This dataset consists of 24-hour traffic volumes which are collected by the City of Tempe high (arterial) and low (collector) volume streets. Data located in the tabular section shares with its users total volume of vehicles passing through the intersection selected along with the direction of flow.Historical data from this feature layer extends from 2016 to present day.Contact: Sue TaaffeContact E-Mail: sue_taaffe@tempe.govContact Phone: 480-350-8663Link to embedded web map:http://www.tempe.gov/city-hall/public-works/transportation/traffic-countsLink to site containing historical traffic counts by node: https://gis.tempe.gov/trafficcounts/Folders/Data Source: SQL Server/ArcGIS ServerData Source Type: GeospatialPreparation Method: N/APublish Frequency: As information changesPublish Method: AutomaticData Dictionary
In December 2024, the share of web pages served to web browsers on mobile devices in Israel was **** percent. This represents more than half of all web traffic in the country, and a slight increase from the previous year. Overall, the share of web pages served on mobile devices grew steadily over the period from a baseline of **** percent in December 2014.
Unlock the Power of Behavioural Data with GDPR-Compliant Clickstream Insights.
Swash clickstream data offers a comprehensive and GDPR-compliant dataset sourced from users worldwide, encompassing both desktop and mobile browsing behaviour. Here's an in-depth look at what sets us apart and how our data can benefit your organisation.
User-Centric Approach: Unlike traditional data collection methods, we take a user-centric approach by rewarding users for the data they willingly provide. This unique methodology ensures transparent data collection practices, encourages user participation, and establishes trust between data providers and consumers.
Wide Coverage and Varied Categories: Our clickstream data covers diverse categories, including search, shopping, and URL visits. Whether you are interested in understanding user preferences in e-commerce, analysing search behaviour across different industries, or tracking website visits, our data provides a rich and multi-dimensional view of user activities.
GDPR Compliance and Privacy: We prioritise data privacy and strictly adhere to GDPR guidelines. Our data collection methods are fully compliant, ensuring the protection of user identities and personal information. You can confidently leverage our clickstream data without compromising privacy or facing regulatory challenges.
Market Intelligence and Consumer Behaviuor: Gain deep insights into market intelligence and consumer behaviour using our clickstream data. Understand trends, preferences, and user behaviour patterns by analysing the comprehensive user-level, time-stamped raw or processed data feed. Uncover valuable information about user journeys, search funnels, and paths to purchase to enhance your marketing strategies and drive business growth.
High-Frequency Updates and Consistency: We provide high-frequency updates and consistent user participation, offering both historical data and ongoing daily delivery. This ensures you have access to up-to-date insights and a continuous data feed for comprehensive analysis. Our reliable and consistent data empowers you to make accurate and timely decisions.
Custom Reporting and Analysis: We understand that every organisation has unique requirements. That's why we offer customisable reporting options, allowing you to tailor the analysis and reporting of clickstream data to your specific needs. Whether you need detailed metrics, visualisations, or in-depth analytics, we provide the flexibility to meet your reporting requirements.
Data Quality and Credibility: We take data quality seriously. Our data sourcing practices are designed to ensure responsible and reliable data collection. We implement rigorous data cleaning, validation, and verification processes, guaranteeing the accuracy and reliability of our clickstream data. You can confidently rely on our data to drive your decision-making processes.
Abstract: The task for this dataset is to forecast the spatio-temporal traffic volume based on the historical traffic volume and other features in neighboring locations.
Data Set Characteristics | Number of Instances | Area | Attribute Characteristics | Number of Attributes | Date Donated | Associated Tasks | Missing Values |
---|---|---|---|---|---|---|---|
Multivariate | 2101 | Computer | Real | 47 | 2020-11-17 | Regression | N/A |
Source: Liang Zhao, liang.zhao '@' emory.edu, Emory University.
Data Set Information: The task for this dataset is to forecast the spatio-temporal traffic volume based on the historical traffic volume and other features in neighboring locations. Specifically, the traffic volume is measured every 15 minutes at 36 sensor locations along two major highways in Northern Virginia/Washington D.C. capital region. The 47 features include: 1) the historical sequence of traffic volume sensed during the 10 most recent sample points (10 features), 2) week day (7 features), 3) hour of day (24 features), 4) road direction (4 features), 5) number of lanes (1 feature), and 6) name of the road (1 feature). The goal is to predict the traffic volume 15 minutes into the future for all sensor locations. With a given road network, we know the spatial connectivity between sensor locations. For the detailed data information, please refer to the file README.docx.
Attribute Information: The 47 features include: (1) the historical sequence of traffic volume sensed during the 10 most recent sample points (10 features), (2) week day (7 features), (3) hour of day (24 features), (4) road direction (4 features), (5) number of lanes (1 feature), and (6) name of the road (1 feature).
Relevant Papers: Liang Zhao, Olga Gkountouna, and Dieter Pfoser. 2019. Spatial Auto-regressive Dependency Interpretable Learning Based on Spatial Topological Constraints. ACM Trans. Spatial Algorithms Syst. 5, 3, Article 19 (August 2019), 28 pages. DOI:[Web Link]
Citation Request: To use these datasets, please cite the papers:
Liang Zhao, Olga Gkountouna, and Dieter Pfoser. 2019. Spatial Auto-regressive Dependency Interpretable Learning Based on Spatial Topological Constraints. ACM Trans. Spatial Algorithms Syst. 5, 3, Article 19 (August 2019), 28 pages. DOI:[Web Link]
This is a dynamic traffic map service with capabilities for visualizing traffic speeds relative to free-flow speeds as well as traffic incidents which can be visualized and identified. The traffic data is updated every five minutes. Traffic speeds are displayed as a percentage of free-flow speeds, which is frequently the speed limit or how fast cars tend to travel when unencumbered by other vehicles. The streets are color coded as follows:Green (fast): 85 - 100% of free flow speedsYellow (moderate): 65 - 85%Orange (slow); 45 - 65%Red (stop and go): 0 - 45%Esri's historical, live, and predictive traffic feeds come directly from HERE (www.HERE.com). HERE collects billions of GPS and cell phone probe records per month and, where available, uses sensor and toll-tag data to augment the probe data collected. An advanced algorithm compiles the data and computes accurate speeds. Historical traffic is based on the average of observed speeds over the past three years. The live and predictive traffic data is updated every five minutes through traffic feeds. The color coded traffic map layer can be used to represent relative traffic speeds; this is a common type of a map for online services and is used to provide context for routing, navigation and field operations. The traffic map layer contains two sublayers: Traffic and Live Traffic. The Traffic sublayer (shown by default) leverages historical, live and predictive traffic data; while the Live Traffic sublayer is calculated from just the live and predictive traffic data only. A color coded traffic map image can be requested for the current time and any time in the future. A map image for a future request might be used for planning purposes. The map layer also includes dynamic traffic incidents showing the location of accidents, construction, closures and other issues that could potentially impact the flow of traffic. Traffic incidents are commonly used to provide context for routing, navigation and field operations. Incidents are not features; they cannot be exported and stored for later use or additional analysis. The service works globally and can be used to visualize traffic speeds and incidents in many countries. Check the service coverage web map to determine availability in your area of interest. In the coverage map, the countries color coded in dark green support visualizing live traffic. The support for traffic incidents can be determined by identifying a country. For detailed information on this service, including a data coverage map, visit the directions and routing documentation and ArcGIS Help.
In 2024, most of the global website traffic was still generated by humans, but bot traffic is constantly growing. Fraudulent traffic through bad bot actors accounted for 37 percent of global web traffic in the most recently measured period, representing an increase of 12 percent from the previous year. Sophistication of Bad Bots on the rise The complexity of malicious bot activity has dramatically increased in recent years. Advanced bad bots have doubled in prevalence over the past 2 years, indicating a surge in the sophistication of cyber threats. Simultaneously, the share of simple bad bots drastically increased over the last years, suggesting a shift in the landscape of automated threats. Meanwhile, areas like food and groceries, sports, gambling, and entertainment faced the highest amount of advanced bad bots, with more than 70 percent of their bot traffic affected by evasive applications. Good and bad bots across industries The impact of bot traffic varies across different sectors. Bad bots accounted for over 50 percent of the telecom and ISPs, community and society, and computing and IT segments web traffic. However, not all bot traffic is considered bad. Some of these applications help index websites for search engines or monitor website performance, assisting users throughout their online search. Therefore, areas like entertainment, food and groceries, and even areas targeted by bad bots themselves experienced notable levels of good bot traffic, demonstrating the diverse applications of benign automated systems across different sectors.
https://www.caida.org/about/legal/aua/https://www.caida.org/about/legal/aua/
The UCSD Network Telescope consists of a globally routed, but lightly utilized /9 and /10 network prefix, that is, 1/256th of the whole IPv4 address space. It contains few legitimate hosts; inbound traffic to non-existent machines - so called Internet Background Radiation (IBR) - is unsolicited and results from a wide range of events, including misconfiguration (e.g. mistyping an IP address), scanning of address space by attackers or malware looking for vulnerable targets, backscatter from randomly spoofed denial-of-service attacks, and the automated spread of malware. CAIDA continously captures this anomalous traffic discarding the legitimate traffic packets destined to the few reachable IP addresses in this prefix. We archive and aggregate these data, and provide this valuable resource to network security researchers. This dataset represents raw traffic traces captured by the Telescope instrumentation and made available in near-real time as one-hour long compressed pcap files. We collect more than 3 TB of uncompressed IBR traffic traces data per day. The most recent 14 days of data are stored locally at CAIDA. Once data slides out of this near-real-time window, the pcap files are off-loaded to a tape storage. This historical Telescope data starting from 2008 are available by additional request.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
đşđ¸ ëŻ¸ęľ English This dataset consists of 24-hour traffic volumes which are collected by the City of Tempe high (arterial) and low (collector) volume streets. Data located in the tabular section shares with its users total volume of vehicles passing through the intersection selected along with the direction of flow.Historical data from this feature layer extends from 2016 to present day.Contact: Sue TaaffeContact E-Mail: sue_taaffe@tempe.govContact Phone: 480-350-8663Link to embedded web map:http://www.tempe.gov/city-hall/public-works/transportation/traffic-countsLink to site containing historical traffic counts by node: https://gis.tempe.gov/trafficcounts/Folders/Data Source: SQL Server/ArcGIS ServerData Source Type: GeospatialPreparation Method: N/APublish Frequency: As information changes
This data set features a hyperlink to the New York State Department of Transportationâs (NYSDOT) Traffic Data (TD) Viewer web page, which includes a link to the Traffic Data interactive map. The Traffic Data Viewer is a geospatially based Geographic Information System (GIS) application for displaying data contained in the roadway inventory database. The interactive map has five viewable data categories or âlayersâ. The five layers include: Average Daily Traffic (ADT); Continuous Counts; Short Counts; Bridges; and Grade Crossings throughout New York State.
This web map displays traffic count data provided by the City of Tempe Transportation Department. Data are symbolized by line thickness per each street section.Each segment's popup contains a weblink to historical traffic count data that are provided by the City of Tempe for public use.
DataForSEO Labs API offers three powerful keyword research algorithms and historical keyword data:
⢠Related Keywords from the âsearches related toâ element of Google SERP. ⢠Keyword Suggestions that match the specified seed keyword with additional words before, after, or within the seed key phrase. ⢠Keyword Ideas that fall into the same category as specified seed keywords. ⢠Historical Search Volume with current cost-per-click, and competition values.
Based on in-market categories of Google Ads, you can get keyword ideas from the relevant Categories For Domain and discover relevant Keywords For Categories. You can also obtain Top Google Searches with AdWords and Bing Ads metrics, product categories, and Google SERP data.
You will find well-rounded ways to scout the competitors:
⢠Domain Whois Overview with ranking and traffic info from organic and paid search. ⢠Ranked Keywords that any domain or URL has positions for in SERP. ⢠SERP Competitors and the rankings they hold for the keywords you specify. ⢠Competitors Domain with a full overview of its rankings and traffic from organic and paid search. ⢠Domain Intersection keywords for which both specified domains rank within the same SERPs. ⢠Subdomains for the target domain you specify along with the ranking distribution across organic and paid search. ⢠Relevant Pages of the specified domain with rankings and traffic data. ⢠Domain Rank Overview with ranking and traffic data from organic and paid search. ⢠Historical Rank Overview with historical data on rankings and traffic of the specified domain from organic and paid search. ⢠Page Intersection keywords for which the specified pages rank within the same SERP.
All DataForSEO Labs API endpoints function in the Live mode. This means you will be provided with the results in response right after sending the necessary parameters with a POST request.
The limit is 2000 API calls per minute, however, you can contact our support team if your project requires higher rates.
We offer well-rounded API documentation, GUI for API usage control, comprehensive client libraries for different programming languages, free sandbox API testing, ad hoc integration, and deployment support.
We have a pay-as-you-go pricing model. You simply add funds to your account and use them to get data. The account balance doesn't expire.
This dataset is historical. For recent data, we recommend using https://chicagotraffictracker.com. -- Average Daily Traffic (ADT) counts are analogous to a census count of vehicles on city streets. These counts provide a close approximation to the actual number of vehicles passing through a given location on an average weekday. Since it is not possible to count every vehicle on every city street, sample counts are taken along larger streets to get an estimate of traffic on half-mile or one-mile street segments. ADT counts are used by city planners, transportation engineers, real-estate developers, marketers and many others for myriad planning and operational purposes. Data Owner: Transportation. Time Period: 2006. Frequency: A citywide count is taken approximately every 10 years. A limited number of traffic counts will be taken and added to the list periodically. Related Applications: Traffic Information Interactive Map (http://webapps.cityofchicago.org/traffic/).
In November 2024, Google.com was the most popular website worldwide with 136 billion average monthly visits. The online platform has held the top spot as the most popular website since June 2010, when it pulled ahead of Yahoo into first place. Second-ranked YouTube generated more than 72.8 billion monthly visits in the measured period. The internet leaders: search, social, and e-commerce Social networks, search engines, and e-commerce websites shape the online experience as we know it. While Google leads the global online search market by far, YouTube and Facebook have become the worldâs most popular websites for user generated content, solidifying Alphabetâs and Metaâs leadership over the online landscape. Meanwhile, websites such as Amazon and eBay generate millions in profits from the sale and distribution of goods, making the e-market sector an integral part of the global retail scene. What is next for online content? Powering social media and websites like Reddit and Wikipedia, user-generated content keeps moving the internetâs engines. However, the rise of generative artificial intelligence will bring significant changes to how online content is produced and handled. ChatGPT is already transforming how online search is performed, and news of Google's 2024 deal for licensing Reddit content to train large language models (LLMs) signal that the internet is likely to go through a new revolution. While AI's impact on the online market might bring both opportunities and challenges, effective content management will remain crucial for profitability on the web.
In March 2024, X's web page Twitter.com had *** billion website visits worldwide, up from *** billion site visits the previous month. Formerly known as Twitter, X is a microblogging and social networking service that allows most of its users to write short posts with a maximum of 280 characters.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analysis of âTraffic Count Segmentsâ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://catalog.data.gov/dataset/d81619ba-78d6-4252-a540-b647adaf367a on 11 February 2022.
--- Dataset description provided by original source is as follows ---
This dataset consists of 24-hour traffic volumes which are collected by the City of Tempe high (arterial) and low (collector) volume streets. Data located in the tabular section shares with its users total volume of vehicles passing through the intersection selected along with the direction of flow.
Historical data from this feature layer extends from 2016 to present day.
Contact: Sue Taaffe
Contact E-Mail: sue_taaffe@tempe.gov
Contact Phone: 480-350-8663
Link to embedded web map:http://www.tempe.gov/city-hall/public-works/transportation/traffic-counts
Link to site containing historical traffic counts by node: https://gis.tempe.gov/trafficcounts/Folders/
Data Source: SQL Server/ArcGIS Server
Data Source Type: Geospatial
Preparation Method: N/A
Publish Frequency: As information changes
Publish Method: Automatic
--- Original source retains full ownership of the source dataset ---
AADT represents current (most recent) Annual Average Daily Traffic on sampled road systems. This information is displayed using the Traffic Count Locations Active feature class as of the annual HPMS freeze in January. Historical AADT is found in another table. Please note that updates to this dataset are on an annual basis, therefore the data may not match ground conditions or may not be available for new roadways. Resource Contact: Christy Prentice, Traffic Forecasting & Analysis (TFA), http://www.dot.state.mn.us/tda/contacts.html#TFA
Check other metadata records in this package for more information on Annual Average Daily Traffic Locations Information.
Link to ESRI Feature Service:
Annual Average Daily Traffic Locations in Minnesota: Annual Average Daily Traffic Locations
Daily utilization metrics for data.lacity.org and geohub.lacity.org. Updated monthly
Urban SDK is a GIS data management platform and global provider of mobility, urban characteristics, and alt datasets. Urban SDK Traffic data provides traffic volume, average speed, average travel time and congestion for logistics, transportation planning, traffic monitoring, routing and urban planning. Traffic data is generated from cars, trucks and mobile devices for major road networks in US and Canada.
"With the old data I used, it took me 3-4 weeks to create a presentation. I will be able to do 3-4x the work with your Urban SDK traffic data."
Traffic Volume, Speed and Congestion Data Type Profile:
Industry Solutions include:
Use cases:
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
SDCC Traffic Congestion Saturation Flow Data for January to June 2023. Traffic volumes, traffic saturation, and congestion data for sites across South Dublin County. Used by traffic management to control stage timings on junctions. It is recommended that this dataset is read in conjunction with the âTraffic Data Site Names SDCCâ dataset.A detailed description of each column heading can be referenced below;scn: Site Serial numberregion: A group of Nodes that are operated under SCOOT control at the same common cycle time. Normally these will be nodes between which co-ordination is desirable. Some of the nodes may be double cycling at half of the region cycle time.system: SCOOT STC UTC (UTC-MX)locn: Locationssite: Site numbersday: Days of the week Monday to Sunday. Abbreviations; MO,TU,WE,TH,FR,SA,SU.date: Reflects correct actual Date of when data was collected.start_time: NOTE - Please ignore the date displayed in this column. The actual data collection date is correctly displayed in the 'date' column. The date displayed here is the date of when report was run and extracted from the system, but correctly reflects start time of 15 minute intervals. end_time: End time of 15 minute intervals.flow: A representation of demand (flow) for each link built up over several minutes by the SCOOT model. SCOOT has two profiles:(1) Short â Raw data representing the actual values over the previous few minutes(2) Long â A smoothed average of values over a longer periodSCOOT will choose to use the appropriate profile depending on a number of factors.flow_pc: Same as above ref PC SCOOTcong: Congestion is directly measured from the detector. If the detector is placed beyond the normal end of queue in the street it is rarely covered by stationary traffic, except of course when congestion occurs. If any detector shows standing traffic for the whole of an interval this is recorded. The number of intervals of congestion in any cycle is also recorded.The percentage congestion is calculated from:No of congested intervals x 4 x 100 cycle time in seconds.This percentage of congestion is available to view and more importantly for the optimisers to take into account.cong_pc: Same as above ref PC SCOOTdsat: The ratio of the demand flow to the maximum possible discharge flow, i.e. it is the ratio of the demand to the discharge rate (Saturation Occupancy) multiplied by the duration of the effective green time. The Split optimiser will try to minimise the maximum degree of saturation on links approaching the node.
HCAADT represents current (most recent) Heavy Commercial Annual Average Daily Traffic on sampled road systems. This information is displayed using the Traffic Count Locs Active feature class as of the annual HPMS freeze in January. Historical HCAADT is found in another table. Please note that updates to this dataset are on an annual basis, therefore the data may not match ground conditions or may not be available for new roadways. Resource Contact: John Hackett, Traffic Forecasting & Analysis (TFA), http://www.dot.state.mn.us/tda/contacts.html#TFA
Check other metadata records in this package for more information on Heavy Commercial Annual Average Daily Traffic Locations Information.
Link to ESRI Feature Service:
Heavy Commercial Annual Average Daily Traffic Locations in Minnesota: Heavy Commercial Annual Average Daily Traffic Locations
This dataset consists of 24-hour traffic volumes which are collected by the City of Tempe high (arterial) and low (collector) volume streets. Data located in the tabular section shares with its users total volume of vehicles passing through the intersection selected along with the direction of flow.Historical data from this feature layer extends from 2016 to present day.Contact: Sue TaaffeContact E-Mail: sue_taaffe@tempe.govContact Phone: 480-350-8663Link to embedded web map:http://www.tempe.gov/city-hall/public-works/transportation/traffic-countsLink to site containing historical traffic counts by node: https://gis.tempe.gov/trafficcounts/Folders/Data Source: SQL Server/ArcGIS ServerData Source Type: GeospatialPreparation Method: N/APublish Frequency: As information changesPublish Method: AutomaticData Dictionary