years and still going strong. Nucleic Acids Research, 47(D1):D330–D338, 2018. [3] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta, and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. Advances in Neural Information Processing Systems, pp. 22118–22133, 2020.

    Disclaimer

    I am NOT the author of this dataset. It was downloaded from its official website. I assume no responsibility or liability for the content in this dataset. Any questions, problems or issues, please contact the original authors at their website or their GitHub repo.

  3. t

    Cora, Citeseer, PubMed, Ogbn-arxiv, Amazon-Computer, Amazon-Photo - Dataset...

    • service.tib.eu
    Updated Dec 2, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Cora, Citeseer, PubMed, Ogbn-arxiv, Amazon-Computer, Amazon-Photo - Dataset - LDM [Dataset]. https://service.tib.eu/ldmservice/dataset/cora--citeseer--pubmed--ogbn-arxiv--amazon-computer--amazon-photo
    Explore at:
    Dataset updated
    Dec 2, 2024
    Description

    Graph classification and node classification datasets

  4. Multi-labeled node classification performance (AUC-ROC) in ogbn-protein.

    • plos.figshare.com
    xls
    Updated Jun 10, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Junghun Kim; Jinhong Jung; U. Kang (2023). Multi-labeled node classification performance (AUC-ROC) in ogbn-protein. [Dataset]. http://doi.org/10.1371/journal.pone.0256187.t004
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 10, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Junghun Kim; Jinhong Jung; U. Kang
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The distillations are done from trained teachers with different numbers of GCN layers: 3, 7, 14, 28, and 56. Note that the proposed method Student_MustaD provides the best performance among the student models.

  5. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Saurav Maheshkar (2024). pareto-ogbn-arxiv [Dataset]. https://huggingface.co/datasets/SauravMaheshkar/pareto-ogbn-arxiv

pareto-ogbn-arxiv

SauravMaheshkar/pareto-ogbn-arxiv

Explore at:
Dataset updated
Feb 14, 2024
Authors
Saurav Maheshkar
License

https://choosealicense.com/licenses/cc/https://choosealicense.com/licenses/cc/

Description

Dataset Information

Nodes

Edges

Features

169,343 1,166,243 128

Pre-processed as per the official codebase of https://arxiv.org/abs/2210.02016

  Citations

@article{ju2023multi, title={Multi-task Self-supervised Graph Neural Networks Enable Stronger Task Generalization}, author={Ju, Mingxuan and Zhao, Tong and Wen, Qianlong and Yu, Wenhao and Shah, Neil and Ye, Yanfang and Zhang, Chuxu}, booktitle={International Conference on Learning… See the full description on the dataset page: https://huggingface.co/datasets/SauravMaheshkar/pareto-ogbn-arxiv.

Search
Clear search
Close search
Google apps
Main menu