Facebook
TwitterIn 2019, the death rate for adults in the United States aged 65 years and older was around 3,917 per 100,000 population, a decrease from a death rate of 5,144 per 100,000 in the year 2000. This statistic shows the death rates for adults in the United States aged 65 years and older from 2000 to 2019, by age.
Facebook
TwitterIn the United States in 2021, the death rate was highest among those aged 85 and over, with about 17,190.5 men and 14,914.5 women per 100,000 of the population passing away. For all ages, the death rate was at 1,118.2 per 100,000 of the population for males, and 970.8 per 100,000 of the population for women. The death rate Death rates generally are counted as the number of deaths per 1,000 or 100,000 of the population and include both deaths of natural and unnatural causes. The death rate in the United States had pretty much held steady since 1990 until it started to increase over the last decade, with the highest death rates recorded in recent years. While the birth rate in the United States has been decreasing, it is still currently higher than the death rate. Causes of death There are a myriad number of causes of death in the United States, but the most recent data shows the top three leading causes of death to be heart disease, cancers, and accidents. Heart disease was also the leading cause of death worldwide.
Facebook
TwitterNumber of deaths and mortality rates, by age group, sex, and place of residence, 1991 to most recent year.
Facebook
TwitterOpen Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Annual data on death registrations by single year of age for the UK (1974 onwards) and England and Wales (1963 onwards).
Facebook
TwitterAge-adjustment mortality rates are rates of deaths that are computed using a statistical method to create a metric based on the true death rate so that it can be compared over time for a single population (i.e. comparing 2006-2008 to 2010-2012), as well as enable comparisons across different populations with possibly different age distributions in their populations (i.e. comparing Hispanic residents to Asian residents). Age adjustment methods applied to Montgomery County rates are consistent with US Centers for Disease Control and Prevention (CDC), National Center for Health Statistics (NCHS) as well as Maryland Department of Health and Mental Hygiene’s Vital Statistics Administration (DHMH VSA). PHS Planning and Epidemiology receives an annual data file of Montgomery County resident deaths registered with Maryland Department of Health and Mental Hygiene’s Vital Statistics Administration (DHMH VSA). Using SAS analytic software, MCDHHS standardizes, aggregates, and calculates age-adjusted rates for each of the leading causes of death category consistent with state and national methods and by subgroups based on age, gender, race, and ethnicity combinations. Data are released in compliance with Data Use Agreements between DHMH VSA and MCDHHS. This dataset will be updated Annually.
Facebook
TwitterA database that includes data on death counts and population counts classified by sex, age, year of birth, and calendar year for more than 30 countries. This database was established for estimating the death rates at the highest ages (above age 80). The core set of data in the database was assembled, tested for quality, and converted into cohort mortality histories by V��in�� Kannisto, the former United Nations advisor on demographic and social statistics. Comparable materials on England and Wales, was made available by A. Roger Thatcher, the former Director of the Office of Population Censuses and Surveys and Registrar-General of England and Wales (Kannisto, 1994). The Kannisto-Thatcher database was computerized under the supervision of James W. Vaupel at the Aging Research Unit of the Centre for Health and Social Policy at Odense University Medical School in 1993. Currently, the database is maintained by the Max Planck Institute for Demographic Research, Germany.
Facebook
TwitterThis dataset of U.S. mortality trends since 1900 highlights trends in age-adjusted death rates for five selected major causes of death. Age-adjusted death rates (deaths per 100,000) after 1998 are calculated based on the 2000 U.S. standard population. Populations used for computing death rates for 2011–2017 are postcensal estimates based on the 2010 census, estimated as of July 1, 2010. Rates for census years are based on populations enumerated in the corresponding censuses. Rates for noncensus years between 2000 and 2010 are revised using updated intercensal population estimates and may differ from rates previously published. Data on age-adjusted death rates prior to 1999 are taken from historical data (see References below). Revisions to the International Classification of Diseases (ICD) over time may result in discontinuities in cause-of-death trends. SOURCES CDC/NCHS, National Vital Statistics System, historical data, 1900-1998 (see https://www.cdc.gov/nchs/nvss/mortality_historical_data.htm); CDC/NCHS, National Vital Statistics System, mortality data (see http://www.cdc.gov/nchs/deaths.htm); and CDC WONDER (see http://wonder.cdc.gov). REFERENCES National Center for Health Statistics, Data Warehouse. Comparability of cause-of-death between ICD revisions. 2008. Available from: http://www.cdc.gov/nchs/nvss/mortality/comparability_icd.htm. National Center for Health Statistics. Vital statistics data available. Mortality multiple cause files. Hyattsville, MD: National Center for Health Statistics. Available from: https://www.cdc.gov/nchs/data_access/vitalstatsonline.htm. Kochanek KD, Murphy SL, Xu JQ, Arias E. Deaths: Final data for 2017. National Vital Statistics Reports; vol 68 no 9. Hyattsville, MD: National Center for Health Statistics. 2019. Available from: https://www.cdc.gov/nchs/data/nvsr/nvsr68/nvsr68_09-508.pdf. Arias E, Xu JQ. United States life tables, 2017. National Vital Statistics Reports; vol 68 no 7. Hyattsville, MD: National Center for Health Statistics. 2019. Available from: https://www.cdc.gov/nchs/data/nvsr/nvsr68/nvsr68_07-508.pdf. National Center for Health Statistics. Historical Data, 1900-1998. 2009. Available from: https://www.cdc.gov/nchs/nvss/mortality_historical_data.htm.
Facebook
TwitterIn 2021, the unintentional fall-related death rate among adults in the United States aged 65 years and older was 78 per 100,000 population. Unintentional fall-related deaths are more common among men than women. This statistic shows unintentional fall-related death rates among adults in the United States aged 65 years and older in 2021, by gender.
Facebook
TwitterA database that includes data on death counts and population counts classified by sex, age, year of birth, and calendar year for more than 30 countries. This database was established for estimating the death rates at the highest ages (above age 80). The core set of data in the database was assembled, tested for quality, and converted into cohort mortality histories by V��in�� Kannisto, the former United Nations advisor on demographic and social statistics. Comparable materials on England and Wales, was made available by A. Roger Thatcher, the former Director of the Office of Population Censuses and Surveys and Registrar-General of England and Wales (Kannisto, 1994). The Kannisto-Thatcher database was computerized under the supervision of James W. Vaupel at the Aging Research Unit of the Centre for Health and Social Policy at Odense University Medical School in 1993. Currently, the database is maintained by the Max Planck Institute for Demographic Research, Germany.
Facebook
TwitterOpen Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Provisional deaths registration data for single year of age and average age of death (median and mean) of persons whose death involved coronavirus (COVID-19), England and Wales. Includes deaths due to COVID-19 and breakdowns by sex.
Facebook
TwitterRank, number of deaths, percentage of deaths, and age-specific mortality rates for the leading causes of death, by age group and sex, 2000 to most recent year.
Facebook
TwitterIn 2020, 108 out of 1,000 elderly people living in rural India, died at an age between 80 and 84 years old. The highest death rate was among elderly people who were 85 years or older in the country.
Facebook
TwitterNumber and percentage of deaths, by age group, sex, and place of residence, 1991 to most recent year.
Facebook
TwitterIn 2020, there were around 667 deaths per 100,000 men in the United States aged 65 to 74 years due to COVID-19, while among women the death rate was 433 per 100,000. This graph illustrates the death rates for COVID-19 among adults aged 65 and over in the United States in 2020, by age and gender.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
BackgroundEven in low and middle income countries most deaths occur in older adults. In Europe, the effects of better education and home ownership upon mortality seem to persist into old age, but these effects may not generalise to LMICs. Reliable data on causes and determinants of mortality are lacking. Methods and FindingsThe vital status of 12,373 people aged 65 y and over was determined 3–5 y after baseline survey in sites in Latin America, India, and China. We report crude and standardised mortality rates, standardized mortality ratios comparing mortality experience with that in the United States, and estimated associations with socioeconomic factors using Cox's proportional hazards regression. Cause-specific mortality fractions were estimated using the InterVA algorithm. Crude mortality rates varied from 27.3 to 70.0 per 1,000 person-years, a 3-fold variation persisting after standardisation for demographic and economic factors. Compared with the US, mortality was much higher in urban India and rural China, much lower in Peru, Venezuela, and urban Mexico, and similar in other sites. Mortality rates were higher among men, and increased with age. Adjusting for these effects, it was found that education, occupational attainment, assets, and pension receipt were all inversely associated with mortality, and food insecurity positively associated. Mutually adjusted, only education remained protective (pooled hazard ratio 0.93, 95% CI 0.89–0.98). Most deaths occurred at home, but, except in India, most individuals received medical attention during their final illness. Chronic diseases were the main causes of death, together with tuberculosis and liver disease, with stroke the leading cause in nearly all sites. ConclusionsEducation seems to have an important latent effect on mortality into late life. However, compositional differences in socioeconomic position do not explain differences in mortality between sites. Social protection for older people, and the effectiveness of health systems in preventing and treating chronic disease, may be as important as economic and human development. Please see later in the article for the Editors' Summary
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Abstract Objective To analyze the temporal trend of mortality in the old people population in selected municipalities in the five regional development areas in the state of Acre, Brazil. Method Descriptive, ecological study of time series, which used data from the Mortality Information System (SIM), in which the universe of deaths occurred in old people, recorded in the cities of Acre from 1996 to 2015 was selected. Crude and age-adjusted mortality rates were calculated using the direct method and the world population as a reference. For the analysis of trends, the annual percentage change in mortality was estimated with a 95% confidence level using the Joinpoint Regression Program software. Results The general mortality trend was decreasing in Rio Branco and with fluctuations in the other municipalities investigated. The main causes of death were diseases of the circulatory, respiratory and neoplasms. In Rio Branco, mortality rates standardized by age in diseases of the circulatory system decreased by 2.26% (p
Facebook
TwitterEstimated annual number of deaths by 5-year age groups and gender for Canada, provinces and territories.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
In April 2020 Eurostat set up an exceptional data collection on total weekly deaths, in order to support the policy and research efforts related to Covid-19. With this data collection, Eurostat's target was to provide quickly statistics that show the changing situation of the total number of weekly deaths from early 2020 onwards.
The available data on the total weekly deaths are transmitted by the National Statistical Institutes to Eurostat on voluntary basis. Data are collected cross classified by sex, 5-year age-groups and NUTS3 region (NUTS2021). The age breakdown by 5-year age group is the most significant and should be considered by the reporting countries as the main option; when that is not possible, data may be provided with less granularity. Similar with the regional structure, data granularity varies with the country.
Eurostat requested from the National Statistical Institutes the transmission of a back time series of weekly deaths for as many year as possible, recommending as starting point the year 2000. Shorter time series, imposed by data availability, are transmitted by some countries. A long enough time series is necessary for temporal comparisons and statistical modelling.
A note on Ireland: Data from Ireland were not included in the first phase of the weekly deaths data collection: official timely data were not available because deaths can be registered up to three months after the date of death. Because of the COVID-19 pandemic, the Central Statistics Office of Ireland began to explore experimental ways of obtaining up-to-date mortality data, finding a strong correlation between death notices published on RIP.ie and official mortality statistics. Recently, CSO Ireland started publishing a time series covering the period from October 2019 until the most recent weeks, using death notices (see CSO website). For the purpose of this release, Eurostat compared the new 2020-2021 web-scraped series with a 2016-2019 baseline established using official data. CSO is periodically assessing the quality of these data.
The purpose of Eurostat’s online tables in the folder Weekly deaths - special data collection (demomwk) is to make available to users information on the weekly number of deaths disaggregated by sex, 5 years age group and NUTS3 regions over the last 20 years, depending on the availability in each country covered in Eurostat demographic statistics data collections. In order to ensure the highest timeliness possible, data are made available as reported by the countries, and work is ongoing in order to improve data quality and user friendliness.
Starting in 2025, the weekly deaths data is collected on a quarterly basis. The database updates are expected by mid-June (release of monthly data for 1st quarter of the year), mid-September (2nd quarter), mid-December (3rd quarter), and mid-February (4th quarter).
Facebook
TwitterIn 2020, there were around 872 deaths per 100,000 population among those aged 65 years and older in New Jersey due to COVID-19. The COVID-19 death rate in Hawaii was significantly lower at around 90 deaths per 100,000 population. This statistic illustrates the death rates due to COVID-19 among adults aged 65 and over in the United States in 2020, by state.
Facebook
TwitterNote: DPH is updating and streamlining the COVID-19 cases, deaths, and testing data. As of 6/27/2022, the data will be published in four tables instead of twelve. The COVID-19 Cases, Deaths, and Tests by Day dataset contains cases and test data by date of sample submission. The death data are by date of death. This dataset is updated daily and contains information back to the beginning of the pandemic. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Cases-Deaths-and-Tests-by-Day/g9vi-2ahj. The COVID-19 State Metrics dataset contains over 93 columns of data. This dataset is updated daily and currently contains information starting June 21, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-State-Level-Data/qmgw-5kp6 . The COVID-19 County Metrics dataset contains 25 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-County-Level-Data/ujiq-dy22 . The COVID-19 Town Metrics dataset contains 16 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Town-Level-Data/icxw-cada . To protect confidentiality, if a town has fewer than 5 cases or positive NAAT tests over the past 7 days, those data will be suppressed. COVID-19 cases and associated deaths that have been reported among Connecticut residents, broken out by age group. All data in this report are preliminary; data for previous dates will be updated as new reports are received and data errors are corrected. Deaths reported to the either the Office of the Chief Medical Examiner (OCME) or Department of Public Health (DPH) are included in the daily COVID-19 update. Data are reported daily, with timestamps indicated in the daily briefings posted at: portal.ct.gov/coronavirus. Data are subject to future revision as reporting changes. Starting in July 2020, this dataset will be updated every weekday. Additional notes: A delay in the data pull schedule occurred on 06/23/2020. Data from 06/22/2020 was processed on 06/23/2020 at 3:30 PM. The normal data cycle resumed with the data for 06/23/2020. A network outage on 05/19/2020 resulted in a change in the data pull schedule. Data from 5/19/2020 was processed on 05/20/2020 at 12:00 PM. Data from 5/20/2020 was processed on 5/20/2020 8:30 PM. The normal data cycle resumed on 05/20/2020 with the 8:30 PM data pull. As a result of the network outage, the timestamp on the datasets on the Open Data Portal differ from the timestamp in DPH's daily PDF reports. Starting 5/10/2021, the date field will represent the date this data was updated on data.ct.gov. Previously the date the data was pulled by DPH was listed, which typically coincided with the date before the data was published on data.ct.gov. This change was made to standardize the COVID-19 data sets on data.ct.gov.
Facebook
TwitterIn 2019, the death rate for adults in the United States aged 65 years and older was around 3,917 per 100,000 population, a decrease from a death rate of 5,144 per 100,000 in the year 2000. This statistic shows the death rates for adults in the United States aged 65 years and older from 2000 to 2019, by age.