This public map service contains points and polygons representing information from the Massachusetts Cultural Resource Information System (MACRIS) database and related records on file at the Massachusetts Historical Commission (MHC), including the Inventory of Historic Assets of the Commonwealth, National Register of Historic Places nomination forms, local historic district study reports, local landmark reports, and other materials. The MACRIS database and the layers within the MACRIS Maps web application are updated regularly as new information is submitted and added, and as the accuracy of earlier versions of the datalayer is improved. Three datalayers are being made available to the public: The Inventory Points layer contains the locations of buildings, burial grounds, structures, and objects (e.g. statues, monuments, walls). The points layer is symbolized to indicate the most common historic designation types: 1) National Register of Historic Places, 2) local historic district, 3) both National Register and local historic district, 4) Preservation Restriction, 5) Massachusetts Historic Landmark (MA/HL) and 6) inventoried but not designated with one of the previous designations. Less common designations are not symbolized in MACRIS, but are included in the Designations attribute field.The Inventory Areas polygon layer includes areas and districts symbolized in MACRIS in a similar manner to Inventory Points. Another polygon layer, Towns, possesses a binary “y” or blank field to indicate whether a town has a survey pending digitization. Please note that new and updated information is added to MHC files daily, and that there may be considerable lag time before this information is reflected in MACRIS or in MACRIS Maps. Map information for “completed” towns may not reflect the most current information on file with MHC. For additional information, users may consult the source records, forms and maps that make up the official Inventory of Historic and Archaeological Assets of the Commonwealth, on file at the MHC, Massachusetts Archives Building, 220 Morrissey Boulevard, Boston, during weekday business hours. No appointment is needed. For directions, see https://www.sec.state.ma.us/mhc/.See the metadata for more details.
https://spdx.org/licenses/CC0-1.0https://spdx.org/licenses/CC0-1.0
Background and Data Limitations The Massachusetts 1830 map series represents a unique data source that depicts land cover and cultural features during the historical period of widespread land clearing for agricultural. To our knowledge, Massachusetts is the only state in the US where detailed land cover information was comprehensively mapped at such an early date. As a result, these maps provide unusual insight into land cover and cultural patterns in 19th century New England. However, as with any historical data, the limitations and appropriate uses of these data must be recognized: (1) These maps were originally developed by many different surveyors across the state, with varying levels of effort and accuracy. (2) It is apparent that original mapping did not follow consistent surveying or drafting protocols; for instance, no consistent minimum mapping unit was identified or used by different surveyors; as a result, whereas some maps depict only large forest blocks, others also depict small wooded areas, suggesting that numerous smaller woodlands may have gone unmapped in many towns. Surveyors also were apparently not consistent in what they mapped as ‘woodlands’: comparison with independently collected tax valuation data from the same time period indicates substantial lack of consistency among towns in the relative amounts of ‘woodlands’, ‘unimproved’ lands, and ‘unimproveable’ lands that were mapped as ‘woodlands’ on the 1830 maps. In some instances, the lack of consistent mapping protocols resulted in substantially different patterns of forest cover being depicted on maps from adjoining towns that may in fact have had relatively similar forest patterns or in woodlands that ‘end’ at a town boundary. (3) The degree to which these maps represent approximations of ‘primary’ woodlands (i.e., areas that were never cleared for agriculture during the historical period, but were generally logged for wood products) varies considerably from town to town, depending on whether agricultural land clearing peaked prior to, during, or substantially after 1830. (4) Despite our efforts to accurately geo-reference and digitize these maps, a variety of additional sources of error were introduced in converting the mapped information to electronic data files (see detailed methods below). Thus, we urge considerable caution in interpreting these maps. Despite these limitations, the 1830 maps present an incredible wealth of information about land cover patterns and cultural features during the early 19th century, a period that continues to exert strong influence on the natural and cultural landscapes of the region.
Acknowledgements
Financial support for this project was provided by the BioMap Project of the Massachusetts Natural Heritage and Endangered Species Program, the National Science Foundation, and the Andrew Mellon Foundation. This project is a contribution of the Harvard Forest Long Term Ecological Research Program.
This map service displays the year in which cities and towns in Massachusetts were first settled by Europeans. The data were gathered by the Secretary of the Commonwealth of Massachusetts. Sources include: 2010 Census Report; Community Profiles, Department of Housing and Community Development; Historic Atlas of Massachusetts, University of Massachusetts Press 1991.Data source: https://www.sec.state.ma.us/divisions/cis/historical/incorporation-settlement.htmFeature service also available.
The Digital Surficial Geologic-GIS Map of Minuteman National Historical Site and Vicinity, Massachusetts is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (mima_surficial_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (mima_surficial_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) this file (mima_geology.gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (mima_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (mima_surficial_geology_metadata_faq.pdf). Please read the mima_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: http://www.google.com/earth/index.html. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (mima_surficial_geology_metadata.txt or mima_surficial_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:50,000 and United States National Map Accuracy Standards features are within (horizontally) 25.4 meters or 83.3 feet of their actual _location as presented by this dataset. Users of this data should thus not assume the _location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
The National Aerial Photography Program (NAPP) was coordinated by the USGS as an interagency project to acquire cloud-free aerial photographs at an altitude of 20,000 feet above mean terrain elevation. The photographs were taken with a 6-inch focal length lens at a scale of 1:40,000. Coverage over the conterminous United States includes both black-and-white (BW) and color infrared (CIR) aerial photographs. Film type and extent of coverage were determined by available funds and operational requirements. The NAPP program, which was operational from 1987 to 2007, consists of more than 1.3 million images. Photographs were acquired on 9-inch film and were centered over quarters of USGS 7.5-minute quadrangles.To view historical imagery availability by county please visit the Historical Availability of Imagery map.To view more NAPP imagery visit the NAPP Historical Imagery Portfolio app.For ordering information please contact the GEO Customer Service Section at geo.sales@usda.gov.
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
The Massachusetts Office of Coastal Zone Management (MA CZM) launched the Shoreline Change Project in 1989 to identify erosion-prone areas of the coast by compiling a database of historical (1800's-1989) shoreline positions and shoreline change maps. Trends of shoreline position over long and short-term timescales provide information to landowners, managers, and potential buyers about possible future impacts to coastal resources and infrastructure. In 2001, a 1994 shoreline was added to calculate both long- and short-term shoreline change rates at 40-meter intervals along ocean-facing sections of the Massachusetts coast. In 2013 two oceanfront shorelines for Massachusetts were added using 2008-2009 color aerial orthoimagery and 2007 topographic lidar datasets obtained from NOAA's Ocean Service, Coastal Services Center. The 2013 update also included a 2000 lidar shoreline covering most of the open-ocean coast, as well as a 2001 shoreline for the South Shore coastal region. In 2018, ...
The Digital Bedrock Geologic-GIS Map of Minuteman National Historical Site and Vicinity, Massachusetts is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (mima_bedrock_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (mima_bedrock_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) this file (mima_geology.gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (mima_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (mima_bedrock_geology_metadata_faq.pdf). Please read the mima_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: http://www.google.com/earth/index.html. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: Boston College and U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (mima_bedrock_geology_metadata.txt or mima_bedrock_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 25.4 meters or 83.3 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
Historic inventory layers (including information on buildings, structures, objects, burial grounds, parks, landscapes, and areas) are available for viewing by all users. Information on archaeological resources is not public record and is available to authorized users only. Authorized users can login using the log in button in the top bar. Historic inventory layers (including information on buildings, structures, objects, burial grounds, parks, landscapes, and areas) are available for viewing by all users. Information on archaeological resources is not public record and is available to authorized users only. Authorized users can login using the log in button in the top bar.
Information from the MACRIS database and related records on file at the MHC, including the Inventory of Historic Assets of the Commonwealth, National Register of Historic Places nomination forms, local historic district study reports, local landmark reports, and other materials. MassGIS stores a copy of this polygon feature class as MHCINV_POLY. MassGIS projected the data to the NAD1983 Mass. State Plane Meters Mainland coordinate system.Provided to MassGIS on July 10, 2020.
The Digital Surficial Geologic-GIS Map of Saugus Iron Works National Historic Site, Massachusetts is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) an ESRI file geodatabase (sair_surficial_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro 3.X map file (.mapx) file (sair_surficial_geology.mapx) and individual Pro 3.X layer (.lyrx) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) a readme file (sair_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (sair_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (sair_surficial_geology_metadata_faq.pdf). Please read the sair_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri.htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (sair_surficial_geology_metadata.txt or sair_surficial_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS Pro, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
Polygonal extents of federal (US Army Corps of Engineers) dredge projects along the Massachusetts marine coastline; historical to 16 December 1998; includes navigational channels, anchorages, harbors, beaches and dikes. Feature attributes include hyperlinks to respective USACE project descriptions, histories, and maps.
This tile service is derived from a digital raster graphic of the historical 15-minute USGS topographic quadrangle maps of coastal towns in Massachusetts. These quadrangles were mosaicked together to create a single data layer of the coast of Massachusetts and a large portion of the southeastern area of the state.The Massachusetts Office of Coastal Zone Management (CZM) obtained the map images from the Harvard Map Collection. The maps were produced in the late 1890s and early 20th century at a scale of 1:62,500 or 1:63,360 and are commonly known as 15-minute quadrangle maps because each map covers a four-sided area of 15 minutes of latitude and 15 minutes of longitude.
These data were automated to provide an accurate high-resolution historical shoreline of Boston, Massachusetts suitable as a geographic information system (GIS) data layer. These data are derived from shoreline maps that were produced by the NOAA National Ocean Service including its predecessor agencies which were based on an office interpretation of imagery and/or field survey. The NGS att...
This layer is a digital raster graphic of the historical 15-minute USGS topographic quadrangle maps of coastal towns in Massachusetts. These quadrangles were mosaicked together to create a single data layer of the coast of Massachusetts and a large portion of the southeastern area of the state. The Massachusetts Office of Coastal Zone Management (CZM) obtained the map images from the Harvard Map Collection. The maps were produced in the late 1890s and early 20th century at a scale of 1:62,500 or 1:63,360 and are commonly known as 15-minute quadrangle maps because each map covers a four-sided area of 15 minutes of latitude and 15 minutes of longitude. A digital raster graphic (DRG) is a scanned image of a U.S. Geological Survey (USGS) standard series topographic map. In ArcSDE the image is named IMG_USGS_HIST_COASTAL.
The historic high water line in Provincetown (from the SBONE Historic High Water Line) are derived from maps provided to the town by the Massachusetts Department of Environmental Protection, Waterways Program. For more information and to download these maps please visit the Town of Provincetown website. Line features are intended to assist with determinations of tidelands jurisdiction however, Chapter 91 jurisdiction cannot be precisely determined by using the dataset or the referenced maps and must be established by field inspection.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
We collected open and publicly available data resources from the web from administrative, county- or state-level institutions in the United States and integrated and harmonized cadastral parcel data, tax assessment data, and building footprint data for 33 counties, where building footprint data and building construction year information was available. The result of this effort is a unique dataset which we call the Multi-Temporal Building Footprint Dataset for 33 U.S. Counties (MTBF-33). MTBF-33 contains over 6.2 million building footprints including their construction year, and is available in ESRI Shapefile format (Spatial reference system: SR-ORG:7480), organized per county. We compared the MTBF-33 dataset quantitatively to other building footprint data sources, achieving an overall F-1 score of 0.93. Moreover, we compared the MTBF-33 dataset qualitatively to urban extents from historical maps and find high levels of agreement. The MTBF-33 dataset can be used to support historical building stock assessments, to derive retrospective depictions of built-up areas from 1900 to 2015, at fine spatial and temporal grain and can be used for data validation purposes, or to train statistical learning approaches aiming to extract historical information on human settlements from remote sensing data, historical maps, or similar data sources.
Data sources: Boulder County (Colorado) Open Data Catalog / Florida Geographic Data Library / Hillsborough County, Florida / City of Tampa / Manatee County, Florida / Sarasota County, Florida / City of Evansville, Vanderburgh County, Indiana / Baltimore County Government, Maryland / Bureau of Geographic Information (MassGIS), Commonwealth of Massachusetts, Executive Office of Technology and Security Services / City of Boston / MetroGIS, Minnesota Geospatial Commons, Minnesota Geospatial Information Office, Anoka County, Carver County, Dakota County, Hennepin County, Ramsey County, and Washington County, Minnesota / Monmouth County, New Jersey / City of New York / Mecklenburg County, North Carolina. Data scraping was performed in 2016.
January 2002
HOLC, in consultation with local real estate professionals and local policymakers, categorized neighborhoods in hundreds of cities in the United States into four types: Best (A), Still Desirable (B), Definitely Declining (C), and Hazardous (D). So-called “hazardous” zones were colored red on these maps. These zones were then used to approve or deny credit-lending and mortgage-backing by banks and the Federal Housing Administration. The descriptions provided by HOLC in their reports rely heavily on race and ethnicity as critical elements in assigning these grades. According to the University of Richmond's Mapping Inequality project, “Arguably the HOLC agents in the other two hundred-plus cities graded through this program adopted a consistently white, elite standpoint or perspective. HOLC assumed and insisted that the residency of African-Americans and immigrants, as well as working-class whites, compromised the values of homes and the security of mortgages” (Mapping Inequality). HOLC’s classifications were one contributory factor in underinvestment in a neighborhood, and generally, although not always, closed off many, especially people of color, from the credit necessary to purchase their own homes.The 15 Worcester neighborhood zones included on the map are ordered from Zone 1 (categorized as "Best") to Zone 15, with the highest numbered zones included in the least desirable "Hazardous" category. The exact descriptions used by HOLC to classify the neighborhoods in 1936 are included, and therefore may contain some disturbing language. Many scholars and institutions have focused their efforts on tracking the effects the 1930s redlining maps still have today. The Mapping Inequality project by the University of Richmond has collected and analyzed a comprehensive set of redlining maps for more than 200 cities in the U.S. One of their conclusions is that, for most cities, there are striking and persistent geographic similarities between redlined zones and currently vulnerable areas even after eighty years. See the Mapping Inequality website for more information (https://dsl.richmond.edu/panorama/redlining).This digitized version prepared by the Worcester Regional Research Bureau was based on a scanned copy from the National Archives, obtained thanks to Dr. Robert Nelson, the Digital Scholarship Lab, and the rest of his team at Mapping Inequality at the University of Richmond. Dr. Nelson worked with The Research Bureau directly to track it down in the Archives.Informing Worcester is the City of Worcester's open data portal where interested parties can obtain public information at no cost.
The MACRIS Maps online mapping application displays historic resources included in the Massachusetts Cultural Resource Information System (MACRIS) (http://mhc-macris.net/) maintained by the Massachusetts Historical Commission (MHC).This public layer consists of points and polygons representing information from the MACRIS database and related records on file at the MHC, including the Inventory of Historic Assets of the Commonwealth, National Register of Historic Places nomination forms, local historic district study reports, local landmark reports, and other materials. The MACRIS database and the layers within the MACRIS Maps web application are updated regularly as new information is submitted and added, and as the accuracy of earlier versions of the datalayer is improved.
These shapefiles of lakes, streams, wetlands, river bottoms, and the Mississippi River represent the hydrological landscape of Minneapolis and St. Paul as recorded in the original public land survey conducted between 1848 and 1858. The hydrologic features were digitized from scanned, georeferenced 1:24000 maps during the 2017 Faculty Research Sprint held at the University of Minnesota.
This public map service contains points and polygons representing information from the Massachusetts Cultural Resource Information System (MACRIS) database and related records on file at the Massachusetts Historical Commission (MHC), including the Inventory of Historic Assets of the Commonwealth, National Register of Historic Places nomination forms, local historic district study reports, local landmark reports, and other materials. The MACRIS database and the layers within the MACRIS Maps web application are updated regularly as new information is submitted and added, and as the accuracy of earlier versions of the datalayer is improved. Three datalayers are being made available to the public: The Inventory Points layer contains the locations of buildings, burial grounds, structures, and objects (e.g. statues, monuments, walls). The points layer is symbolized to indicate the most common historic designation types: 1) National Register of Historic Places, 2) local historic district, 3) both National Register and local historic district, 4) Preservation Restriction, 5) Massachusetts Historic Landmark (MA/HL) and 6) inventoried but not designated with one of the previous designations. Less common designations are not symbolized in MACRIS, but are included in the Designations attribute field.The Inventory Areas polygon layer includes areas and districts symbolized in MACRIS in a similar manner to Inventory Points. Another polygon layer, Towns, possesses a binary “y” or blank field to indicate whether a town has a survey pending digitization. Please note that new and updated information is added to MHC files daily, and that there may be considerable lag time before this information is reflected in MACRIS or in MACRIS Maps. Map information for “completed” towns may not reflect the most current information on file with MHC. For additional information, users may consult the source records, forms and maps that make up the official Inventory of Historic and Archaeological Assets of the Commonwealth, on file at the MHC, Massachusetts Archives Building, 220 Morrissey Boulevard, Boston, during weekday business hours. No appointment is needed. For directions, see https://www.sec.state.ma.us/mhc/.See the metadata for more details.