MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
This layer tracks zoning ordinances in the City of Norman. The layer was developed in 1992, using a hard copy wall map maintained by the Planning Department. It has been continually updated since that time using the zoning ordinances adopted by the City of Norman’s City Council.Link to Norman Zoning Ordinance
This dataset contains boundaries for land use and land cover polygons in New Mexico at a scale of 1:250,000. It is in a vector digital data structure. The source software was Optional DLG-3 and the conversion software was ARC/INFO 6.1.2. For documentation refer to USGS Data Users Guide 4, National Mapping Program, Technical Instructions, 1986, Reston, VA. These data are processed in 1:250,000 scale map units, therefore file size varies for each map unit. chaco Mesa was processed at 1:100,000 scale.
Transportation, legislative, municipal, and hydrology geospatial data for Adair County.
These data are part of a larger USGS project to develop an updated geospatial database of mines, mineral deposits and mineral regions in the United States. Mine and prospect-related symbols, such as those used to represent prospect pits, mines, adits, dumps, tailings, etc., hereafter referred to as “mine” symbols or features, are currently being digitized on a state-by-state basis from the 7.5-minute (1:24,000-scale) and the 15-minute (1:48,000 and 1:62,500-scale) archive of the USGS Historical Topographic Maps Collection, or acquired from available databases (California and Nevada, 1:24,000-scale only). Compilation of these features is the first phase in capturing accurate locations and general information about features related to mineral resource exploration and extraction across the U.S. To date, the compilation of 500,000-plus point and polygon mine symbols from approximately 67,000 maps of 22 western states has been completed: Arizona (AZ), Arkansas (AR), California (CA), Colorado (CO), Idaho (ID), Iowa (IA), Kansas (KS), Louisiana (LA), Minnesota (MN), Missouri (MO), Montana (MT), North Dakota (ND), Nebraska (NE), New Mexico (NM), Nevada (NV), Oklahoma (OK), Oregon (OR), South Dakota (SD), Texas (TX), Utah (UT), Washington (WA), and Wyoming (WY). The process renders not only a more complete picture of exploration and mining in the western U.S., but an approximate time line of when these activities occurred. The data may be used for land use planning, assessing abandoned mine lands and mine-related environmental impacts, assessing the value of mineral resources from Federal, State and private lands, and mapping mineralized areas and systems for input into the land management process. The data are presented as three groups of layers based on the scale of the source maps. No reconciliation between the data groups was done.
This dataset combines the work of several different projects to create a seamless data set for the contiguous United States. Data from four regional Gap Analysis Projects and the LANDFIRE project were combined to make this dataset. In the northwestern United States (Idaho, Oregon, Montana, Washington and Wyoming) data in this map came from the Northwest Gap Analysis Project. In the southwestern United States (Colorado, Arizona, Nevada, New Mexico, and Utah) data used in this map came from the Southwest Gap Analysis Project. The data for Alabama, Florida, Georgia, Kentucky, North Carolina, South Carolina, Mississippi, Tennessee, and Virginia came from the Southeast Gap Analysis Project and the California data was generated by the updated California Gap land cover project. The Hawaii Gap Analysis project provided the data for Hawaii. In areas of the county (central U.S., Northeast, Alaska) that have not yet been covered by a regional Gap Analysis Project, data from the Landfire project was used. Similarities in the methods used by these projects made possible the combining of the data they derived into one seamless coverage. They all used multi-season satellite imagery (Landsat ETM+) from 1999-2001 in conjunction with digital elevation model (DEM) derived datasets (e.g. elevation, landform) to model natural and semi-natural vegetation. Vegetation classes were drawn from NatureServe's Ecological System Classification (Comer et al. 2003) or classes developed by the Hawaii Gap project. Additionally, all of the projects included land use classes that were employed to describe areas where natural vegetation has been altered. In many areas of the country these classes were derived from the National Land Cover Dataset (NLCD). For the majority of classes and, in most areas of the country, a decision tree classifier was used to discriminate ecological system types. In some areas of the country, more manual techniques were used to discriminate small patch systems and systems not distinguishable through topography. The data contains multiple levels of thematic detail. At the most detailed level natural vegetation is represented by NatureServe's Ecological System classification (or in Hawaii the Hawaii GAP classification). These most detailed classifications have been crosswalked to the five highest levels of the National Vegetation Classification (NVC), Class, Subclass, Formation, Division and Macrogroup. This crosswalk allows users to display and analyze the data at different levels of thematic resolution. Developed areas, or areas dominated by introduced species, timber harvest, or water are represented by other classes, collectively refered to as land use classes; these land use classes occur at each of the thematic levels. Raster data in both ArcGIS Grid and ERDAS Imagine format is available for download at http://gis1.usgs.gov/csas/gap/viewer/land_cover/Map.aspx Six layer files are included in the download packages to assist the user in displaying the data at each of the Thematic levels in ArcGIS. In adition to the raster datasets the data is available in Web Mapping Services (WMS) format for each of the six NVC classification levels (Class, Subclass, Formation, Division, Macrogroup, Ecological System) at the following links. http://gis1.usgs.gov/arcgis/rest/services/gap/GAP_Land_Cover_NVC_Class_Landuse/MapServer http://gis1.usgs.gov/arcgis/rest/services/gap/GAP_Land_Cover_NVC_Subclass_Landuse/MapServer http://gis1.usgs.gov/arcgis/rest/services/gap/GAP_Land_Cover_NVC_Formation_Landuse/MapServer http://gis1.usgs.gov/arcgis/rest/services/gap/GAP_Land_Cover_NVC_Division_Landuse/MapServer http://gis1.usgs.gov/arcgis/rest/services/gap/GAP_Land_Cover_NVC_Macrogroup_Landuse/MapServer http://gis1.usgs.gov/arcgis/rest/services/gap/GAP_Land_Cover_Ecological_Systems_Landuse/MapServer
Not seeing a result you expected?
Learn how you can add new datasets to our index.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
This layer tracks zoning ordinances in the City of Norman. The layer was developed in 1992, using a hard copy wall map maintained by the Planning Department. It has been continually updated since that time using the zoning ordinances adopted by the City of Norman’s City Council.Link to Norman Zoning Ordinance