Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
COVID-19 cases, hospitalizations and deaths in Ohio by selected demographics and county of residence, as reported to the Ohio Department of Health (ODH). The data can be viewed on a dashboard and are also available in CSV format containing the daily new number of cases and date of onset, new death and date of death, and new hospitalization and date of admission by county, sex and age-range.
https://www.usa.gov/government-workshttps://www.usa.gov/government-works
Reporting of new Aggregate Case and Death Count data was discontinued May 11, 2023, with the expiration of the COVID-19 public health emergency declaration. This dataset will receive a final update on June 1, 2023, to reconcile historical data through May 10, 2023, and will remain publicly available.
Aggregate Data Collection Process Since the start of the COVID-19 pandemic, data have been gathered through a robust process with the following steps:
Methodology Changes Several differences exist between the current, weekly-updated dataset and the archived version:
Confirmed and Probable Counts In this dataset, counts by jurisdiction are not displayed by confirmed or probable status. Instead, confirmed and probable cases and deaths are included in the Total Cases and Total Deaths columns, when available. Not all jurisdictions report probable cases and deaths to CDC.* Confirmed and probable case definition criteria are described here:
Council of State and Territorial Epidemiologists (ymaws.com).
Deaths CDC reports death data on other sections of the website: CDC COVID Data Tracker: Home, CDC COVID Data Tracker: Cases, Deaths, and Testing, and NCHS Provisional Death Counts. Information presented on the COVID Data Tracker pages is based on the same source (total case counts) as the present dataset; however, NCHS Death Counts are based on death certificates that use information reported by physicians, medical examiners, or coroners in the cause-of-death section of each certificate. Data from each of these pages are considered provisional (not complete and pending verification) and are therefore subject to change. Counts from previous weeks are continually revised as more records are received and processed.
Number of Jurisdictions Reporting There are currently 60 public health jurisdictions reporting cases of COVID-19. This includes the 50 states, the District of Columbia, New York City, the U.S. territories of American Samoa, Guam, the Commonwealth of the Northern Mariana Islands, Puerto Rico, and the U.S Virgin Islands as well as three independent countries in compacts of free association with the United States, Federated States of Micronesia, Republic of the Marshall Islands, and Republic of Palau. New York State’s reported case and death counts do not include New York City’s counts as they separately report nationally notifiable conditions to CDC.
CDC COVID-19 data are available to the public as summary or aggregate count files, including total counts of cases and deaths, available by state and by county. These and other data on COVID-19 are available from multiple public locations, such as:
https://www.cdc.gov/coronavirus/2019-ncov/cases-updates/cases-in-us.html
https://www.cdc.gov/covid-data-tracker/index.html
https://www.cdc.gov/coronavirus/2019-ncov/covid-data/covidview/index.html
https://www.cdc.gov/coronavirus/2019-ncov/php/open-america/surveillance-data-analytics.html
Additional COVID-19 public use datasets, include line-level (patient-level) data, are available at: https://data.cdc.gov/browse?tags=covid-19.
Archived Data Notes:
November 3, 2022: Due to a reporting cadence issue, case rates for Missouri counties are calculated based on 11 days’ worth of case count data in the Weekly United States COVID-19 Cases and Deaths by State data released on November 3, 2022, instead of the customary 7 days’ worth of data.
November 10, 2022: Due to a reporting cadence change, case rates for Alabama counties are calculated based on 13 days’ worth of case count data in the Weekly United States COVID-19 Cases and Deaths by State data released on November 10, 2022, instead of the customary 7 days’ worth of data.
November 10, 2022: Per the request of the jurisdiction, cases and deaths among non-residents have been removed from all Hawaii county totals throughout the entire time series. Cumulative case and death counts reported by CDC will no longer match Hawaii’s COVID-19 Dashboard, which still includes non-resident cases and deaths.
November 17, 2022: Two new columns, weekly historic cases and weekly historic deaths, were added to this dataset on November 17, 2022. These columns reflect case and death counts that were reported that week but were historical in nature and not reflective of the current burden within the jurisdiction. These historical cases and deaths are not included in the new weekly case and new weekly death columns; however, they are reflected in the cumulative totals provided for each jurisdiction. These data are used to account for artificial increases in case and death totals due to batched reporting of historical data.
December 1, 2022: Due to cadence changes over the Thanksgiving holiday, case rates for all Ohio counties are reported as 0 in the data released on December 1, 2022.
January 5, 2023: Due to North Carolina’s holiday reporting cadence, aggregate case and death data will contain 14 days’ worth of data instead of the customary 7 days. As a result, case and death metrics will appear higher than expected in the January 5, 2023, weekly release.
January 12, 2023: Due to data processing delays, Mississippi’s aggregate case and death data will be reported as 0. As a result, case and death metrics will appear lower than expected in the January 12, 2023, weekly release.
January 19, 2023: Due to a reporting cadence issue, Mississippi’s aggregate case and death data will be calculated based on 14 days’ worth of data instead of the customary 7 days in the January 19, 2023, weekly release.
January 26, 2023: Due to a reporting backlog of historic COVID-19 cases, case rates for two Michigan counties (Livingston and Washtenaw) were higher than expected in the January 19, 2023 weekly release.
January 26, 2023: Due to a backlog of historic COVID-19 cases being reported this week, aggregate case and death counts in Charlotte County and Sarasota County, Florida, will appear higher than expected in the January 26, 2023 weekly release.
January 26, 2023: Due to data processing delays, Mississippi’s aggregate case and death data will be reported as 0 in the weekly release posted on January 26, 2023.
February 2, 2023: As of the data collection deadline, CDC observed an abnormally large increase in aggregate COVID-19 cases and deaths reported for Washington State. In response, totals for new cases and new deaths released on February 2, 2023, have been displayed as zero at the state level until the issue is addressed with state officials. CDC is working with state officials to address the issue.
February 2, 2023: Due to a decrease reported in cumulative case counts by Wyoming, case rates will be reported as 0 in the February 2, 2023, weekly release. CDC is working with state officials to verify the data submitted.
February 16, 2023: Due to data processing delays, Utah’s aggregate case and death data will be reported as 0 in the weekly release posted on February 16, 2023. As a result, case and death metrics will appear lower than expected and should be interpreted with caution.
February 16, 2023: Due to a reporting cadence change, Maine’s
Notice of data discontinuation: Since the start of the pandemic, AP has reported case and death counts from data provided by Johns Hopkins University. Johns Hopkins University has announced that they will stop their daily data collection efforts after March 10. As Johns Hopkins stops providing data, the AP will also stop collecting daily numbers for COVID cases and deaths. The HHS and CDC now collect and visualize key metrics for the pandemic. AP advises using those resources when reporting on the pandemic going forward.
April 9, 2020
April 20, 2020
April 29, 2020
September 1st, 2020
February 12, 2021
new_deaths
column.February 16, 2021
The AP is using data collected by the Johns Hopkins University Center for Systems Science and Engineering as our source for outbreak caseloads and death counts for the United States and globally.
The Hopkins data is available at the county level in the United States. The AP has paired this data with population figures and county rural/urban designations, and has calculated caseload and death rates per 100,000 people. Be aware that caseloads may reflect the availability of tests -- and the ability to turn around test results quickly -- rather than actual disease spread or true infection rates.
This data is from the Hopkins dashboard that is updated regularly throughout the day. Like all organizations dealing with data, Hopkins is constantly refining and cleaning up their feed, so there may be brief moments where data does not appear correctly. At this link, you’ll find the Hopkins daily data reports, and a clean version of their feed.
The AP is updating this dataset hourly at 45 minutes past the hour.
To learn more about AP's data journalism capabilities for publishers, corporations and financial institutions, go here or email kromano@ap.org.
Use AP's queries to filter the data or to join to other datasets we've made available to help cover the coronavirus pandemic
Filter cases by state here
Rank states by their status as current hotspots. Calculates the 7-day rolling average of new cases per capita in each state: https://data.world/associatedpress/johns-hopkins-coronavirus-case-tracker/workspace/query?queryid=481e82a4-1b2f-41c2-9ea1-d91aa4b3b1ac
Find recent hotspots within your state by running a query to calculate the 7-day rolling average of new cases by capita in each county: https://data.world/associatedpress/johns-hopkins-coronavirus-case-tracker/workspace/query?queryid=b566f1db-3231-40fe-8099-311909b7b687&showTemplatePreview=true
Join county-level case data to an earlier dataset released by AP on local hospital capacity here. To find out more about the hospital capacity dataset, see the full details.
Pull the 100 counties with the highest per-capita confirmed cases here
Rank all the counties by the highest per-capita rate of new cases in the past 7 days here. Be aware that because this ranks per-capita caseloads, very small counties may rise to the very top, so take into account raw caseload figures as well.
The AP has designed an interactive map to track COVID-19 cases reported by Johns Hopkins.
@(https://datawrapper.dwcdn.net/nRyaf/15/)
<iframe title="USA counties (2018) choropleth map Mapping COVID-19 cases by county" aria-describedby="" id="datawrapper-chart-nRyaf" src="https://datawrapper.dwcdn.net/nRyaf/10/" scrolling="no" frameborder="0" style="width: 0; min-width: 100% !important;" height="400"></iframe><script type="text/javascript">(function() {'use strict';window.addEventListener('message', function(event) {if (typeof event.data['datawrapper-height'] !== 'undefined') {for (var chartId in event.data['datawrapper-height']) {var iframe = document.getElementById('datawrapper-chart-' + chartId) || document.querySelector("iframe[src*='" + chartId + "']");if (!iframe) {continue;}iframe.style.height = event.data['datawrapper-height'][chartId] + 'px';}}});})();</script>
Johns Hopkins timeseries data - Johns Hopkins pulls data regularly to update their dashboard. Once a day, around 8pm EDT, Johns Hopkins adds the counts for all areas they cover to the timeseries file. These counts are snapshots of the latest cumulative counts provided by the source on that day. This can lead to inconsistencies if a source updates their historical data for accuracy, either increasing or decreasing the latest cumulative count. - Johns Hopkins periodically edits their historical timeseries data for accuracy. They provide a file documenting all errors in their timeseries files that they have identified and fixed here
This data should be credited to Johns Hopkins University COVID-19 tracking project
Ohio COVID 19 Data by School District.
From the website: *"This data reflects new and cumulative COVID-19 cases reported to schools by parents/guardians and staff. Schools are required to report cases to their assigned Local Health Department who then report to the Ohio Department of Health. A report of COVID-19 should not be interpreted as an indicator that a school district or school isn’t following proper procedures—school cases can be a reflection of the overall situation in the broader community. Families and staff should always feel free to ask questions of the school district or school.
For more details on schools and the education sector, please see Sector Specific Operating Requirements: https://coronavirus.ohio.gov/wps/portal/gov/covid-19/responsible-restart-ohio/sector-specific-operating-requirements/sector-specific-operating-requirements
School reporting templates, a list of school districts and their corresponding local health departments, and more can be found on the Education and Sector Specific Guidance page under “Schools”: https://coronavirus.ohio.gov/wps/portal/gov/covid-19/responsible-restart-ohio/sector-specific-operating-requirements/sector-specific-operating-requirements
For more details, please see: https://coronavirus.ohio.gov/wps/portal/gov/covid19/dashboards/Schools-and-Children/schools"*
The start of Ohio
Visualize on a map (after joining with school district by location), look for trends, etc
https://www.usa.gov/government-workshttps://www.usa.gov/government-works
Reporting of Aggregate Case and Death Count data was discontinued May 11, 2023, with the expiration of the COVID-19 public health emergency declaration. Although these data will continue to be publicly available, this dataset will no longer be updated.
Weekly COVID-19 Community Levels (CCLs) have been replaced with levels of COVID-19 hospital admission rates (low, medium, or high) which demonstrate >99% concordance by county during February 2022–March 2023. For more information on the latest COVID-19 status levels in your area and hospital admission rates, visit United States COVID-19 Hospitalizations, Deaths, and Emergency Visits by Geographic Area.
This archived public use dataset contains historical case and percent positivity data updated weekly for all available counties and jurisdictions. Each week, the dataset was refreshed to capture any historical updates. Please note, percent positivity data may be incomplete for the most recent time period.
This archived public use dataset contains weekly community transmission levels data for all available counties and jurisdictions since October 20, 2022. The dataset was appended to contain the most recent week's data as originally posted on COVID Data Tracker. Historical corrections are not made to these data if new case or testing information become available. A separate archived file is made available here (: Weekly COVID-19 County Level of Community Transmission Historical Changes) if historically updated data are desired.
Related data CDC provides the public with two active versions of COVID-19 county-level community transmission level data: this dataset with the levels as originally posted (Weekly Originally Posted dataset), updated weekly with the most recent week’s data since October 20, 2022, and a historical dataset with the county-level transmission data from January 22, 2020 (Weekly Historical Changes dataset).
Methods for calculating county level of community transmission indicator The County Level of Community Transmission indicator uses two metrics: (1) total new COVID-19 cases per 100,000 persons in the last 7 days and (2) percentage of positive SARS-CoV-2 diagnostic nucleic acid amplification tests (NAAT) in the last 7 days. For each of these metrics, CDC classifies transmission values as low, moderate, substantial, or high (below and here). If the values for each of these two metrics differ (e.g., one indicates moderate and the other low), then the higher of the two should be used for decision-making.
CDC core metrics of and thresholds for community transmission levels of SARS-CoV-2 Total New Case Rate Metric: "New cases per 100,000 persons in the past 7 days" is calculated by adding the number of new cases in the county (or other administrative level) in the last 7 days divided by the population in the county (or other administrative level) and multiplying by 100,000. "New cases per 100,000 persons in the past 7 days" is considered to have a transmission level of Low (0-9.99); Moderate (10.00-49.99); Substantial (50.00-99.99); and High (greater than or equal to 100.00).
Test Percent Positivity Metric: "Percentage of positive NAAT in the past 7 days" is calculated by dividing the number of positive tests in the county (or other administrative level) during the last 7 days by the total number of tests conducted over the last 7 days. "Percentage of positive NAAT in the past 7 days" is considered to have a transmission level of Low (less than 5.00); Moderate (5.00-7.99); Substantial (8.00-9.99); and High (greater than or equal to 10.00).
If the two metrics suggest different transmission levels, the higher level is selected.
The reported transmission categories include:
Low Transmission Threshold: Counties with fewer than 10 total cases per 100,000 population in the past 7 days, and a NAAT percent test positivity in the past 7 days below 5%;
Moderate Transmission Threshold: Counties with 10-49 total cases per 100,000 population in the past 7 days or a NAAT test percent positivity in the past 7 days of 5.0-7.99%;
Substantial Transmission Threshold: Counties with 50-99 total cases per 100,000 population in the past 7 days or a NAAT test percent positivity in the past 7 days of 8.0-9.99%;
High Transmission Threshold: Counties with 100 or more total cases per 100,000 population in the past 7 days or a NAAT test percent positivity in the past 7 days of 10.0% or greater.
Blank: total new cases in the past 7 days are not reported (county data known to be unavailable) and the percentage of positive NAATs tests during the past 7 days (blank) are not reported.
The data in this dataset are considered provisional by CDC and are subject to change until the data are reconciled and verified with the state and territorial data providers.
This dataset is created using CDC’s Policy on Public Health Research and Nonresearch Data Management and Access.
Archived data CDC has archived two prior versions of these datasets. Both versions contain the same 7 data elements reflecting community transmission levels for all available counties and jurisdictions; however, the datasets were updated daily. The archived datasets can be found here:
Archived Originally Posted dataset
Archived Historical Changes dataset
Archived Data Notes:
October 20, 2022: Due to the Mississippi case data dashboard not being updated this week, case rates for all Mississippi counties are reported as 0 in the COVID-19 Community Transmission Level data released on October 20, 2022. This could lead to the COVID-19 Community Transmission Levels metrics for Mississippi counties being underestimated; therefore, they should be interpreted with caution.
October 20, 2022: Due to a data reporting error, the case rate for Philadelphia County, Pennsylvania is lower than expected in the COVID-19 Community Transmission Level data released on October 20, 2022. This could lead to the COVID-19 Community Transmission Level for Philadelphia County being underestimated; therefore, it should be interpreted with caution.
October 28, 2022: Due to a data processing error, case rates for Kentucky appear higher than expected in the weekly release on October 28, 2022. Therefore, the COVID-19 Community Transmission Levels metrics for Kentucky counties may be overestimated and should be interpreted with caution.
November 3, 2022: Due to a reporting cadence issue, case rates for Missouri counties are calculated based on 11 days’ worth of case count data in the COVID-19 Community Transmission Level data released on November 3, 2022, instead of the customary 7 days’ worth of data. This could lead to the COVID-19 Community Transmission Levels metrics for Missouri counties being overestimated; therefore, they should be interpreted with caution.
November 10, 2022: Due to a reporting cadence change, case rates for Alabama counties are calculated based on 13 days’ worth of case count data in the COVID-19 Community Transmission Level data released on November 10, 2022, instead of the customary 7 days’ worth of data. This could lead to the COVID-19 Community Transmission Levels metrics for Alabama counties being overestimated; therefore, they should be interpreted with caution.
November 10, 2022: Per the request of the jurisdiction, cases among non-residents have been removed from all Hawaii county totals throughout the entire time series. Cumulative case counts reported by CDC will no longer match Hawaii’s COVID-19 Dashboard, which still includes non-resident cases.
November 10, 2022: Due to a reporting cadence issue, case rates for all Mississippi counties are reported as 0 in the COVID-19 Community Transmission data released on November 10, 2022. This could lead to the COVID-19 Community Transmission Levels metrics for Mississippi counties being underestimated; therefore, they should be interpreted with caution.
November 10, 2022: In the COVID-19 Community Transmission Level data released on November 10, 2022, multiple municipalities in Puerto Rico are reporting higher than expected increases in case counts. CDC is working with territory officials to verify the data submitted.
November 25, 2022: Due to a reporting cadence change for the Thanksgiving holiday, case rates for all Ohio counties are calculated based on 13 days' worth of case counts in the COVID-19 Community Transmission Level data released on November 25, 2022, instead of the customary 7 days’ worth of data. This could lead to the COVID-19 Community Transmission Levels metrics for all Ohio counties being overestimated; therefore, they should be interpreted with caution.
November 25, 2022: Due to the Thanksgiving holiday, CDC did not receive updated case data from the following jurisdictions: Rhode Island and Mississippi. As a result, case rates for all counties within these jurisdictions are reported as 0 in the COVID-19 Community Transmission Level Data
As of March 10, 2023, there have been 1.1 million deaths related to COVID-19 in the United States. There have been 101,159 deaths in the state of California, more than any other state in the country – California is also the state with the highest number of COVID-19 cases.
The vaccine rollout in the U.S. Since the start of the pandemic, the world has eagerly awaited the arrival of a safe and effective COVID-19 vaccine. In the United States, the immunization campaign started in mid-December 2020 following the approval of a vaccine jointly developed by Pfizer and BioNTech. As of March 22, 2023, the number of COVID-19 vaccine doses administered in the U.S. had reached roughly 673 million. The states with the highest number of vaccines administered are California, Texas, and New York.
Vaccines achieved due to work of research groups Chinese authorities initially shared the genetic sequence to the novel coronavirus in January 2020, allowing research groups to start studying how it invades human cells. The surface of the virus is covered with spike proteins, which enable it to bind to human cells. Once attached, the virus can enter the cells and start to make people ill. These spikes were of particular interest to vaccine manufacturers because they hold the key to preventing viral entry.
Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
This Project Tycho dataset includes a CSV file with COVID-19 data reported in UNITED STATES OF AMERICA: 2019-12-30 - 2021-07-31. It contains counts of cases, deaths, hospitalizations, and demographics. Data for this Project Tycho dataset comes from: "Alabama Department of Public Health Website Dashboard", "Arkansas Department of Health COVID-19 Website Dashboard", "California Health and Human Services Open Data Portal, California Department of Public Health COVID-19 Data", "Colorado Department of Public Health and Environment Open Data Website", "Connecticut Open Data Website, Department of Public Health COVID-19 Data", "Delaware Environmental Public Health Tracking Network, Delaware Health and Social Services Website", "Georgia Department of Public Health Website", "Illinois Department of Public Health Website", "Indiana Data Hub Website, Indiana State Department of Health COVID-19 Data", "COVID-19 Data Repository by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University", "Kentucky Department of Public Health COVID-19 Website Dashboard", "Maine Center for Disease Control & Prevention; Division of the Maine Department of Health and Human Services Website", "Maryland Department of Health COVID-19 Website Dashboard", "Minnesota Department of Health COVID-19 Website Dashboard", "Montana Department of Health & Human Services COVID-19 Website Dashboard", "New York State Department of Health Data Website", "COVID-19 Data Repository by The New York Times", "Ohio Department of Health COVID-19 website", "Pennsylvania Department of Health Data Website", "Tennessee Department of Health Website", "Texas Department of Health Services Website", "United States Centers for Disease Control and Prevention, COVID-19 Response", "Vermont Department of Health, Vermont Center for Geographic Information Open Geodata Portal", "Virginia Department of Health Website", "European Centre for Disease Prevention and Control Website", "World Health Organization COVID-19 Dashboard". The data have been pre-processed into the standard Project Tycho data format v1.1.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The SEIR (susceptible-exposed-infected-recovered) model has become a valuable tool for studying infectious disease dynamics and predicting the spread of diseases, particularly concerning the COVID pandemic. However, existing models often oversimplify population characteristics and fail to account for differences in disease sensitivity and social contact rates that can vary significantly among individuals. To address these limitations, we have developed a new multi-feature SEIR model that considers the heterogeneity of health conditions (disease sensitivity) and social activity levels (contact rates) among populations affected by infectious diseases. Our model has been validated using the data of the confirmed COVID cases in Allegheny County (Pennsylvania, USA) and Hamilton County (Ohio, USA). The results demonstrate that our model outperforms traditional SEIR models regarding predictive accuracy. In addition, we have used our multi-feature SEIR model to propose and evaluate different vaccine prioritization strategies tailored to the characteristics of heterogeneous populations. We have formulated optimization problems to determine effective vaccine distribution strategies. We have designed extensive numerical simulations to compare vaccine distribution strategies in different scenarios. Overall, our multi-feature SEIR model enhances the existing models and provides a more accurate picture of disease dynamics. It can help to inform public health interventions during pandemics/epidemics.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The SEIR (susceptible-exposed-infected-recovered) model has become a valuable tool for studying infectious disease dynamics and predicting the spread of diseases, particularly concerning the COVID pandemic. However, existing models often oversimplify population characteristics and fail to account for differences in disease sensitivity and social contact rates that can vary significantly among individuals. To address these limitations, we have developed a new multi-feature SEIR model that considers the heterogeneity of health conditions (disease sensitivity) and social activity levels (contact rates) among populations affected by infectious diseases. Our model has been validated using the data of the confirmed COVID cases in Allegheny County (Pennsylvania, USA) and Hamilton County (Ohio, USA). The results demonstrate that our model outperforms traditional SEIR models regarding predictive accuracy. In addition, we have used our multi-feature SEIR model to propose and evaluate different vaccine prioritization strategies tailored to the characteristics of heterogeneous populations. We have formulated optimization problems to determine effective vaccine distribution strategies. We have designed extensive numerical simulations to compare vaccine distribution strategies in different scenarios. Overall, our multi-feature SEIR model enhances the existing models and provides a more accurate picture of disease dynamics. It can help to inform public health interventions during pandemics/epidemics.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The SEIR (susceptible-exposed-infected-recovered) model has become a valuable tool for studying infectious disease dynamics and predicting the spread of diseases, particularly concerning the COVID pandemic. However, existing models often oversimplify population characteristics and fail to account for differences in disease sensitivity and social contact rates that can vary significantly among individuals. To address these limitations, we have developed a new multi-feature SEIR model that considers the heterogeneity of health conditions (disease sensitivity) and social activity levels (contact rates) among populations affected by infectious diseases. Our model has been validated using the data of the confirmed COVID cases in Allegheny County (Pennsylvania, USA) and Hamilton County (Ohio, USA). The results demonstrate that our model outperforms traditional SEIR models regarding predictive accuracy. In addition, we have used our multi-feature SEIR model to propose and evaluate different vaccine prioritization strategies tailored to the characteristics of heterogeneous populations. We have formulated optimization problems to determine effective vaccine distribution strategies. We have designed extensive numerical simulations to compare vaccine distribution strategies in different scenarios. Overall, our multi-feature SEIR model enhances the existing models and provides a more accurate picture of disease dynamics. It can help to inform public health interventions during pandemics/epidemics.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The SEIR (susceptible-exposed-infected-recovered) model has become a valuable tool for studying infectious disease dynamics and predicting the spread of diseases, particularly concerning the COVID pandemic. However, existing models often oversimplify population characteristics and fail to account for differences in disease sensitivity and social contact rates that can vary significantly among individuals. To address these limitations, we have developed a new multi-feature SEIR model that considers the heterogeneity of health conditions (disease sensitivity) and social activity levels (contact rates) among populations affected by infectious diseases. Our model has been validated using the data of the confirmed COVID cases in Allegheny County (Pennsylvania, USA) and Hamilton County (Ohio, USA). The results demonstrate that our model outperforms traditional SEIR models regarding predictive accuracy. In addition, we have used our multi-feature SEIR model to propose and evaluate different vaccine prioritization strategies tailored to the characteristics of heterogeneous populations. We have formulated optimization problems to determine effective vaccine distribution strategies. We have designed extensive numerical simulations to compare vaccine distribution strategies in different scenarios. Overall, our multi-feature SEIR model enhances the existing models and provides a more accurate picture of disease dynamics. It can help to inform public health interventions during pandemics/epidemics.
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
COVID-19 cases, hospitalizations and deaths in Ohio by selected demographics and county of residence, as reported to the Ohio Department of Health (ODH). The data can be viewed on a dashboard and are also available in CSV format containing the daily new number of cases and date of onset, new death and date of death, and new hospitalization and date of admission by county, sex and age-range.