Facebook
TwitterBackground and Data Limitations The Massachusetts 1830 map series represents a unique data source that depicts land cover and cultural features during the historical period of widespread land clearing for agricultural. To our knowledge, Massachusetts is the only state in the US where detailed land cover information was comprehensively mapped at such an early date. As a result, these maps provide unusual insight into land cover and cultural patterns in 19th century New England. However, as with any historical data, the limitations and appropriate uses of these data must be recognized: (1) These maps were originally developed by many different surveyors across the state, with varying levels of effort and accuracy. (2) It is apparent that original mapping did not follow consistent surveying or drafting protocols; for instance, no consistent minimum mapping unit was identified or used by different surveyors; as a result, whereas some maps depict only large forest blocks, others also depict small wooded areas, suggesting that numerous smaller woodlands may have gone unmapped in many towns. Surveyors also were apparently not consistent in what they mapped as ‘woodlands’: comparison with independently collected tax valuation data from the same time period indicates substantial lack of consistency among towns in the relative amounts of ‘woodlands’, ‘unimproved’ lands, and ‘unimproveable’ lands that were mapped as ‘woodlands’ on the 1830 maps. In some instances, the lack of consistent mapping protocols resulted in substantially different patterns of forest cover being depicted on maps from adjoining towns that may in fact have had relatively similar forest patterns or in woodlands that ‘end’ at a town boundary. (3) The degree to which these maps represent approximations of ‘primary’ woodlands (i.e., areas that were never cleared for agriculture during the historical period, but were generally logged for wood products) varies considerably from town to town, depending on whether agricultural land clearing peaked prior to, during, or substantially after 1830. (4) Despite our efforts to accurately geo-reference and digitize these maps, a variety of additional sources of error were introduced in converting the mapped information to electronic data files (see detailed methods below). Thus, we urge considerable caution in interpreting these maps. Despite these limitations, the 1830 maps present an incredible wealth of information about land cover patterns and cultural features during the early 19th century, a period that continues to exert strong influence on the natural and cultural landscapes of the region. Acknowledgements Financial support for this project was provided by the BioMap Project of the Massachusetts Natural Heritage and Endangered Species Program, the National Science Foundation, and the Andrew Mellon Foundation. This project is a contribution of the Harvard Forest Long Term Ecological Research Program.
Facebook
Twitterhttps://spdx.org/licenses/CC0-1.0https://spdx.org/licenses/CC0-1.0
This data package contains 3 GIS layers showing generalized forest types across New England as delineated in older forestry publications. These were digitized so that they can be used to illustrate broad vegetation patterns across the region in modern publications. These GIS layers include maps drawn by Hawley and Hawes (1912), RT Fisher (1933), and Westveld and the Committee on Silviculture, New England Section, Society of American Foresters (1956).
Facebook
TwitterSouthern New England Historical Dam DatabaseThis is a historical dam database created using historical maps, town history books, county history books, existing dam databases from other agencies (The Nature Conservancy, Charles River Watershed Association, Town of Plymouth, MA) and other historical documents. Access to historical documents on google books and archive.org was integral to compiling historical dams data.dams_final.xlsxMaine Dams Hall et al. 2011These are historical dams compiled by Hall et al. (2011). This data is also available at the Gulf of Maine Historical Ecology Research website: www.GOMHER.org.GOMHER_Maine dams_final_CHall copy.xls
Facebook
TwitterThese maps are based on the Ordnance Survey quarter-inch to the mile series of maps, for England / Wales and Scotland. Most maps in this series show solid geology only, but there are a few drift maps within the New Series maps of England / Wales. There are three distinct series of quarter-inch maps: - Geological map of England and Wales. Quarter-inch series 1:253 440: Old Series (1889 - 1906). This is a set of hand-coloured maps which were published between 1889 and 1895 with later revisions. They were engraved onto copper. The series was issued as 15 sheets, where sheet 3 was an index to colours. - Geological map of England and Wales. Quarter-inch series 1:253 440: New Series (1906-1977). Following the popularity of the Old Series 'Quarter-inch' map, a New Series of colour-printed maps was issued. This was a long-lived series, with sheets still being published in the late 1970s. Maps were published between 1906–1977. The series was issued as 15 sheets, where sheet 3 was an index to colours. - Geological Survey of Scotland. Quarter-inch series 1:253 440 (1904-1977). These Scottish maps were published in parallel with the English / Welsh New Series, and was issued as 17 sheets. The quarter-inch mapping was superseded in the 1970s - 1980s by the Universal Transverse Mercator (UTM) Series geological maps of the UK and Continental Shelf. Geological maps represent a geologist's compiled interpretation of the geology of an area. A geologist will consider the data available at the time, including measurements and observations collected during field campaigns, as well as their knowledge of geological processes and the geological context to create a model of the geology of an area. This model is then fitted to a topographic basemap and drawn up at the appropriate scale, with generalization if necessary, to create a geological map, which is a representation of the geological model. Explanatory notes and vertical and horizontal cross sections may be published with the map. Geological maps may be created to show various aspects of the geology, or themes. The most common map themes held by BGS are solid (later referred to as bedrock) and drift (later referred to as superficial). These maps are hard-copy paper records stored in the National Geoscience Data Centre (NGDC) and are delivered as digital scans through the BGS website.
Facebook
TwitterThese maps are based on the Ordnance Survey 'Old Series' One-Inch maps of England and Wales. They were the first 1:63 360 geological map series produced by the Geological Survey in England and Wales. Sheets were initially published as full sheets, and later as quarter sheets (NW, NE, SW, SE). Earlier maps are hand-coloured, later maps are colour-printed. The maps show both solid and drift geology. The OS 'Old Series' maps extended as far north as a line drawn between Preston and the Humber. To the north of this, the maps use the same sheetlines as the 1:63 360 New Series, and carry two sheet numbers, which refer to the Old Series (91-110) and New Series (1-73) numbering. These maps are common to both series. A sheet that covers the Isle of Man is also included in the series. Geological maps represent a geologist's compiled interpretation of the geology of an area. A geologist will consider the data available at the time, including measurements and observations collected during field campaigns, as well as their knowledge of geological processes and the geological context to create a model of the geology of an area. This model is then fitted to a topographic basemap and drawn up at the appropriate scale, with generalization if necessary, to create a geological map, which is a representation of the geological model. Explanatory notes and vertical and horizontal cross sections may be published with the map. Geological maps may be created to show various aspects of the geology, or themes. These maps are hard-copy paper records stored in the National Geoscience Data Centre (NGDC) and are delivered as digital scans through the BGS website.
Facebook
TwitterOpen Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
The Historic Environment Opportunity Map for New Woodland dataset identifies areas in England that may be suitable for new woodland, based solely on available Historic Environment data. The dataset categorises land by different opportunity ratings to reflect the potential suitability of land for woodland creation while acknowledging areas of uncertainty due to data availability.
The purpose of this dataset is to guide landowners, planners, and decision-makers in considering woodland creation from a historic environment perspective. It should be noted that this dataset only considers the Historic Environment and therefore the opportunity ratings do not guarantee or preclude approval for woodland creation proposals.
As any forestry proposal could have the potential to affect the Historic Environment you should contact your local historic environment service. The local historic environment service can provide further data to support woodland creation proposals.
NHLE is the official, up to date register of all nationally protected historic buildings and sites in England.
SHINE is a single, nationally consistent dataset of non-designated historic and archaeological features from across England that could benefit from land management schemes.
The opportunity ratings are as defined:
· Favourable - Areas deemed suitable for new woodland on consideration of available Historic Environment data.
· Neutral - Areas deemed neither favourable nor unfavourable for new woodland on consideration of available Historic Environment data. Proposals in these areas will require additional consideration of the Historic Environment on a case-by-case basis.
· Unclassified - Areas, where SHINE data has been supplied, with no assigned opportunity rating. This illustrates a current absence of recorded data from a Historic Environment perspective. However, as SHINE data is included in the dataset for this area, a degree of confidence may be inferred when considering the absence of historic environment features.
· Unclassified (No SHINE supplied) - Areas, where SHINE data has not been supplied, with no assigned opportunity rating. This illustrates a current absence of recorded data from a Historic Environment perspective.
· Unsuitable - Areas deemed unsuitable for new woodland on consideration of available Historic Environment data.
Unclassified areas may be suitable or unsuitable for new woodland. To better understand these areas, contact the local historic environment service in accordance with the UKFS and Historic Environment Guidance for Forestry in England - GOV.UK
The datasets included in each opportunity rating are as follows:
Favourable
· Lost Historic Woodlands (ArchAI/Forestry Commission) – An A.I. dataset that identifies areas of woodland depicted on early 20th Century Ordnance Survey mapping which have since been lost.
Neutral
· Historic Parklands (Zulu Ecosystems) – an A.I. dataset that identifies areas of parkland depicted on early 20th Century Ordnance Survey mapping.
· World Heritage Site Core data (Historic England) – Core areas of World Heritage Sites, as designated by UNESCO.
· World Heritage Site Buffer (Historic England) – Buffer zones surrounding World Heritage Sites, as designated by UNESCO.
· Ridge and Furrow (Low) (ArchAI) – an A.I. dataset that identifies areas of less well-preserved historic ridge and furrow derived from LiDAR data.
Unclassified
· HER Boundaries (SHINE supplied) – Geographic areas covered by local historic environment services, where SHINE data has been supplied to the Forestry Commission.
· HER Boundaries (No SHINE supplied) - Geographic areas covered by local historic environment services where SHINE data has not been supplied to the Forestry Commission.
Unsuitable
· Historic Landscape Characterisation (HLC) (local historic environment services) – regional datasets that provide information on the historic character of the landscape.
· Scheduled Monuments (Historic England) – Protected archaeological sites of national importance.
· Scheduled Monuments Buffer – A 20 metre buffer surrounding Scheduled Monuments in-line with UKFS.
· Selected Heritage Inventory for Natural England (SHINE)(local historic environment services) – National dataset of non-designated heritage assets.
· Registered Parks and Gardens (Historic England) – Parks and Gardens designated as being of national significance.
· Registered Battlefields (Historic England) – Battlefields designated as being of national significance.
· Ridge and Furrow (High) (ArchAI) – an A.I. dataset that identifies areas of well-preserved historic ridge and furrow derived from LiDAR data.
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Eelgrass Beds 2009 Set:
This data layer was created by the Conservation Management Institute, Virginia Tech University for the USFWS National Wetlands Inventory, Region 5. The project area encompasses the eastern end of Long Island Sound, including Fishers Island and the North Fork of Long Island. It includes all coastal embayments and nearshore waters (i.e., to a depth of -15 feet at mean low water) bordering the Sound from Clinton Harbor in the west to the Rhode Island border in the east and including Fishers Island and the North Shore of Long Island from Southold to Orient Point and Plum Island. The study area includes the tidal zone of 18 sub-basins in Connecticut: Little Narragansett Bay, Stonington Harbor, Quiambog Cove, Mystic Harbor, Palmer-West Cove, Mumford Cove, Paquonock River, New London Harbor, Goshen Cove, Jordan Cove, Niantic Bay, Rocky Neck State Park, Old Lyme Shores, Connecticut River, Willard Bay, Westbrook Harbor, Duck Island Roads, and Clinton Harbor, and two areas in New York: Fishers Island and a portion of the North Shore of Long Island. Delineations of 2009 eelgrass beds were completed using 1:20,000 true color aerial photography flown at low tide on 7/14/2009 and 7/15/2009. Extensive field work was conducted by the USFWS Region 5 Southern New England-New York Bight Coastal Program Office in October, November, and December 2009 with 193 field sites checked. The 2009 photography was scanned and geo-rectified using 2006 NAIP 1 meter true color imagery. Data have been summarized in a technical report: Tiner, R., K. McGuckin, M. Fields, N. Fuhrman, T. Halavik, and A. MacLachlan. 2010. 2009 Eelgrass Survey for Eastern Long Island Sound, Connecticut and New York. U.S. Fish and Wildlife Service, National Wetlands Inventory Program, Northeast Region, Hadley, MA. National Wetlands Inventory report. 16 pp. plus Appendix.
This data layer was created by the Conservation Management Institute, Virginia Tech University for the USFWS National Wetlands Inventory, Region 5. The project area encompasses the eastern end of Long Island Sound, including Fishers Island and the North Fork of Long Island. It includes all coastal embayments and nearshore waters (i.e., to a depth of -15 feet at mean low water) bordering the Sound from Clinton Harbor in the west to the Rhode Island border in the east and including Fishers Island and the North Shore of Long Island from Southold to Orient Point and Plum Island. The study area includes the tidal zone of 18 sub-basins in Connecticut: Little Narragansett Bay, Stonington Harbor, Quiambog Cove, Mystic Harbor, Palmer-West Cove, Mumford Cove, Paquonock River, New London Harbor, Goshen Cove, Jordan Cove, Niantic Bay, Rocky Neck State Park, Old Lyme Shores, Connecticut River, Willard Bay, Westbrook Harbor, Duck Island Roads, and Clinton Harbor, and two areas in New York: Fishers Island and a portion of the North Shore of Long Island. Delineations of 2009 eelgrass beds were completed using 1:20,000 true color aerial photography flown at low tide on 7/14/2009 and 7/15/2009. Extensive field work was conducted by the USFWS Region 5 Southern New England-New York Bight Coastal Program Office in October, November, and December 2009 with 193 field sites checked. The 2009 photography was scanned and geo-rectified using 2006 NAIP 1 meter true color imagery.
Facebook
TwitterMap of "A new plan of ye great town of Boston in New England in America, with the many additionall buildings & new streets to the year 1743" by William Price. Courtesy of Norman B. Leventhal Map Center Collection.
Facebook
Twitterhttp://inspire.ec.europa.eu/metadata-codelist/LimitationsOnPublicAccess/noLimitationshttp://inspire.ec.europa.eu/metadata-codelist/LimitationsOnPublicAccess/noLimitations
The 1:63 360 / 1:50 000 scale map series are the most useful scale for most purposes. They provide almost complete coverage of onshore Great Britain. The BGS collection of 1:63 360 and 1:50 000 scale maps comprises two map series: - Geological Survey of England and Wales 1:63 360 / 1:50 000 Geological Map Series [New Series]. These maps are based on the Ordnance Survey One-inch New Series topographic basemaps and provide almost complete coverage of England and Wales, with the exception of sheet 180 (Knighton). The quarter-sheets of 1:63 360 Old Series sheets 91 to 110 coincide with sheets 1 to 73 of the New Series maps. These earlier maps often carry two sheet numbers which refer to the Old Series and the New Series. - Geological Survey of Scotland 1:63 360 / 1:50 000 Geological Map Series. These maps are based on the Ordnance Survey First, Second, Third and Fourth editions of the One-inch map of Scotland. The maps used the most recent topographic basemap available at the time. In the Western Isles, one-inch mapping was abandoned and replaced by maps at 1:100 000 scale, which are associated with this series. Sheets were traditionally issued at 1:63 360 scale, with the first 1:50 000 maps appearing in 1972. Sheets at 1:50 000 scale may be either facsimile enlargements of an existing 1:63 360 sheets, or may contain new geology and cartography. The latter bear the additional series designation '1:50 000 series'. Within the Scottish series, new mapping at 1:50 000 scale was split into east and west sheets. For example, the original one-inch sheet 32 became 1:50 000 sheets 32E and 32W. A number of irregular sheets were also introduced with the new 1:50 000 scale mapping. There are a number of irregular special sheets within both series. Geological maps represent a geologist's compiled interpretation of the geology of an area. A geologist will consider the data available at the time, including measurements and observations collected during field campaigns, as well as their knowledge of geological processes and the geological context to create a model of the geology of an area. This model is then fitted to a topographic basemap and drawn up at the appropriate scale, with generalization if necessary, to create a geological map, which is a representation of the geological model. Explanatory notes and vertical and horizontal cross sections may be published with the map. Geological maps may be created to show various aspects of the geology, or themes. The most common map themes held by BGS are solid (later referred to as bedrock) and drift (later referred to as superficial). These maps are, for the most part, hard-copy paper records stored in the National Geoscience Data Centre (NGDC) and are delivered as digital scans through the BGS website.
Facebook
TwitterAttribution 3.0 (CC BY 3.0)https://creativecommons.org/licenses/by/3.0/
License information was derived automatically
This data and its metadata statement were supplied to the Bioregional Assessment Programme by a third party and are represented here as originally supplied.
Abstract: Old growth forest mapping from aerial photograph interpretation of canopy species regeneration and senescent growth stages. Scale 1:25,000. Bounded by NSW Morriset Forestry District. Boundaries include the New England Highway and Hunter River in the North,the Blue mountains and Wollemi National Park in the west and the Illawarra highway in the south. VIS_ID 4122
To map old growth forest in the Morriset area.
This data and its metadata statement were supplied to the Bioregional Assessment Programme by a third party and are represented here as originally supplied.
Digitised on screen over 1:250,000 scale topographic maps. Attributes were verified in the field and by NSW state forests. Stereoscopic interpretation using a range of stereoscopes with a variety of magnifications (eg. Topcon and Abrams stereoscopes with x10 magnification). Attributes table & codes - Information contained in the attribute table is: regrowth-juvenile and sapling, regrowth-pole, Mature-early mature & mature, senescent-late mature and overmature, disturbance code. The project was only concerned with pyrophytic vegetation consequently, vegetation that was <10% pyrophytic was coded with an O and rainforest was coded with an R. Mapping pathway - An api pathway was developed specifically for the BOGMP. O =0%.if vegetation obviously rainforest= R 1 =0-10%,if vegetetation obviously rainforest=R 2 =11-20% and 3 = 21-30% If understorey rainforest rather than grass or heath. On ecological grounds this should be called rainforest but there might be some debate over the upper part of class 3.= R 4 = 31-50% difficult to see the understorey, would require ground truthing. Could have rainforest in which case there would be an argument about whether to be treated as a separate vegetation type or as a serial stage of rainforest Discretionary(presence/absence of rainforest understorey) 5 =51-60% Could have rainforest elements but difficult to determine as rainforest. Eucalypt = 81-100% unlikely to be rainforest in understorey. Eucalypt The mapping pathway specified that in eucalypt forest, primary polygon primary polygon delineation was based on floristics then split firstly on structural differences, structure (% regrowth and senescence), secondly on height classes then regrowth size class, and tagged for relative stand density and disturbance indicators. No senescence was recorded for polygons outside of State Forest with >30% regrowth. Eucalyptus-dominated vegetation with <20% ccp was not delineated. Data recording. The aerial photographs were pre-prepared and supplied to interpreters with Effective areas and land tenure boundaries marked directly on to the photographs. The effective area of a photograph included all images closer to the centre of the photograph than to the centre of any other. The central old growth study area used recent logging disturbance maps provided by state forests. Land Cover - Vegetation Cover greater than 20% canopy cover Floristics - Classification into pyrophytic vegetation, <10% pyrophytic vegetation, and rainforest Strata - Mapping pathway delineates a code of rainforest or eucalypt according to understorey type in areas with discrepencies Growth Stage - Regeneration and senescence Multi-attribute Mapping - Native vegetation greater than 20% ccp delineated. Relative stand density for the regrowth component of the vegetation also identified. Special features identified (eg. exotic pine plantation). Land use / cover not identified. Survey Type point to plant transects. Inaccessible areas were assessed using aircraft. Information Collected Growth stage, disturbance and vegetation assessment Date of surveys -1996? Minimum Polygon Size -25 hectares Edge Matching - Not assessed Polygon Attribution - Comparison of the growth stage polygon codes and linework against a hard copy map and against the original linework on the aerial photographs.. Both a 10% random sample of the photographs,and all the photographs in a specific area were checked for coding and linework errors. Custodian - NPWS Date of map product -1996 Strengths - A validation process was implemented. Detailed growth stage information and disturbance information. Field checking was undertaken. Multi-attribute mapping with broad geographic coverage, relatively high quality data capture techniques, Weaknesses - The difference in ability of the interpreters (eg moist, high site quality forest types were more reliably mapped than other forest types).Field work was insufficient, confined to state forest tenure. High possibility of post mapping logging and disturbance.
NSW Office of Environment and Heritage (2015) Old Growth Forest Mapping Broad, Central, 1996. VIS_ID 4122 2015 20150116. Bioregional Assessment Source Dataset. Viewed 18 June 2018, http://data.bioregionalassessments.gov.au/dataset/85a296b9-0c03-4dec-a0c1-cb22debbdbd1.
Facebook
TwitterThis dataset provides the spatial distribution of vegetation types, soil carbon, and physiographic features in the Imnavait Creek area, Alaska. Specific attributes include vegetation, percent water, glacial geology, soil carbon, a digital elevation model (DEM), surficial geology and surficial geomorphology. Data are also provided on the research grids for georeferencing. The map data are from a variety of sources and encompass the period 1970-06-01 to 2015-08-31.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This file is the basis of The Atlas of Early Modern Wildlife (Pelagic Publishing, 2023). It includes thousands of historical records of wildlife from Britain and Ireland. The records have been extracted from over 200 primary texts (mostly books) written between the year 1519 CE and the year 1772 CE.
This version of the database includes a single table with over 9,000 rows. Each row provides all the locations where a single species was listed in a single source, so that for example one record lists that the Swordfish (Xiphias gladius) was recorded as present on Shetland in an early modern source called Atlas Maior, and another record labelled lists that the Gannet (Morus bassanus) was recorded as present on both Godrevy Island and Bass Rock in the Itineraries of John Ray. Identifying species and locations in older texts is complicated and where the record is uncertain, this is indicated by adding ?s in the "Present?" field.
Explanation for second ed. of Atlas of Early Modern Wildlife Database. In the process of publishing the Atlas of Early Modern Wildlife, I found some additional references to primary sources. This has resulted in the addition of around 50 new sources to the database. Most of these only provide a few new records - only one (Heath's 'Natural and historical account of the islands of Scilly') meets the standard of the 'key sources' from the first edition of the Atlas, but the other sources nevertheless are useful for clarfiying the distribution of some species, especially the poetical topographies which are especially good for records of songbirds, freshwater fishes and European Hares. The primary sources added were found listed in the following secondary sources: Aubin, R.A. (1966) Topographical Poetry in XVIII-century England, New York: MLA Cox, E.G. (1949) A Reference Guide to the Literature of Travel, Seattle: University of Washington Press. Deakin, Q. (2023) 'Early Chorographical and Historical County Survey Writing in Wales, C.1550–1700' The Welsh History Review, 31(3):376-396. (Dr Deakin kindly recommended some additional primary sources via personal correspondence) Fowler, A. (1994) The Country House Poem, Edinburgh: Edinburgh University Press Freeman, M. (2023) 'Travellers and tourists, 1700-1769' in: Early Tourists in Wales, https://sublimewales.wordpress.com/introduction/types-of-tourist/early-18th-century-travellers/, accessed 5th Sep 2023 Moir, E. (1964) The Discovery of Britain, London: Routledge.
Finding all these records required years of work. If you are a researcher and find additional sources here, please cite this database or the parent publication (which includes in-depth analysis and historical distribution maps) - see link at bottom of page: Raye, L. (2023) The Atlas of Early Modern Wildlife, Exeter, Pelagic Publishing.
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
(:unav)...........................................
Facebook
TwitterThe BOREAS RSS-08 team utilized Landsat TM images to perform mapping of snow extent over the SSA. This data set consists of two Landsat TM images which were used to determine the snow-covered pixels over the BOREAS SSA on 18-Jan-1993 and on 06-Feb-1994. Companion files include example thumbnail images that may be viewed using a convenient viewer utility.
Facebook
TwitterThis data set provides map images of hydrographic, morphologic, and edaphic features for the northern Amazon Basin in eastern Ecuador. The hydrographic data are available at two scales based on the 1:50,000 and 1:250,000-scale topographic source maps that were generated in 1990 and 1993, respectively. Morphological and edaphological data were digitized from a 1:500,000 map published in 1983. There are 3 compressed (*.zip) data files with this data set.
Facebook
TwitterThis data set provides the spatial distributions of vegetation types, soil carbon, and physiographic features in the Toolik Lake area, Alaska. Specific attributes include vegetation, percent water, glacial geology, soil carbon, a digital elevation model (DEM), surficial geology and surficial geomorphology.
Facebook
TwitterAs part of BOREAS, the RSS-15 team conducted an investigation using SIR-C , X-SAR and Landsat TM data for estimating total above-ground dry biomass for the SSA and NSA modeling grids and component biomass for the SSA. Relationships of backscatter to total biomass and total biomass to foliage, branch, and bole biomass were used to estimate biomass density across the landscape. The procedure involved image classification with SAR and Landsat TM data and development of simple mapping techniques using combinations of SAR channels. For the SSA, the SIR-C data used were acquired on 06-Oct-1994, and the Landsat TM data used were acquired on September 2, 1995. The maps of the NSA were developed from SIR-C data acquired on 13-Apr-1994.
Facebook
TwitterThis data set is a condensed forest cover type digital map of Saskatchewan and is a product of the Saskatchewan Environment and Resource Management, Forestry Branch - Inventory Unit (SERM-FBIU). This map was generalized from SERM township maps of vegetation cover at an approximate scale of 1:63,000 (1 in. = 1 mile). The cover information was iteratively generalized until it was compiled on a 1:1,000,000 scale map base. This data set was prepared by SERM-FBIU. The data is a condensed forest cover type map of Saskatchewan at a scale of 1:1,000,000.
Facebook
TwitterThis dataset provides maps of tidal marsh green vegetation, non-vegetation, and open water for six estuarine regions of the conterminous United States: Cape Cod, MA; Chesapeake Bay, MD, Everglades, FL; Mississippi Delta, LA; San Francisco Bay, CA; and Puget Sound, WA. Maps were derived from current National Agriculture Imagery Program data (2013-2015) using object-based classification for estuarine and palustrine emergent tidal marshes as indicated by a modified NOAA Coastal Change Analysis Program (C-CAP) map. These 1m resolution maps were used to calculate the fraction of green vegetation within 30m Landsat pixels for the same tidal marsh regions and these data are provided in a related dataset.
Facebook
TwitterOpen Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
1st July 2016 Update
WebTRIS Phase 1 is now available and can be accessed at http://webtris.highwaysengland.co.uk
We are in the process of updating the way that traffic flow data is made available to our external users to replace the old TRADS website. The new platform will deliver a more modern experience, utilising Google Maps with count site overlays and bespoke downloadable reporting capabilities. This new service will be referred to as ‘WebTRIS’.
The new development will contain all of the elements users are already familiar with; searching on Site ID’s and reviewing reports based on Site ID’s etc. but will also modernise the look and feel of the product and allow users to select an area of interest by clicking on a map.
Development began in early February 2016 and is expected to be complete in July 2016.
This is a Phase 1 release. A Phase 2 development is planned to take into account user feedback.
On-going updates will be released here with videos showing the product as it grows. There will also be live demonstrations as the product nears go-live and opportunities to take part in User Acceptance Testing and feedback sessions.
We are working hard to improve the level of service that we provide and thank you for your patience while we do so. We will keep you informed on progress with the next update due in May.
This data series provides average journey time, speed and traffic flow information for 15-minute periods since April 2015 on all motorways and 'A' roads managed by Highways England, known as the Strategic Road Network, in England.
Journey times and speeds are estimated using a combination of sources, including Automatic Number Plate Recognition (ANPR) cameras, in-vehicle Global Positioning Systems (GPS) and inductive loops built into the road surface.
Please note that journey times are derived from real vehicle observations and imputed using adjacent time periods or the same time period on different days. Further information is available in 'Field Descriptions' at the bottom of this page.
This data replaces the data previously made available via the Hatris and Trads websites.
Please note that Traffic Flow and Journey Time data prior to April 2015 is still available on the HA Traffic Information (HATRIS) website which can be found at https://www.hatris.co.uk/
Facebook
TwitterBackground and Data Limitations The Massachusetts 1830 map series represents a unique data source that depicts land cover and cultural features during the historical period of widespread land clearing for agricultural. To our knowledge, Massachusetts is the only state in the US where detailed land cover information was comprehensively mapped at such an early date. As a result, these maps provide unusual insight into land cover and cultural patterns in 19th century New England. However, as with any historical data, the limitations and appropriate uses of these data must be recognized: (1) These maps were originally developed by many different surveyors across the state, with varying levels of effort and accuracy. (2) It is apparent that original mapping did not follow consistent surveying or drafting protocols; for instance, no consistent minimum mapping unit was identified or used by different surveyors; as a result, whereas some maps depict only large forest blocks, others also depict small wooded areas, suggesting that numerous smaller woodlands may have gone unmapped in many towns. Surveyors also were apparently not consistent in what they mapped as ‘woodlands’: comparison with independently collected tax valuation data from the same time period indicates substantial lack of consistency among towns in the relative amounts of ‘woodlands’, ‘unimproved’ lands, and ‘unimproveable’ lands that were mapped as ‘woodlands’ on the 1830 maps. In some instances, the lack of consistent mapping protocols resulted in substantially different patterns of forest cover being depicted on maps from adjoining towns that may in fact have had relatively similar forest patterns or in woodlands that ‘end’ at a town boundary. (3) The degree to which these maps represent approximations of ‘primary’ woodlands (i.e., areas that were never cleared for agriculture during the historical period, but were generally logged for wood products) varies considerably from town to town, depending on whether agricultural land clearing peaked prior to, during, or substantially after 1830. (4) Despite our efforts to accurately geo-reference and digitize these maps, a variety of additional sources of error were introduced in converting the mapped information to electronic data files (see detailed methods below). Thus, we urge considerable caution in interpreting these maps. Despite these limitations, the 1830 maps present an incredible wealth of information about land cover patterns and cultural features during the early 19th century, a period that continues to exert strong influence on the natural and cultural landscapes of the region. Acknowledgements Financial support for this project was provided by the BioMap Project of the Massachusetts Natural Heritage and Endangered Species Program, the National Science Foundation, and the Andrew Mellon Foundation. This project is a contribution of the Harvard Forest Long Term Ecological Research Program.