47 datasets found
  1. T

    Crude Oil - Price Data

    • tradingeconomics.com
    • ar.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Jul 1, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). Crude Oil - Price Data [Dataset]. https://tradingeconomics.com/commodity/crude-oil
    Explore at:
    csv, json, xml, excelAvailable download formats
    Dataset updated
    Jul 1, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Mar 30, 1983 - Jul 1, 2025
    Area covered
    World
    Description

    Crude Oil fell to 64.78 USD/Bbl on July 1, 2025, down 0.50% from the previous day. Over the past month, Crude Oil's price has risen 3.62%, but it is still 21.77% lower than a year ago, according to trading on a contract for difference (CFD) that tracks the benchmark market for this commodity. Crude Oil - values, historical data, forecasts and news - updated on July of 2025.

  2. T

    Brent crude oil - Price Data

    • tradingeconomics.com
    • zh.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Jul 1, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). Brent crude oil - Price Data [Dataset]. https://tradingeconomics.com/commodity/brent-crude-oil
    Explore at:
    xml, csv, excel, jsonAvailable download formats
    Dataset updated
    Jul 1, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Apr 15, 1970 - Jul 1, 2025
    Area covered
    World
    Description

    Brent fell to 66.38 USD/Bbl on July 1, 2025, down 0.53% from the previous day. Over the past month, Brent's price has risen 2.71%, but it is still 23.02% lower than a year ago, according to trading on a contract for difference (CFD) that tracks the benchmark market for this commodity. Brent crude oil - values, historical data, forecasts and news - updated on July of 2025.

  3. T

    Heating oil - Price Data

    • tradingeconomics.com
    • zh.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Jun 30, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). Heating oil - Price Data [Dataset]. https://tradingeconomics.com/commodity/heating-oil
    Explore at:
    excel, csv, xml, jsonAvailable download formats
    Dataset updated
    Jun 30, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 2, 1980 - Jun 30, 2025
    Area covered
    World
    Description

    Heating Oil fell to 2.24 USD/Gal on June 30, 2025, down 3.10% from the previous day. Over the past month, Heating Oil's price has risen 8.54%, but it is still 14.42% lower than a year ago, according to trading on a contract for difference (CFD) that tracks the benchmark market for this commodity. Heating oil - values, historical data, forecasts and news - updated on June of 2025.

  4. d

    Dataset for: Transport of oil droplets from a jet in crossflow: Dispersion...

    • search.dataone.org
    • data.griidc.org
    Updated Feb 5, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Boufadel, Michel (2025). Dataset for: Transport of oil droplets from a jet in crossflow: Dispersion coefficients and Vortex trapping [Dataset]. http://doi.org/10.7266/n7-psze-9650
    Explore at:
    Dataset updated
    Feb 5, 2025
    Dataset provided by
    GRIIDC
    Authors
    Boufadel, Michel
    Description

    This dataset contains computational fluid dynamics (CFD) simulations of oil jets and plumes, which were validated with experimental data conducted in an Ohmsett tank. This dataset supports the publication: Daskiran, Cosan, Fangda Cui, Michel C. Boufadel, Scott A. Socolofsky, Joseph Katz, Lin Zhao, Tanmay Ozgokmen, Brian Robinson, and Thomas King. 2021. Transport of oil droplets from a jet in crossflow: Dispersion coefficients and Vortex trapping. Ocean Modelling, 158, 101736. DOI: 10.1016/j.ocemod.2020.101736.

  5. d

    Dataset for: Was the Deepwater Horizon well discharge churn flow?...

    • search.dataone.org
    • data.griidc.org
    • +1more
    Updated Feb 5, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Gao, Feng (2025). Dataset for: Was the Deepwater Horizon well discharge churn flow? Implications on the estimation of the oil discharge and droplet size distribution [Dataset]. http://doi.org/10.7266/N7Q23XS7
    Explore at:
    Dataset updated
    Feb 5, 2025
    Dataset provided by
    GRIIDC
    Authors
    Gao, Feng
    Description

    Oil and gas flow from the Macondo255 wellhead were simulated using a large eddy simulation (LES) approach. This dataset includes the simulated oil and gas holdups (both along the radial and centerline direction), flow velocity, turbulence dissipation rate, and entrainment coefficient. The data was generated by CFD-LES approach using FLUENT software and post-processed by TECPLOT and Excel.

  6. T

    Urals Oil - Price Data

    • tradingeconomics.com
    • pt.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Jun 26, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2022). Urals Oil - Price Data [Dataset]. https://tradingeconomics.com/commodity/urals-oil
    Explore at:
    csv, json, excel, xmlAvailable download formats
    Dataset updated
    Jun 26, 2022
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jun 22, 2012 - Jun 26, 2025
    Area covered
    World
    Description

    Urals Oil fell to 63.77 USD/Bbl on June 26, 2025, down 0.76% from the previous day. Over the past month, Urals Oil's price has risen 10.62%, but it is still 20.34% lower than a year ago, according to trading on a contract for difference (CFD) that tracks the benchmark market for this commodity. This dataset includes a chart with historical data for Urals Crude.

  7. T

    Palm Oil - Price Data

    • tradingeconomics.com
    • fa.tradingeconomics.com
    • +14more
    csv, excel, json, xml
    Updated Jul 1, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). Palm Oil - Price Data [Dataset]. https://tradingeconomics.com/commodity/palm-oil
    Explore at:
    csv, excel, json, xmlAvailable download formats
    Dataset updated
    Jul 1, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Oct 23, 1980 - Jul 1, 2025
    Area covered
    World
    Description

    Palm Oil rose to 3,993 MYR/T on July 1, 2025, up 0.15% from the previous day. Over the past month, Palm Oil's price has risen 2.97%, but it is still 2.37% lower than a year ago, according to trading on a contract for difference (CFD) that tracks the benchmark market for this commodity. Palm Oil - values, historical data, forecasts and news - updated on July of 2025.

  8. m

    oil supply to top ring and land pressure

    • data.mendeley.com
    Updated Sep 15, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    勇 胡 (2022). oil supply to top ring and land pressure [Dataset]. http://doi.org/10.17632/jp4hj6wvwd.1
    Explore at:
    Dataset updated
    Sep 15, 2022
    Authors
    勇 胡
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    oil supply to top ring and land pressure

  9. d

    Surface Dynamics of Crude and Weathered Oil in the Presence of Dispersants:...

    • search.dataone.org
    • data.griidc.org
    Updated Feb 5, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Soloviev, Alexander V. (2025). Surface Dynamics of Crude and Weathered Oil in the Presence of Dispersants: Numerical Simulation [Dataset]. http://doi.org/10.7266/N7RR1W8J
    Explore at:
    Dataset updated
    Feb 5, 2025
    Dataset provided by
    GRIIDC
    Authors
    Soloviev, Alexander V.
    Description

    Numerical experiments were conducted using an advanced high-resolution, non-hydrostatic 3D multi-phase model, incorporating capillary forces (ANSYS Fluent computational fluid dynamics software). These numerical simulations reproduced the spreading and contraction (due to the application of dispersant) of crude and machine oil on the surface of the water. These simulations were conducted from September to November 2015.

  10. D

    Computational Fluid Dynamics CFD Simulation Tools Market Report | Global...

    • dataintelo.com
    csv, pdf, pptx
    Updated Jan 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dataintelo (2025). Computational Fluid Dynamics CFD Simulation Tools Market Report | Global Forecast From 2025 To 2033 [Dataset]. https://dataintelo.com/report/global-computational-fluid-dynamics-cfd-simulation-tools-market
    Explore at:
    pdf, pptx, csvAvailable download formats
    Dataset updated
    Jan 7, 2025
    Dataset authored and provided by
    Dataintelo
    License

    https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy

    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    Computational Fluid Dynamics (CFD) Simulation Tools Market Outlook



    The global Computational Fluid Dynamics (CFD) simulation tools market size was valued at approximately USD 2.5 billion in 2023 and is projected to reach USD 5.8 billion by 2032, growing at a CAGR of 9.5% during the forecast period. This growth is primarily driven by the increasing demand for high-fidelity simulations in various industries, including aerospace, automotive, and energy, which require sophisticated tools for fluid flow analysis and optimization.



    One of the key growth factors driving the CFD simulation tools market is the rising need for precision in engineering designs and the growing complexity of systems. Modern engineering projects require accurate and detailed analyses to ensure efficiency and safety, which CFD tools can provide. These tools help in simulating the behavior of fluids and gases in various environments, allowing engineers to predict and enhance performance without the need for expensive and time-consuming physical prototypes. This adoption is particularly significant in industries like aerospace and automotive, where optimizing aerodynamic performance is crucial.



    The increasing use of CFD tools in the energy sector is another significant factor contributing to market growth. With the global push towards renewable energy sources, CFD simulation tools are being extensively used to optimize the design and performance of wind turbines, solar panels, and other renewable energy systems. These tools help in analyzing and improving the efficiency of energy conversion processes, thereby supporting the transition to sustainable energy solutions. Additionally, the oil and gas industry also relies heavily on CFD tools to enhance exploration and production processes, further fueling market expansion.



    Technological advancements in CFD software are also playing a critical role in market growth. The integration of artificial intelligence (AI) and machine learning (ML) algorithms into CFD tools has significantly enhanced their capabilities, allowing for more accurate and faster simulations. These advancements have expanded the applicability of CFD tools, enabling their use in more complex and varied scenarios. The continuous improvement in computational power and the development of user-friendly interfaces have made CFD tools more accessible to a broader range of users, from large corporations to small and medium-sized enterprises (SMEs).



    The integration of FEA & CFD Simulation and Analysis Softwares has revolutionized the way engineers approach complex design challenges. These tools allow for a comprehensive analysis of both fluid dynamics and structural integrity, providing a holistic view of how different forces interact within a system. By combining finite element analysis (FEA) with computational fluid dynamics (CFD), engineers can simulate real-world conditions with greater accuracy, leading to more reliable and efficient designs. This integration is particularly beneficial in industries such as aerospace and automotive, where the interplay between aerodynamic forces and structural stresses is critical. As these industries continue to push the boundaries of innovation, the demand for integrated simulation solutions is expected to rise, further driving the growth of the market.



    Regionally, North America holds a significant share of the CFD simulation tools market, driven by the presence of major aerospace, automotive, and energy companies. The region's strong focus on innovation and advanced technologies supports the adoption of CFD tools. Europe is another key market, particularly in the automotive and aerospace sectors. The Asia Pacific region is expected to witness the highest growth rate, attributed to the rapid industrialization and increasing investments in infrastructure and technology. The growing manufacturing sector in countries like China and India is also contributing to the increased demand for CFD simulation tools.



    Component Analysis



    The CFD simulation tools market can be segmented by component into software and services. The software segment holds the lion's share of the market, driven by the continuous development of advanced simulation tools that offer high precision and efficiency. These software solutions are designed to handle complex simulations, enabling users to model and analyze fluid dynamics scenarios accurately. The demand for software is particularly high in sectors like aerospace and automoti

  11. d

    Oil droplet formation and distribution under wave actions

    • search.dataone.org
    • data.griidc.org
    Updated Feb 5, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Boufadel, Michel (2025). Oil droplet formation and distribution under wave actions [Dataset]. http://doi.org/10.7266/n7-9zkx-qq47
    Explore at:
    Dataset updated
    Feb 5, 2025
    Dataset provided by
    GRIIDC
    Authors
    Boufadel, Michel
    Description

    By integration of population balance VDROP-J model with computational fluid dynamics (CFD) simulation model of waves, the droplet formation under wave actions is simulated. The data supports the following publications.

    Cui, Fangda, Cosan Daskiran, Thomas King, Brian Robinson, Kenneth Lee, Joseph Katz, and Michel C. Boufadel. 2020. Modeling oil dispersion under breaking waves. Part I: Wave hydrodynamics. Environmental Fluid Mechanics 20, 1527–1551. DOI: 10.1007/s10652-020-09753-7

    Cui, Fangda, Lin Zhao, Cosan Daskiran, Kenneth Lee, Joseph Katz, and Michel C. Boufadel. 2020. Modeling oil dispersion under breaking waves. Part II: Coupling Lagrangian particle tracking with population balance model. Environmental Fluid Mechanics 20, 1553–1578. DOI: 10.1007/s10652-020-09759-1

  12. p

    Dwufazowy przepływ ropy naftowej i wody przez różne rury :badanie...

    • dona.pwr.edu.pl
    Updated 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Shirsendu Banerjee; Anirban Banik; Vinay Kumar Rajak; Tarun Kanti Bandyopadhyay; Jayato Nayak; Michał M Jasiński; Ramesh Kumar; Byong-Hun Jeon; Masoom Raza Siddiqui; Moonis Ali Khan; Sankha Chakrabortty; Suraj K Tripathy (2024). Dwufazowy przepływ ropy naftowej i wody przez różne rury :badanie eksperymentalne połączone z podejściem obliczeniowej dynamiki płynów. [Dataset]. http://doi.org/10.1021/acsomega.3c05290
    Explore at:
    Dataset updated
    2024
    Authors
    Shirsendu Banerjee; Anirban Banik; Vinay Kumar Rajak; Tarun Kanti Bandyopadhyay; Jayato Nayak; Michał M Jasiński; Ramesh Kumar; Byong-Hun Jeon; Masoom Raza Siddiqui; Moonis Ali Khan; Sankha Chakrabortty; Suraj K Tripathy
    Description

    Library of Wroclaw University of Science and Technology scientific output (DONA database)

  13. C

    CFD Software Report

    • datainsightsmarket.com
    doc, pdf, ppt
    Updated Jun 19, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Data Insights Market (2025). CFD Software Report [Dataset]. https://www.datainsightsmarket.com/reports/cfd-software-1970274
    Explore at:
    ppt, pdf, docAvailable download formats
    Dataset updated
    Jun 19, 2025
    Dataset authored and provided by
    Data Insights Market
    License

    https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The Computational Fluid Dynamics (CFD) software market is experiencing robust growth, driven by increasing demand across diverse industries. The market, estimated at $5 billion in 2025, is projected to maintain a healthy Compound Annual Growth Rate (CAGR) of around 10% through 2033, reaching approximately $12 billion. This expansion is fueled by several key factors: the rising adoption of CFD simulations in automotive and aerospace design for optimizing aerodynamics and fuel efficiency; the growing need for precise fluid flow modeling in the energy sector (oil & gas, renewable energy); and the increasing reliance on CFD in biomedical engineering for applications like drug delivery and cardiovascular simulations. Furthermore, advancements in high-performance computing (HPC) are enabling more complex and accurate simulations, further bolstering market growth. Major players like ANSYS, Siemens, and Dassault Systèmes are continuously investing in R&D to enhance software capabilities and expand their market reach. The trend toward cloud-based CFD solutions is also gaining momentum, offering enhanced accessibility and scalability. However, market growth is not without its challenges. High software costs and the need for specialized expertise to effectively utilize CFD tools pose significant barriers to entry for smaller companies. Furthermore, the complexity of certain simulations and the potential for inaccurate results if not properly validated can limit adoption in some sectors. Despite these restraints, the overall outlook for the CFD software market remains positive, with continued growth expected across various industries and geographic regions. The increasing availability of user-friendly interfaces and the integration of CFD with other engineering simulation tools are likely to further stimulate market expansion in the coming years.

  14. g

    Dataset for: Simulation of vertical dispersion of oil droplets by Langmuir...

    • data.griidc.org
    • search.dataone.org
    Updated Aug 30, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Andrés E. Tejada-Martínez (2021). Dataset for: Simulation of vertical dispersion of oil droplets by Langmuir supercells through a Reynolds-averaged Eulerian formulation combined with Lagrangian particle tracking [Dataset]. http://doi.org/10.7266/JXE8ZBNV
    Explore at:
    Dataset updated
    Aug 30, 2021
    Dataset provided by
    GRIIDC
    Authors
    Andrés E. Tejada-Martínez
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    Interaction between the wind-driven shear and the wave-induced Stokes drift in the upper ocean leads to Langmuir circulation consisting of wind-aligned counter-rotating vortices. In inner-shelf regions up to 30 meters in depth undergoing strong wind and wave forcing during the passage of storms, Langmuir cells have been observed reaching the bottom of the water column while increasing in intensity and coherency (Gargett and Wells, 2007; Gargett and Savidge, 2020). These cells have been denoted as Langmuir supercells (LS) due to their significant impact on the turbulence dynamics throughout the entire water column and their distinct structure compared to ordinary Langmuir circulation in the upper ocean mixed layer. A Reynolds-averaged Eulerian formulation is developed resolving LS as a secondary component to the wind-driven mean shear current, and this formulation is combined with Lagrangian particle tracking to investigate oil droplet entrainment induced by the LS. The efficiency of the cells in mixing oil droplets of 500 microns throughout the water column is compared to wind-driven flow with 0.025 and 0.1 N/m^-2 forces. Characteristic timescales of the initial accumulation of oil droplets in submerged Stommel retention zones and the subsequent homogenization of the droplets about these zones are established. The dataset includes modeled particle trajectories for cases with a Langmuir number of 0.7 and wavelength to depth ratios of 4/3 and 6 and a y-z slice of the velocity field at x position 0.785398 at the final step of the model run. Also included are particle trajectory animations for wavelength/depth = 6, Langmuir number 0.5, and two different wind regimes. This dataset supports the publication: Perez, Anthony J., Fangda Cui, Juan Peñaloza-Gutierrez, Seyed Zeidi, Nityanand Sinha, Michel Boufadel, Carlowen A. Smith, David W. Murphy, and Andrés E. Tejada-Martínez. (2021). Simulation of vertical dispersion of oil droplets by Langmuir supercells through a Reynolds-averaged Eulerian formulation combined with Lagrangian particle tracking. Ocean Engineering, 235, 109043. doi:10.1016/j.oceaneng.2021.109043.

  15. Data used for the simulation of impact of morphology of porous media

    • figshare.com
    xlsx
    Updated Apr 22, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mohammad Ghodsi (2024). Data used for the simulation of impact of morphology of porous media [Dataset]. http://doi.org/10.6084/m9.figshare.25668936.v1
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Apr 22, 2024
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    Mohammad Ghodsi
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This repository contains simulation cases conducted using OpenFOAM 5.x on a range of digital rocks. These cases are publicly accessible to researchers, providing all simulation results in the form of Excel datasets, plots, and codes for different scenarios.We hope that this repository will be a valuable resource for researchers, professors, and students alike.Mohammad Ghodsi Institute of Petroleum Engineering, University of Tehran

  16. T

    Sunflower Oil - Price Data

    • tradingeconomics.com
    • de.tradingeconomics.com
    • +14more
    csv, excel, json, xml
    Updated Jun 16, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). Sunflower Oil - Price Data [Dataset]. https://tradingeconomics.com/commodity/sunflower-oil
    Explore at:
    excel, csv, json, xmlAvailable download formats
    Dataset updated
    Jun 16, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    May 25, 2012 - Jun 27, 2025
    Area covered
    World
    Description

    Sunflower Oil fell to 1,238.80 INR/10 kg on June 27, 2025, down 0.76% from the previous day. Over the past month, Sunflower Oil's price has fallen 5.39%, but it is still 33.84% higher than a year ago, according to trading on a contract for difference (CFD) that tracks the benchmark market for this commodity. This dataset includes a chart with historical data for Sunflower Oil.

  17. d

    Dataset for: Oil Droplet Transport under Non-Breaking Waves: An Eulerian...

    • dataone.org
    • data.griidc.org
    Updated Jul 9, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GRIIDC (2019). Dataset for: Oil Droplet Transport under Non-Breaking Waves: An Eulerian RANS Approach Combined with a Lagrangian Particle Dispersion Model [Dataset]. https://dataone.org/datasets/R4-x265-000-0052-0004
    Explore at:
    Dataset updated
    Jul 9, 2019
    Dataset provided by
    GRIIDC
    Description

    We simulated the two-dimensional regular wave by using Computational Fluid Dynamics (CFD) and coupling the CFD data with Lagrangian Particle Tracking method to evaluate the transport of oil droplet with waves. The dataset was collected from the above mentioned numerical simulation, including the wave velocity, turbulent kinetic energy, eddy diffusivity and oil droplet trajectories. This dataset supports the publication: Golshan, R., Boufadel, M.C., Rodriguez, V.A., Geng, X., Gao, F., King, T., Robinson, B., & Tejada-Martínez, A.E. (2018). Oil Droplet Transport under Non-Breaking Waves: An Eulerian RANS Approach Combined with a Lagrangian Particle Dispersion Model. Journal of Marine Science and Engineering. 6(1), 7; doi: 10.3390/jmse6010007

  18. T

    Rapeseed - Price Data

    • tradingeconomics.com
    • es.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS, Rapeseed - Price Data [Dataset]. https://tradingeconomics.com/commodity/rapeseed-oil
    Explore at:
    excel, json, xml, csvAvailable download formats
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Nov 22, 1994 - Jul 1, 2025
    Area covered
    World
    Description

    Rapeseed rose to 467.29 EUR/T on July 1, 2025, up 0.06% from the previous day. Over the past month, Rapeseed's price has fallen 1.21%, and is down 4.10% compared to the same time last year, according to trading on a contract for difference (CFD) that tracks the benchmark market for this commodity. This dataset includes a chart with historical data for Rapeseed Oil.

  19. C

    CAE Engineering Services Report

    • marketresearchforecast.com
    doc, pdf, ppt
    Updated Mar 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Market Research Forecast (2025). CAE Engineering Services Report [Dataset]. https://www.marketresearchforecast.com/reports/cae-engineering-services-29449
    Explore at:
    doc, ppt, pdfAvailable download formats
    Dataset updated
    Mar 7, 2025
    Dataset authored and provided by
    Market Research Forecast
    License

    https://www.marketresearchforecast.com/privacy-policyhttps://www.marketresearchforecast.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The CAE Engineering Services market, valued at $698.3 million in 2025, is poised for significant growth over the forecast period (2025-2033). While the specific CAGR is not provided, considering the industry's expansion driven by factors like increasing adoption of digital twins, advancements in simulation software, and the rising demand for product optimization across various sectors, a conservative estimate would place the CAGR between 7% and 10% annually. This growth is fueled by the expanding applications of CAE across diverse industries. The automotive sector, with its focus on lightweighting, safety, and fuel efficiency, remains a key driver. Aerospace and defense, driven by stringent regulatory requirements and the need for complex system simulations, also contribute substantially. The electronics and electrical industry's push for miniaturization and performance optimization further boosts demand. Other sectors like building and construction, medical instruments, and oil & gas are experiencing steady growth in CAE adoption, contributing to the overall market expansion.
    The market segmentation reveals a strong preference for Computational Fluid Dynamics (CFD) simulations and Finite Element Analysis (FEA), reflecting their established roles in design validation and optimization. The geographic distribution indicates significant market presence across North America and Europe, with Asia-Pacific emerging as a high-growth region, driven by increasing manufacturing activity and technological advancements in countries like China and India. Competitive pressures exist with numerous companies offering CAE services, leading to a focus on specialization, strategic partnerships, and the development of innovative solutions. Challenges include the need for skilled professionals, high software costs, and the complexity of integrating CAE solutions into existing workflows. However, the overall market outlook remains positive, driven by continuous technological improvements and the growing importance of simulation in product development across multiple industries.

  20. High Speed Turbocompressor Market Report | Global Forecast From 2025 To 2033...

    • dataintelo.com
    csv, pdf, pptx
    Updated Jan 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dataintelo (2025). High Speed Turbocompressor Market Report | Global Forecast From 2025 To 2033 [Dataset]. https://dataintelo.com/report/high-speed-turbocompressor-market
    Explore at:
    pptx, pdf, csvAvailable download formats
    Dataset updated
    Jan 7, 2025
    Dataset authored and provided by
    Dataintelo
    License

    https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy

    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    High Speed Turbocompressor Market Outlook



    The high speed turbocompressor market size is projected to escalate from $8.5 billion in 2023 to approximately $14.7 billion by 2032, growing at a CAGR of 6.2% during the forecast period. One of the key growth factors driving this market expansion is the increasing demand for energy-efficient solutions across various industrial applications.



    Several factors are contributing to the notable growth in the high speed turbocompressor market. The global shift towards sustainable and energy-efficient technologies is a major driver. As industries seek to minimize their carbon footprints and operational costs, the adoption of high-speed turbocompressors becomes more attractive. These devices are known for their high efficiency, reduced energy consumption, and lower maintenance requirements compared to traditional compressors, making them a favorable choice across sectors such as oil and gas, power generation, and manufacturing.



    Technological advancements play a pivotal role in the expansion of the high speed turbocompressor market. Innovations such as advanced computational fluid dynamics (CFD) and improved materials for compressor blades enhance the performance and reliability of these machines. Moreover, the integration of IoT and Industry 4.0 technologies allows for better monitoring and predictive maintenance, further driving the demand. The continuing development in the field ensures that newer, more efficient models are continuously being introduced, keeping the market dynamic and competitive.



    Another significant growth factor is the increasing investments in infrastructure projects, particularly in emerging economies. Regions such as Asia Pacific and the Middle East are witnessing substantial investments in urbanization, oil and gas exploration, and power generation projects. These sectors extensively utilize high-speed turbocompressors for various applications. The rising demand for clean water and effective wastewater management also contributes to the market expansion, as turbocompressors are integral components in water and wastewater treatment facilities.



    Multi-stage Centrifugal Compressors are particularly significant in the high-speed turbocompressor market due to their ability to achieve higher pressure ratios. These compressors are designed to compress air or gas in multiple stages, which allows for a gradual increase in pressure, making them ideal for heavy-duty applications. Industries such as oil and gas, chemical processing, and power generation benefit greatly from the efficiency and reliability of multi-stage centrifugal compressors. Their robust design and capability to handle large volumes of gas or air make them indispensable in environments where high pressure and continuous operation are critical. As technological advancements continue to enhance their performance, the demand for multi-stage centrifugal compressors is expected to rise, further driving the market's growth.



    From a regional perspective, Asia Pacific is expected to dominate the high-speed turbocompressor market during the forecast period. The rapid industrialization and urbanization in countries like China, India, and Southeast Asian nations are primary contributors. North America and Europe also present significant market opportunities due to the presence of established industries and increasing focus on sustainable technologies. The Middle East & Africa and Latin America, with their ongoing infrastructure developments and energy sector investments, are anticipated to witness robust growth as well.



    Type Analysis



    The high speed turbocompressor market can be segmented by type into centrifugal and axial turbocompressors. Centrifugal turbocompressors are widely used across various industries due to their high efficiency and versatility. These compressors operate by converting the energy of a rotating impeller into kinetic energy, which is then converted into pressure. The centrifugal type is favored in applications such as oil and gas, chemical processing, and power generation, where high pressure and large volumes of compressed air or gas are required. The market for centrifugal turbocompressors is expected to witness substantial growth owing to their robust design and reliability.



    Axial turbocompressors, on the other hand, are primarily used in applications requiring high flow rates and moderate pressure increases. They are commonly found in large-scale

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
TRADING ECONOMICS (2025). Crude Oil - Price Data [Dataset]. https://tradingeconomics.com/commodity/crude-oil

Crude Oil - Price Data

Crude Oil - Historical Dataset (1983-03-30/2025-07-01)

Explore at:
csv, json, xml, excelAvailable download formats
Dataset updated
Jul 1, 2025
Dataset authored and provided by
TRADING ECONOMICS
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Time period covered
Mar 30, 1983 - Jul 1, 2025
Area covered
World
Description

Crude Oil fell to 64.78 USD/Bbl on July 1, 2025, down 0.50% from the previous day. Over the past month, Crude Oil's price has risen 3.62%, but it is still 21.77% lower than a year ago, according to trading on a contract for difference (CFD) that tracks the benchmark market for this commodity. Crude Oil - values, historical data, forecasts and news - updated on July of 2025.

Search
Clear search
Close search
Google apps
Main menu