Facebook
Twitterdescription: This part of SIM 3302 presents data for the bathymetry and shaded-relief maps (see sheets 1, 2, SIM 3302) of the Offshore of Coal Oil Point map area, California. The raster data file for the bathymetry map is included in "Bathymetry_OffshoreCoalOilPoint.zip." The raster data file for the shaded-relief map is included in "BathymetryHS_OffshoreCoalOilPoint.zip." Both are accessible from http://pubs.usgs.gov/ds/781/OffshoreCoalOilPoint/data_catalog_OffshoreCoalOilPoint.html. The bathymetry and shaded-relief maps of the Offshore of Coal Oil Point map area, California, were generated from bathymetry data collected by the U.S. Geological Survey (USGS), by California State University, Monterey Bay, Seafloor Mapping Lab (CSUMB), and by Fugro Pelagos. Most of the nearshore and shelf areas were mapped by the USGS in the summers of 2006, 2007, and 2008, using a combination of 117-kHz and 234.5-kHz SEA (AP) Ltd. SWATHplus-M phase-differencing sidescan sonars. A small area in the far-eastern nearshore and shelf was mapped by CSUMB in the summer of 2007, using a 244-kHz Reson 8101 multibeam echosounder. The outer shelf and slope were mapped by Fugro Pelagos in 2008, using a combination of 400-kHz Reson 7125, 240-kHz Reson 8101, and 100-kHz Reson 8111 multibeam echosounders. The nearshore bathymetry and coastal topography were also mapped by Fugro Pelagos in 2009 for the U.S. Army Corps of Engineers (USACE) Joint Lidar Bathymetry Technical Center of Expertise, using the SHOALS-1000T bathymetric-lidar and the Leica ALS60 topographic-lidar systems. All of these mapping missions combined to collect bathymetry from the 0-m isobath to beyond the 3-nautical-mile limit of California's State Waters.; abstract: This part of SIM 3302 presents data for the bathymetry and shaded-relief maps (see sheets 1, 2, SIM 3302) of the Offshore of Coal Oil Point map area, California. The raster data file for the bathymetry map is included in "Bathymetry_OffshoreCoalOilPoint.zip." The raster data file for the shaded-relief map is included in "BathymetryHS_OffshoreCoalOilPoint.zip." Both are accessible from http://pubs.usgs.gov/ds/781/OffshoreCoalOilPoint/data_catalog_OffshoreCoalOilPoint.html. The bathymetry and shaded-relief maps of the Offshore of Coal Oil Point map area, California, were generated from bathymetry data collected by the U.S. Geological Survey (USGS), by California State University, Monterey Bay, Seafloor Mapping Lab (CSUMB), and by Fugro Pelagos. Most of the nearshore and shelf areas were mapped by the USGS in the summers of 2006, 2007, and 2008, using a combination of 117-kHz and 234.5-kHz SEA (AP) Ltd. SWATHplus-M phase-differencing sidescan sonars. A small area in the far-eastern nearshore and shelf was mapped by CSUMB in the summer of 2007, using a 244-kHz Reson 8101 multibeam echosounder. The outer shelf and slope were mapped by Fugro Pelagos in 2008, using a combination of 400-kHz Reson 7125, 240-kHz Reson 8101, and 100-kHz Reson 8111 multibeam echosounders. The nearshore bathymetry and coastal topography were also mapped by Fugro Pelagos in 2009 for the U.S. Army Corps of Engineers (USACE) Joint Lidar Bathymetry Technical Center of Expertise, using the SHOALS-1000T bathymetric-lidar and the Leica ALS60 topographic-lidar systems. All of these mapping missions combined to collect bathymetry from the 0-m isobath to beyond the 3-nautical-mile limit of California's State Waters.
Facebook
Twitterdescription: This part of SIM 3302 presents data for part of the acoustic-backscatter map (see sheet 3, SIM 3302) of the Offshore of Coal Oil Point map area, California. The raster data file is included in "BackscatterB_USGS_OffshoreCoalOilPoint.zip," which is accessible from http://pubs.usgs.gov/ds/781/OffshoreCoalOilPoint/data_catalog_OffshoreCoalOilPoint.html. The acoustic-backscatter map of the Offshore of Coal Oil Point map area, California, was generated from backscatter data collected by California State University, Monterey Bay, Seafloor Mapping Lab (CSUMB), by the U.S. Geological Survey (USGS), and by Fugro Pelagos. These metadata describe the acoustic-backscatter data collected by the USGS. See "BackscatterA_CSUMB_OffshoreCoalOilPoint_metadata.txt" metadata for a description of the acoustic-backscatter data collected by CSUMB, and see "BackscatterC_Fugro_OffshoreCoalOilPoint_metadata.txt" metadata for a description of the acoustic-backscatter data collected by Fugro Pelagos. Most of the nearshore and shelf areas in the Offshore of Coal Oil Point map area were mapped by the USGS in the summers of 2006, 2007, and 2008, using a combination of 117-kHz and 234.5-kHz SEA (AP) Ltd. SWATHplus-M phase-differencing sidescan sonars. Within the acoustic-backscatter imagery, brighter tones indicate higher backscatter intensity, and darker tones indicate lower backscatter intensity. The intensity represents a complex interaction between the acoustic pulse and the seafloor, as well as characteristics within the shallow subsurface, providing a general indication of seafloor texture and sediment type. Backscatter intensity depends on the acoustic source level; the frequency used to image the seafloor; the grazing angle; the composition and character of the seafloor, including grain size, water content, bulk density, and seafloor roughness; and some biological cover. Harder and rougher bottom types such as rocky outcrops or coarse sediment typically return stronger intensities (high backscatter, lighter tones), whereas softer bottom types such as fine sediment return weaker intensities (low backscatter, darker tones).; abstract: This part of SIM 3302 presents data for part of the acoustic-backscatter map (see sheet 3, SIM 3302) of the Offshore of Coal Oil Point map area, California. The raster data file is included in "BackscatterB_USGS_OffshoreCoalOilPoint.zip," which is accessible from http://pubs.usgs.gov/ds/781/OffshoreCoalOilPoint/data_catalog_OffshoreCoalOilPoint.html. The acoustic-backscatter map of the Offshore of Coal Oil Point map area, California, was generated from backscatter data collected by California State University, Monterey Bay, Seafloor Mapping Lab (CSUMB), by the U.S. Geological Survey (USGS), and by Fugro Pelagos. These metadata describe the acoustic-backscatter data collected by the USGS. See "BackscatterA_CSUMB_OffshoreCoalOilPoint_metadata.txt" metadata for a description of the acoustic-backscatter data collected by CSUMB, and see "BackscatterC_Fugro_OffshoreCoalOilPoint_metadata.txt" metadata for a description of the acoustic-backscatter data collected by Fugro Pelagos. Most of the nearshore and shelf areas in the Offshore of Coal Oil Point map area were mapped by the USGS in the summers of 2006, 2007, and 2008, using a combination of 117-kHz and 234.5-kHz SEA (AP) Ltd. SWATHplus-M phase-differencing sidescan sonars. Within the acoustic-backscatter imagery, brighter tones indicate higher backscatter intensity, and darker tones indicate lower backscatter intensity. The intensity represents a complex interaction between the acoustic pulse and the seafloor, as well as characteristics within the shallow subsurface, providing a general indication of seafloor texture and sediment type. Backscatter intensity depends on the acoustic source level; the frequency used to image the seafloor; the grazing angle; the composition and character of the seafloor, including grain size, water content, bulk density, and seafloor roughness; and some biological cover. Harder and rougher bottom types such as rocky outcrops or coarse sediment typically return stronger intensities (high backscatter, lighter tones), whereas softer bottom types such as fine sediment return weaker intensities (low backscatter, darker tones).
Facebook
TwitterThis part of SIM 3302 presents data for the bathymetry and shaded-relief maps (see sheets 1, 2, SIM 3302) of the Offshore of Coal Oil Point map area, California. The raster data file for the bathymetry map is included in "Bathymetry_OffshoreCoalOilPoint.zip." The raster data file for the shaded-relief map is included in "BathymetryHS_OffshoreCoalOilPoint.zip." Both are accessible from http://pubs.usgs.gov/ds/781/OffshoreCoalOilPoint/data_catalog_OffshoreCoalOilPoint.html. The bathymetry and shaded-relief maps of the Offshore of Coal Oil Point map area, California, were generated from bathymetry data collected by the U.S. Geological Survey (USGS), by California State University, Monterey Bay, Seafloor Mapping Lab (CSUMB), and by Fugro Pelagos. Most of the nearshore and shelf areas were mapped by the USGS in the summers of 2006, 2007, and 2008, using a combination of 117-kHz and 234.5-kHz SEA (AP) Ltd. SWATHplus-M phase-differencing sidescan sonars. A small area in the far-eastern nearshore and shelf was mapped by CSUMB in the summer of 2007, using a 244-kHz Reson 8101 multibeam echosounder. The outer shelf and slope were mapped by Fugro Pelagos in 2008, using a combination of 400-kHz Reson 7125, 240-kHz Reson 8101, and 100-kHz Reson 8111 multibeam echosounders. The nearshore bathymetry and coastal topography were also mapped by Fugro Pelagos in 2009 for the U.S. Army Corps of Engineers (USACE) Joint Lidar Bathymetry Technical Center of Expertise, using the SHOALS-1000T bathymetric-lidar and the Leica ALS60 topographic-lidar systems. All of these mapping missions combined to collect bathymetry from the 0-m isobath to beyond the 3-nautical-mile limit of California's State Waters.
Facebook
TwitterThis part of SIM 3302 presents data for the bathymetry and shaded-relief maps (see sheets 1, 2, SIM 3302) of the Offshore of Coal Oil Point map area, California. The bathymetry and shaded-relief maps of the Offshore of Coal Oil Point map area, California, were generated from bathymetry data collected by the U.S. Geological Survey (USGS), by California State University, Monterey Bay, Seafloor Mapping Lab (CSUMB), and by Fugro Pelagos. Most of the nearshore and shelf areas were mapped by the USGS in the summers of 2006, 2007, and 2008, using a combination of 117-kHz and 234.5-kHz SEA (AP) Ltd. SWATHplus-M phase-differencing sidescan sonars. A small area in the far-eastern nearshore and shelf was mapped by CSUMB in the summer of 2007, using a 244-kHz Reson 8101 multibeam echosounder. The outer shelf and slope were mapped by Fugro Pelagos in 2008, using a combination of 400-kHz Reson 7125, 240-kHz Reson 8101, and 100-kHz Reson 8111 multibeam echosounders. The nearshore bathymetry and coastal topography were also mapped by Fugro Pelagos in 2009 for the U.S. Army Corps of Engineers (USACE) Joint Lidar Bathymetry Technical Center of Expertise, using the SHOALS-1000T bathymetric-lidar and the Leica ALS60 topographic-lidar systems. All of these mapping missions combined to collect bathymetry from the 0-m isobath to beyond the 3-nautical-mile limit of California's State Waters. NOTE: the horizontal datum of the bathymtry data (NAD83) differs from the horizontal datum of other layers in this SIM (WGS84). Some bathymetry grids within this map were projected horizontally from WGS84 to NAD83 using ESRI tools to be more consistent with the vertical reference of the North American Vertical Datum of 1988 (NAVD88).
Facebook
TwitterA vegetation/land cover raster digital data set for the entire National Petroleum Reserve in Alaska (NPR-A) was generated from Landsat multispectral data sets. Included are eleven categories of vegetation and land cover which are derived from all or portions of 10 Landsat MSS scenes. The data set covers all or part of thirteen 1:250,000-scale topographic quadrangles. Data are stored in 50 meter pixels and registered to a UTM base. A full NPR-A mosaic as well as the 1:250,000 topographic series. Data are available in two forms: a digital mosaic of (1) the entire NPR-A coverage, split into two pieces each and registered to a separate UTM zone, or (2) for each 1:250,000-scale topo quadrangle area within the NPR-A. This file is too large to remain online. It is stored on magnetic tape at Moffett Field, CA.
Facebook
TwitterMany areas of the Arctic are simultaneously affected by rapid climate change and rapid industrial development.These areas are likely to increase in number and size as sea ice melts and abundant Arctic natural resources become more accessible. Documenting the changes that have already occurred is essential to inform management approaches to minimize the impacts of future activities. Here, we determine the cumulative geoecological effects of 62 years (1949-2011) of infrastructure- and climate-related changes in the Prudhoe Bay Oilfield, the oldest and most extensive industrial complex in the Arctic, and an area with extensive ice-rich permafrost that is extraordinarily sensitive to climate change. We demonstrate that thermokarst has recently affected broad areas of the entire region, and that a sudden increase in the area affected began shortly after 1990 corresponding to a rapid rise in regional summer air temperatures and related permafrost temperatures. We also present a conceptual model that describes how infrastructure-related factors, including road dust and roadside flooding are contributing to more extensive thermokarst in areas adjacent to roads and gravel pads. We mapped the historical infrastructure changes for the Alaska North Slope oilfields for 10 dates from the initial oil discovery in 1968-2011. By 2010, over 34% of the intensively mapped area was affected by oil development. In addition, between 1990 and 2001, coincident with strong atmospheric warming during the 1990s, 19% of the remaining natural landscapes (excluding areas covered by infrastructure, lakes and river floodplains) exhibited expansion of thermokarst features resulting in more abundant small ponds, greater microrelief, more active lakeshore erosion and increased landscape and habitat heterogeneity. This transition to a new geoecological regime will have impacts to wildlife habitat, local residents and industry.
Facebook
TwitterThese ESI data were collected, mapped, and digitized to provide environmental data for oil spill planning and response. The Clean Water Act with amendments by the Oil Pollution Act of 1990 requires response plans for immediate and effective protection of sensitive resources. The ESI data include information for three main components: shoreline habitats, sensitive biological resources, and human-use resources. ESI MAPS SHOULD NOT BE USED FOR NAVIGATIONAL PURPOSES. Source data used in the development of these regional atlases range from 1900 to 2005 with much of the data dated from the 1980s, 1990s, to 2005. Source data dates are extensively documented in the included metadata and include the following DE_NJ_PA, data range 1969-1995, compiled 1995, HudsonRiver data range 1942-2005, compiled 2005, Massachusetts data range 1978-1998, compiled 1998, New Hampshire data range 1948-2003, compiled 2003, and RI_CT_NY_NJ data range 1900-2001, compiled 1999.
This atlas update adds data formats to those originally released to accommodate new technologies of digital mapping. The underlying data have not been updated since the atlas publication dates shown. Each ESI atlas listed is provided in a variety of GIS formats, including a personal Geodatabase for use with the ESRI ArcGIS product line. An .mxd file, created in ArcMap 9.3 is also included. This mapping document provides links to all of the data tables and symbolization of the layers using the standardized ESI colors and hatch patterns. Layer files are also supplied. These, together with the associated geodatabase, can be used in other mapping projects to define the symbology and links established in the original ESI .mxd file.
PDF files of the map pages are also included. These PDFS now have the seasonality pages attached to the appropriate map document. This should make it easier to print and distribute individual maps and insure that the supporting information is always included. The GIS data are also provided in ARC Export .e00 format, as shape files with an ArcView 3.x project and in MOSS format. Database files are included in text and .e00 format. Each area directory contains a readme file which shows the area of coverage and gives a bit more description of the various file formats included.
Facebook
TwitterThe National Petroleum Reserve in Alaska (NPRA) is located in the primitive wilderness of Alaska's North Slope. The U.S. Geological Survey (USGS) began some geological surveying in this area in the eary 1900's, and the U.S. Navy began geological and geophysical surveys and drilling in 1945 to appraise the petroleum potential of the Reserve. Information on surveys prior to 1955 may be obtained from the Branch of Alaskan Geology, Alaska Technical Data Unit, Mail Stop 48, U.S. Geological Survey, 345 Middlefield Road, Menlo Park, CA 94025.
AERIAL GAMMA RAY AND MAGNETIC DATA
Radiometric and magnetic profiles from 1977 are available from USGS.
Aerial data were recorded at 1-sec intgervals from a helicopter about
800 feet above the terrain with average ground speed of 100m/hr.
Included with the data set are 5 index maps, 2 record location maps, 2
residual total magnetic-field profile maps, and an interpreted
depth-to-basement map.
These files are available as Open-File Report 95-835.
"http://pubs.usgs.gov/of/1995/ofr-95-0835/"
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Facebook
Twitterdescription: This part of SIM 3302 presents data for the bathymetry and shaded-relief maps (see sheets 1, 2, SIM 3302) of the Offshore of Coal Oil Point map area, California. The raster data file for the bathymetry map is included in "Bathymetry_OffshoreCoalOilPoint.zip." The raster data file for the shaded-relief map is included in "BathymetryHS_OffshoreCoalOilPoint.zip." Both are accessible from http://pubs.usgs.gov/ds/781/OffshoreCoalOilPoint/data_catalog_OffshoreCoalOilPoint.html. The bathymetry and shaded-relief maps of the Offshore of Coal Oil Point map area, California, were generated from bathymetry data collected by the U.S. Geological Survey (USGS), by California State University, Monterey Bay, Seafloor Mapping Lab (CSUMB), and by Fugro Pelagos. Most of the nearshore and shelf areas were mapped by the USGS in the summers of 2006, 2007, and 2008, using a combination of 117-kHz and 234.5-kHz SEA (AP) Ltd. SWATHplus-M phase-differencing sidescan sonars. A small area in the far-eastern nearshore and shelf was mapped by CSUMB in the summer of 2007, using a 244-kHz Reson 8101 multibeam echosounder. The outer shelf and slope were mapped by Fugro Pelagos in 2008, using a combination of 400-kHz Reson 7125, 240-kHz Reson 8101, and 100-kHz Reson 8111 multibeam echosounders. The nearshore bathymetry and coastal topography were also mapped by Fugro Pelagos in 2009 for the U.S. Army Corps of Engineers (USACE) Joint Lidar Bathymetry Technical Center of Expertise, using the SHOALS-1000T bathymetric-lidar and the Leica ALS60 topographic-lidar systems. All of these mapping missions combined to collect bathymetry from the 0-m isobath to beyond the 3-nautical-mile limit of California's State Waters.; abstract: This part of SIM 3302 presents data for the bathymetry and shaded-relief maps (see sheets 1, 2, SIM 3302) of the Offshore of Coal Oil Point map area, California. The raster data file for the bathymetry map is included in "Bathymetry_OffshoreCoalOilPoint.zip." The raster data file for the shaded-relief map is included in "BathymetryHS_OffshoreCoalOilPoint.zip." Both are accessible from http://pubs.usgs.gov/ds/781/OffshoreCoalOilPoint/data_catalog_OffshoreCoalOilPoint.html. The bathymetry and shaded-relief maps of the Offshore of Coal Oil Point map area, California, were generated from bathymetry data collected by the U.S. Geological Survey (USGS), by California State University, Monterey Bay, Seafloor Mapping Lab (CSUMB), and by Fugro Pelagos. Most of the nearshore and shelf areas were mapped by the USGS in the summers of 2006, 2007, and 2008, using a combination of 117-kHz and 234.5-kHz SEA (AP) Ltd. SWATHplus-M phase-differencing sidescan sonars. A small area in the far-eastern nearshore and shelf was mapped by CSUMB in the summer of 2007, using a 244-kHz Reson 8101 multibeam echosounder. The outer shelf and slope were mapped by Fugro Pelagos in 2008, using a combination of 400-kHz Reson 7125, 240-kHz Reson 8101, and 100-kHz Reson 8111 multibeam echosounders. The nearshore bathymetry and coastal topography were also mapped by Fugro Pelagos in 2009 for the U.S. Army Corps of Engineers (USACE) Joint Lidar Bathymetry Technical Center of Expertise, using the SHOALS-1000T bathymetric-lidar and the Leica ALS60 topographic-lidar systems. All of these mapping missions combined to collect bathymetry from the 0-m isobath to beyond the 3-nautical-mile limit of California's State Waters.