The Integrated Public Use Microdata Series (IPUMS) Complete Count Data include more than 650 million individual-level and 7.5 million household-level records. The microdata are the result of collaboration between IPUMS and the nation’s two largest genealogical organizations—Ancestry.com and FamilySearch—and provides the largest and richest source of individual level and household data.
All manuscripts (and other items you'd like to publish) must be submitted to
phsdatacore@stanford.edu for approval prior to journal submission.
We will check your cell sizes and citations.
For more information about how to cite PHS and PHS datasets, please visit:
https:/phsdocs.developerhub.io/need-help/citing-phs-data-core
Historic data are scarce and often only exists in aggregate tables. The key advantage of historic US census data is the availability of individual and household level characteristics that researchers can tabulate in ways that benefits their specific research questions. The data contain demographic variables, economic variables, migration variables and family variables. Within households, it is possible to create relational data as all relations between household members are known. For example, having data on the mother and her children in a household enables researchers to calculate the mother’s age at birth. Another advantage of the Complete Count data is the possibility to follow individuals over time using a historical identifier.
In sum: the historic US census data are a unique source for research on social and economic change and can provide population health researchers with information about social and economic determinants.
The historic US 1920 census data was collected in January 1920. Enumerators collected data traveling to households and counting the residents who regularly slept at the household. Individuals lacking permanent housing were counted as residents of the place where they were when the data was collected. Household members absent on the day of data collected were either listed to the household with the help of other household members or were scheduled for the last census subdivision.
Notes
We provide household and person data separately so that it is convenient to explore the descriptive statistics on each level. In order to obtain a full dataset, merge the household and person on the variables SERIAL and SERIALP. In order to create a longitudinal dataset, merge datasets on the variable HISTID.
Households with more than 60 people in the original data were broken up for processing purposes. Every person in the large households are considered to be in their own household. The original large households can be identified using the variable SPLIT, reconstructed using the variable SPLITHID, and the original count is found in the variable SPLITNUM.
Coded variables derived from string variables are still in progress. These variables include: occupation and industry.
Missing observations have been allocated and some inconsistencies have been edited for the following variables: SPEAKENG, YRIMMIG, CITIZEN, AGE, BPL, MBPL, FBPL, LIT, SCHOOL, OWNERSHP, MORTGAGE, FARM, CLASSWKR, OCC1950, IND1950, MARST, RACE, SEX, RELATE, MTONGUE. The flag variables indicating an allocated observation for the associated variables can be included in your extract by clicking the ‘Select data quality flags’ box on the extract summary page.
Most inconsistent information was not edited for this release, thus there are observations outside of the universe for some variables. In particular, the variables GQ, and GQTYPE have known inconsistencies and will be improved with the next release.
%3C!-- --%3E
This dataset was created on 2020-01-10 18:46:34.647
by merging multiple datasets together. The source datasets for this version were:
IPUMS 1920 households: This dataset includes all households from the 1920 US census.
IPUMS 1920 persons: This dataset includes all individuals from the 1920 US census.
IPUMS 1920 Lookup: This dataset includes variable names, variable labels, variable values, and corresponding variable value labels for the IPUMS 1920 datasets.
This dataset includes all individuals from the 1860 US census.
All manuscripts (and other items you'd like to publish) must be submitted to
phsdatacore@stanford.edu for approval prior to journal submission.
We will check your cell sizes and citations.
For more information about how to cite PHS and PHS datasets, please visit:
https:/phsdocs.developerhub.io/need-help/citing-phs-data-core
This dataset was developed through a collaboration between the Minnesota Population Center and the Church of Jesus Christ of Latter-Day Saints. The data contain demographic variables, economic variables, migration variables and race variables. Unlike more recent census datasets, pre-1900 census datasets only contain individual level characteristics and no household or family characteristics, but household and family identifiers do exist.
The official enumeration day of the 1860 census was 1 June 1860. The main goal of an early census like the 1860 U.S. census was to allow Congress to determine the collection of taxes and the appropriation of seats in the House of Representatives. Each district was assigned a U.S. Marshall who organized other marshals to administer the census. These enumerators visited households and recorder names of every person, along with their age, sex, color, profession, occupation, value of real estate, place of birth, parental foreign birth, marriage, literacy, and whether deaf, dumb, blind, insane or “idiotic”.
Sources: Szucs, L.D. and Hargreaves Luebking, S. (1997). Research in Census Records, The Source: A Guidebook of American Genealogy. Ancestry Incorporated, Salt Lake City, UT Dollarhide, W.(2000). The Census Book: A Genealogist’s Guide to Federal Census Facts, Schedules and Indexes. Heritage Quest, Bountiful, UT
https://www.icpsr.umich.edu/web/ICPSR/studies/32404/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/32404/terms
The data in the Historical Demographic Data of Southeastern Europe series derive primarily from the ethnographic and archival research of Joel M. Halpern, Professor Emeritus of Anthropology at the University of Massachusetts at Amherst, in southeastern Europe from 1953 to 2006. The series is comprised of historical demographic data from several towns and villages in the countries of Bosnia, Croatia, Macedonia, Montenegro, Serbia, and Slovenia, all of which are former constituent republics of the Socialist Federal Republic of Yugoslavia. The data provide insight into the shift from agricultural to industrial production, as well as the more general processes of urbanization occurring in the last days of the Yugoslav state. With an expansive timeframe ranging from 1818 to 2006, the series also contains a wide cross-section of demographic data types. These include, but are not limited to, population censuses, tax records, agricultural and landholding data, birth records, death records, marriage and engagement records, and migration information. This component of the series focuses exclusively on the Serbian village of Orasac and is composed of 64 datasets. These data record a variety of demographic and economic information between the years of 1824 and 1975. General population information at the individual level is available in official census records from 1863, 1884, 1948, 1953, and 1961, and from population register records for the years of 1928, 1966, and 1975. Census data at the household level is also available for the years of 1863, 1928, 1948, 1953, and 1961. These data are followed by detailed records of engagement and marriage. Many of these data were obtained through the courtesy of village and county officials. Priest book records from 1851 through 1966, as well as death records from 1863 to 1976 and tombstone records from 1975, are also available. Information regarding migrants and emigrants was obtained from the village council for the years of 1946 through 1975. Lastly, the data provide economic and financial information, including records of individual landholdings (for the years of 1863, 1952, 1966, and 1975), records of government taxation at the individual or household level (for 1813 through 1840, as well as for 1952), and livestock censuses (at both the individual and household level for the years of 1824 and 1825, and only at the individual level for the years of 1833 and 1834).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
PARES Dataset v2 PARES (PArish REcord Survey) contains 535 images of handwritten census tables for years ranging from around 1650 A.D. until 1850 A.D..They come from two French cities, Vic-sur-Seille (French department of Moselle) and Echevronne (French department of Côte d'Or). While they mention very ancient times, the documents are handwritten transcriptions of even older documents and are quite recent, copied from original documents during the 1950's and 1960's for demographic studies led by the INED in France (Institut National des études démographiques − National Institute for Demographic Studies). These copies were made by only a few different writers. The documents are damaged and exhibit different types of degradations. We identified seven different document categories we call C1 to C7. C1 and C3 are generally high-quality documents, without serious damage, consisting of about 90% of the dataset. Other categories include highly damaged documents or documents with specificities. A notable aspect of this dataset is that the records are written using only two different physical paper templates. Categories n°1, 2, 3, 6 and 7 have 25 recordings while the categories 4 and 5 are higher and can record up to 35 recordings. C4 and C5 are the larger templates and differ from the rest of the documents. We published a paper, Text Line Detection in Historical Index Tables: Evaluations on a New French PArish REcord Survey Dataset (PARES), in which we better describe the dataset and the tasks it's possible to run on it.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
Historical population counts for municipalities in the State of Vermont (1791-2020) compiled by the Vermont Historical Society (years 1791-2010) then appended with 2020 Census counts.An attempt was made to convert counts to current town names to allow for analyses of population change of an area over time. The Historical Society notes, “For example, the census numbers from Kellyvale are counted as the town of Lowell because the name was changed in 1831. Cabot is included in Washington County records, even though it was in Caledonia County through the 1850 census.” This does create some issues where there are changes in geography such as boundary changes, annexations, and new incorporations (such as Rutland City splitting off from Rutland Town).The Historical Society collected the data from a variety of sources.The 1791-2010 data was extracted from PDF’s by VCGI Open Data Fellow Kendal Fortney in 2017.
Annual Resident Population Estimates by Single Year of Age, Sex, Race, and Hispanic Origin // Source: U.S. Census Bureau, Population Division // The contents of this file are released on a rolling basis from December through June. // Note: 'In combination' means in combination with one or more other races. The sum of the five race-in-combination groups adds to more than the total population because individuals may report more than one race. Hispanic origin is considered an ethnicity, not a race. Hispanics may be of any race. Responses of 'Some Other Race' from the 2010 Census are modified. This results in differences between the population for specific race categories shown for the 2010 Census population in this file versus those in the original 2010 Census data. For more information, see http://www.census.gov/popest/data/historical/files/MRSF-01-US1.pdf. // The estimates are based on the 2010 Census and reflect changes to the April 1, 2010 population due to the Count Question Resolution program and geographic program revisions. // For detailed information about the methods used to create the population estimates, see http://www.census.gov/popest/methodology/index.html. // Each year, the Census Bureau's Population Estimates Program (PEP) utilizes current data on births, deaths, and migration to calculate population change since the most recent decennial census, and produces a time series of estimates of population. The annual time series of estimates begins with the most recent decennial census data and extends to the vintage year. The vintage year (e.g., V2015) refers to the final year of the time series. The reference date for all estimates is July 1, unless otherwise specified. With each new issue of estimates, the Census Bureau revises estimates for years back to the last census. As each vintage of estimates includes all years since the most recent decennial census, the latest vintage of data available supersedes all previously produced estimates for those dates. The Population Estimates Program provides additional information including historical and intercensal estimates, evaluation estimates, demographic analysis, and research papers on its website: http://www.census.gov/popest/index.html.
ODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
License information was derived automatically
This boundary file contains historic census tract boundaries for which the U.S. Census Bureau tabulated data and was produced by the Minnesota Population Center as part of the National Historical Geographic Information System (NHGIS) project. The NHGIS is an National Science Foundation-sponsored project (Grant No. BCS0094908) to create a digital spatial-temporal database of all available historical US aggregate census materials. The available shapefiles on the NHGIS site represent version 1.0 of historical US census tract boundary files for the 1910-2000 censuses. These electronic census tract boundary files were created by referencing publicly available, printed U.S. Census Bureau maps and considerable care was taken during their production. TIGER/Line spatial features that corresponded to boundaries on these maps were used to construct proper historic boundaries. When a TIGER/Line features was not available, we digitized the historic boundary from a geo-referenced, scanned census map. The boundary files have been checked against currently available historical census aggregate data.
The Great Britain Historical Database has been assembled as part of the ongoing Great Britain Historical GIS Project. The project aims to trace the emergence of the north-south divide in Britain and to provide a synoptic view of the human geography of Britain at sub-county scales. Further information about the project is available on A Vision of Britain webpages, where users can browse the database's documentation system online.
The British census reports generally cross-tabulated age against marital status as well as gender, but the transcriptions in the Great Britain Historical Database are generally limited to age and gender, enabling the construction of population pyramids. This dataset is a quite separate transcription limited to marital status, or "conjugal condition", and gender, held only for Scotland in 1931.
Latest edition information
For the second edition (August 2022), the data and documentation files were replaced with updated versions.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Mexico Population: Census: 50 to 54 Yrs Old data was reported at 6,155.306 Person th in 2015. This records an increase from the previous number of 5,064.291 Person th for 2010. Mexico Population: Census: 50 to 54 Yrs Old data is updated yearly, averaging 2,896.049 Person th from Dec 1950 (Median) to 2015, with 9 observations. The data reached an all-time high of 6,155.306 Person th in 2015 and a record low of 828.126 Person th in 1950. Mexico Population: Census: 50 to 54 Yrs Old data remains active status in CEIC and is reported by National Institute of Statistics and Geography. The data is categorized under Global Database’s Mexico – Table MX.G002: Population: Census.
This layer shows total population counts by sex, age, and race groups data from the 2020 Census Demographic and Housing Characteristics. This is shown by Nation, Consolidated City, Census Designated Place, Incorporated Place boundaries. Each geography layer contains a common set of Census counts based on available attributes from the U.S. Census Bureau. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. To see the full list of attributes available in this service, go to the "Data" tab above, and then choose "Fields" at the top right. Each attribute contains definitions, additional details, and the formula for calculated fields in the field description.Vintage of boundaries and attributes: 2020 Demographic and Housing Characteristics Table(s): P1, H1, H3, P2, P3, P5, P12, P13, P17, PCT12 (Not all lines of these DHC tables are available in this feature layer.)Data downloaded from: U.S. Census Bureau’s data.census.gov siteDate the Data was Downloaded: May 25, 2023Geography Levels included: Nation, Consolidated City, Census Designated Place, Incorporated PlaceNational Figures: included in Nation layer The United States Census Bureau Demographic and Housing Characteristics: 2020 Census Results 2020 Census Data Quality Geography & 2020 Census Technical Documentation Data Table Guide: includes the final list of tables, lowest level of geography by table and table shells for the Demographic Profile and Demographic and Housing Characteristics.News & Updates This layer is ready to be used in ArcGIS Pro, ArcGIS Online and its configurable apps, Story Maps, dashboards, Notebooks, Python, custom apps, and mobile apps. Data can also be exported for offline workflows. Please cite the U.S. Census Bureau when using this data. Data Processing Notes: These 2020 Census boundaries come from the US Census TIGER geodatabases. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For Census tracts and block groups, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract and block group boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2020 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are unchanged and available as attributes within the data table (units are square meters). The layer contains all US states, Washington D.C., and Puerto Rico. Census tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99). Block groups that fall within the same criteria (Block Group denoted as 0 with no area land) have also been removed.Percentages and derived counts, are calculated values (that can be identified by the "_calc_" stub in the field name). Field alias names were created based on the Table Shells file available from the Data Table Guide for the Demographic Profile and Demographic and Housing Characteristics. Not all lines of all tables listed above are included in this layer. Duplicative counts were dropped. For example, P0030001 was dropped, as it is duplicative of P0010001.To protect the privacy and confidentiality of respondents, their data has been protected using differential privacy techniques by the U.S. Census Bureau.
Annual Population Estimates, Estimated Components of Resident Population Change, and Rates of the Components of Resident Population Change for the United States, States, and Puerto Rico // Source: U.S. Census Bureau, Population Division // Note: Total population change includes a residual. This residual represents the change in population that cannot be attributed to any specific demographic component. See Population Estimates Terms and Definitions at http://www.census.gov/popest/about/terms.html. // Net international migration (except for Puerto Rico) includes the international migration of both native and foreign-born populations. Specifically, it includes: (a) the net international migration of the foreign born, (b) the net migration between the United States and Puerto Rico, (c) the net migration of natives to and from the United States, and (d) the net movement of the Armed Forces population between the United States and overseas. Net international migration for Puerto Rico includes the migration of native and foreign-born populations between the United States and Puerto Rico. // The estimates are based on the 2010 Census and reflect changes to the April 1, 2010 population due to the Count Question Resolution program and geographic program revisions. See Geographic Terms and Definitions at http://www.census.gov/popest/about/geo/terms.html for a list of the states that are included in each region and division. // For detailed information about the methods used to create the population estimates, see http://www.census.gov/popest/methodology/index.html. // Each year, the Census Bureaus Population Estimates Program (PEP) utilizes current data on births, deaths, and migration to calculate population change since the most recent decennial census, and produces a time series of estimates of population. The annual time series of estimates begins with the most recent decennial census data and extends to the vintage year. The vintage year (e.g., V2014) refers to the final year of the time series. The reference date for all estimates is July 1, unless otherwise specified. With each new issue of estimates, the Census Bureau revises estimates for years back to the last census. As each vintage of estimates includes all years since the most recent decennial census, the latest vintage of data available supersedes all previously produced estimates for those dates. The Population Estimates Program provides additional information including historical and intercensal estimates, evaluation estimates, demographic analysis, and research papers on its website: http://www.census.gov/popest/index.html.
Official statistics are produced impartially and free from political influence.
This data layer is an element of the Oregon GIS Framework. The TIGER/Line shapefiles and related database files (.dbf) are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line shapefile is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. Census tracts are small, relatively permanent statistical subdivisions of a county or equivalent entity, and were defined by local participants as part of the 2020 Census Participant Statistical Areas Program. The Census Bureau delineated the census tracts in situations where no local participant existed or where all the potential participants declined to participate. The primary purpose of census tracts is to provide a stable set of geographic units for the presentation of census data and comparison back to previous decennial censuses. Census tracts generally have a population size between 1,200 and 8,000 people, with an optimum size of 4,000 people. When first delineated, census tracts were designed to be homogeneous with respect to population characteristics, economic status, and living conditions. The spatial size of census tracts varies widely depending on the density of settlement. Physical changes in street patterns caused by highway construction, new development, and so forth, may require boundary revisions. In addition, census tracts occasionally are split due to population growth, or combined as a result of substantial population decline. Census tract boundaries generally follow visible and identifiable features. They may follow legal boundaries such as minor civil division (MCD) or incorporated place boundaries in some States and situations to allow for census tract-to-governmental unit relationships where the governmental boundaries tend to remain unchanged between censuses. State and county boundaries always are census tract boundaries in the standard census geographic hierarchy. In a few rare instances, a census tract may consist of noncontiguous areas. These noncontiguous areas may occur where the census tracts are coextensive with all or parts of legal entities that are themselves noncontiguous. For the 2010 Census and beyond, the census tract code range of 9400 through 9499 was enforced for census tracts that include a majority American Indian population according to Census 2000 data and/or their area was primarily covered by federally recognized American Indian reservations and/or off-reservation trust lands; the code range 9800 through 9899 was enforced for those census tracts that contained little or no population and represented a relatively large special land use area such as a National Park, military installation, or a business/industrial park; and the code range 9900 through 9998 was enforced for those census tracts that contained only water area, no land area.
Block-level census coverage of early Central Phoenix for 1920, 1930, and 1940, including population, race/ethnicity, household ownership and rentership, and temporary residency. This dataset was designed for use in combination with parcel-level land-use data derived from Sanborn Fire Insurance Maps to assess environmental justice issues in Phoenix’s early 20th Century development.
Winter Storm 2021Census tracts with dependent age groups under 18 years old and over 65 years old. This service was created to support emergency response efforts from the 2021 winter storm . This layer shows total population count by sex and age group. This is shown by tract, county, and state boundaries. This service is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. This layer is symbolized to show the percentage of the population that are considered dependent (ages 65+ and <18). To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2015-2019ACS Table(s): B01001Data downloaded from: Census Bureau's API for American Community Survey Date of API call: December 10, 2020National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Click here to learn more about ACS data releases.Boundaries come from the US Census TIGER geodatabases. Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines clipped for cartographic purposes. For census tracts, the water cutouts are derived from a subset of the 2010 AWATER (Area Water) boundaries offered by TIGER. For state and county boundaries, the water and coastlines are derived from the coastlines of the 500k TIGER Cartographic Boundary Shapefiles. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters). The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small.
These data comprise Census records relating to the Alaskan people's population demographics for the State of Alaskan Salmon and People (SASAP) Project. Decennial census data were originally extracted from IPUMS National Historic Geographic Information Systems website: https://data2.nhgis.org/main (Citation: Steven Manson, Jonathan Schroeder, David Van Riper, and Steven Ruggles. IPUMS National Historical Geographic Information System: Version 12.0 [Database]. Minneapolis: University of Minnesota. 2017. http://doi.org/10.18128/D050.V12.0). A number of relevant tables of basic demographics on age and race, household income and poverty levels, and labor force participation were extracted. These particular variables were selected as part of an effort to understand and potentially quantify various dimensions of well-being in Alaskan communities. The file "censusdata_master.csv" is a consolidation of all 21 other data files in the package. For detailed information on how the datasets vary over different years, view the file "readme.docx" available in this data package. The included .Rmd file is a script which combines the 21 files by year into a single file (censusdata_master.csv). It also cleans up place names (including typographical errors) and uses the USGS place names dataset and the SASAP regions dataset to assign latitude and longitude values and region values to each place in the dataset. Note that some places were not assigned a region or location because they do not fit well into the regional framework. Considerable heterogeneity exists between census surveys each year. While we have attempted to combine these datasets in a way that makes sense, there may be some discrepancies or unexpected values. The RMarkdown document SASAPWebsiteGraphicsCensus.Rmd is used to generate a variety of figures using these data, including the additional file Chignik_population.png. An additional set of 25 figures showing regional trends in population and income metrics are also included.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Old Mill Creek population by gender and age. The dataset can be utilized to understand the gender distribution and demographics of Old Mill Creek.
The dataset constitues the following two datasets across these two themes
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
Annual Estimates of the Resident Population by Single Year of Age and Sex for the United States // Source: U.S. Census Bureau, Population Division // Note: The estimates are based on the 2010 Census and reflect changes to the April 1, 2010 population due to the Count Question Resolution program.// For detailed information about the methods used to create the population estimates, see http://www.census.gov/popest/methodology/index.html. // Each year, the Census Bureau's Population Estimates Program (PEP) utilizes current data on births, deaths, and migration to calculate population change since the most recent decennial census, and produces a time series of estimates of population. The annual time series of estimates begins with the most recent decennial census data and extends to the vintage year. The vintage year (e.g., V2014) refers to the final year of the time series. The reference date for all estimates is July 1, unless otherwise specified. With each new issue of estimates, the Census Bureau revises estimates for years back to the last census. As each vintage of estimates includes all years since the most recent decennial census, the latest vintage of data available supersedes all previously produced estimates for those dates. The Population Estimates Program provides additional information including historical and intercensal estimates, evaluation estimates, demographic analysis, and research papers on its website: http://www.census.gov/popest/index.html.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Old Mill Creek population distribution across 18 age groups. It lists the population in each age group along with the percentage population relative of the total population for Old Mill Creek. The dataset can be utilized to understand the population distribution of Old Mill Creek by age. For example, using this dataset, we can identify the largest age group in Old Mill Creek.
Key observations
The largest age group in Old Mill Creek, IL was for the group of age 70-74 years with a population of 38 (19.90%), according to the 2021 American Community Survey. At the same time, the smallest age group in Old Mill Creek, IL was the 85+ years with a population of 2 (1.05%). Source: U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.
Age groups:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Old Mill Creek Population by Age. You can refer the same here
Annual Resident Population Estimates by Age Group, Sex, Race, and Hispanic Origin: April 1, 2010 to July 1, 2018 // Source: U.S. Census Bureau, Population Division // The contents of this file are released on a rolling basis from December through June. // Note: 'In combination' means in combination with one or more other races. The sum of the five race-in-combination groups adds to more than the total population because individuals may report more than one race. Hispanic origin is considered an ethnicity, not a race. Hispanics may be of any race. Responses of 'Some Other Race' from the 2010 Census are modified. This results in differences between the population for specific race categories shown for the 2010 Census population in this file versus those in the original 2010 Census data. For more information, see https://www2.census.gov/programs-surveys/popest/technical-documentation/methodology/modified-race-summary-file-method/mrsf2010.pdf. // The estimates are based on the 2010 Census and reflect changes to the April 1, 2010 population due to the Count Question Resolution program and geographic program revisions. // For detailed information about the methods used to create the population estimates, see https://www.census.gov/programs-surveys/popest/technical-documentation/methodology.html. // Each year, the Census Bureau's Population Estimates Program (PEP) utilizes current data on births, deaths, and migration to calculate population change since the most recent decennial census, and produces a time series of estimates of population. The annual time series of estimates begins with the most recent decennial census data and extends to the vintage year. The vintage year (e.g., V2017) refers to the final year of the time series. The reference date for all estimates is July 1, unless otherwise specified. With each new issue of estimates, the Census Bureau revises estimates for years back to the last census. As each vintage of estimates includes all years since the most recent decennial census, the latest vintage of data available supersedes all previously produced estimates for those dates. The Population Estimates Program provides additional information including historical and intercensal estimates, evaluation estimates, demographic analysis, and research papers on its website: https://www.census.gov/programs-surveys/popest.html.
The Integrated Public Use Microdata Series (IPUMS) Complete Count Data include more than 650 million individual-level and 7.5 million household-level records. The microdata are the result of collaboration between IPUMS and the nation’s two largest genealogical organizations—Ancestry.com and FamilySearch—and provides the largest and richest source of individual level and household data.
All manuscripts (and other items you'd like to publish) must be submitted to
phsdatacore@stanford.edu for approval prior to journal submission.
We will check your cell sizes and citations.
For more information about how to cite PHS and PHS datasets, please visit:
https:/phsdocs.developerhub.io/need-help/citing-phs-data-core
Historic data are scarce and often only exists in aggregate tables. The key advantage of historic US census data is the availability of individual and household level characteristics that researchers can tabulate in ways that benefits their specific research questions. The data contain demographic variables, economic variables, migration variables and family variables. Within households, it is possible to create relational data as all relations between household members are known. For example, having data on the mother and her children in a household enables researchers to calculate the mother’s age at birth. Another advantage of the Complete Count data is the possibility to follow individuals over time using a historical identifier.
In sum: the historic US census data are a unique source for research on social and economic change and can provide population health researchers with information about social and economic determinants.
The historic US 1920 census data was collected in January 1920. Enumerators collected data traveling to households and counting the residents who regularly slept at the household. Individuals lacking permanent housing were counted as residents of the place where they were when the data was collected. Household members absent on the day of data collected were either listed to the household with the help of other household members or were scheduled for the last census subdivision.
Notes
We provide household and person data separately so that it is convenient to explore the descriptive statistics on each level. In order to obtain a full dataset, merge the household and person on the variables SERIAL and SERIALP. In order to create a longitudinal dataset, merge datasets on the variable HISTID.
Households with more than 60 people in the original data were broken up for processing purposes. Every person in the large households are considered to be in their own household. The original large households can be identified using the variable SPLIT, reconstructed using the variable SPLITHID, and the original count is found in the variable SPLITNUM.
Coded variables derived from string variables are still in progress. These variables include: occupation and industry.
Missing observations have been allocated and some inconsistencies have been edited for the following variables: SPEAKENG, YRIMMIG, CITIZEN, AGE, BPL, MBPL, FBPL, LIT, SCHOOL, OWNERSHP, MORTGAGE, FARM, CLASSWKR, OCC1950, IND1950, MARST, RACE, SEX, RELATE, MTONGUE. The flag variables indicating an allocated observation for the associated variables can be included in your extract by clicking the ‘Select data quality flags’ box on the extract summary page.
Most inconsistent information was not edited for this release, thus there are observations outside of the universe for some variables. In particular, the variables GQ, and GQTYPE have known inconsistencies and will be improved with the next release.
%3C!-- --%3E
This dataset was created on 2020-01-10 18:46:34.647
by merging multiple datasets together. The source datasets for this version were:
IPUMS 1920 households: This dataset includes all households from the 1920 US census.
IPUMS 1920 persons: This dataset includes all individuals from the 1920 US census.
IPUMS 1920 Lookup: This dataset includes variable names, variable labels, variable values, and corresponding variable value labels for the IPUMS 1920 datasets.